首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ultrastructure of spermiogenesis and the mature spermatozoon in Catenotaenia pusilla (Cestoda: Catenotaeniidae) is described. Spermiogenesis is characterized by the presence of a single axoneme which grows on the outside of a cytoplasmic extension at an angle of 45 degrees. Flagellar rotation and proximodistal fusion are produced in this process. The centrioles lack striated roots and an intercentriolar body. In the mature spermatozoon four different regions are described. The anterior extremity is capped by an apical cone and presents two helical crest-like bodies of unequal length. The axoneme, of the 9 + '1' pattern of the Trepaxonemata, presents a periaxonemal sheath. The cortical microtubules form a spiral pattern at an angle of about 40 degrees to the hypothetical spermatozoon axis. The nucleus is kidney- to horseshoe-shaped in cross section. Granules and proteinaceus walls are not observed in the spermatozoon of C. pusilla.  相似文献   

2.
Spermiogenesis and sperm ultrastructure of adult Cyathocephalus truncatus, a member of presumably basal group of "true" cestodes (Eucestoda), have been examined for the first time by using transmission electron microscopy. The process of sperm formation corresponds in basic pattern to that of the Pseudophyllidea. In addition, the 2 pairs of electron-dense attachment zones are present in median cytoplasmic process of C. truncatus. However, mature spermatozoa of C. truncatus differ significantly from those of the pseudophyllideans, especially in the morphology of the proximal and distal spermatozoon extremities. The proximal extremity of the mature spermatozoon lacks a crested body, which is present in more derived cestodes and some pseudophyllideans. The distal end of the mature spermatozoa exhibits different morphology in the gametes from testes and those from receptaculum seminis. New for the Eucestoda is a finding that a lateral cytoplasmic extension creates the distal end of the spermatozoa from testes, resembling sperm of some Monogenea and Digenea. In contrast, the distal extremity of the spermatozoa from receptaculum seminis contains only a nucleus. Despite the above-mentioned peculiarities, the ultrastructural data on sperm/spermiogenesis suggest close relationships of the Spathebothriidea and Pseudophyllidea.  相似文献   

3.
Yoneva, A., Georgieva, K., Mizinska, Y., Nikolov, P. N., Georgiev, B. B. and Stoitsova, S. R. 2010. Ultrastructure of spermiogenesis and mature spermatozoon of Anonchotaenia globata (von Linstow, 1879) (Cestoda, Cyclophyllidea, Paruterinidae). — Acta Zoologica (Stockholm) 91 : 184–192 The ultrastructure of spermiogenesis and of the spermatozoon of a species of the family Paruterinidae is described for the first time. The spermiogenesis of Anonchotaenia globata starts with the formation of a differentiation zone with two centrioles associated with thin striated roots. One of the centrioles gives rise to a free flagellum followed by a slight flagellar rotation and a proximodistal fusion of the flagellum with the cytoplasmic protrusion. This pattern corresponds to Type III spermiogenesis in cestodes. The spermatozoon consists of five distinct regions. The anterior extremity possesses an apical cone and a single helically coiled crested body. The cortical microtubules are spirally arranged. The axoneme is surrounded by a periaxonemal sheath and a thin layer of cytoplasm filled with electron‐dense granules in Regions I–V. The periaxonemal sheath is connected with the peripheral microtubules by transverse intracytoplasmic walls in Regions III and IV. The nucleus is spirally coiled around the axoneme. Anonchotaenia globata differs from Dilepididae (where paruterinids have previously been classified) in the type of spermiogenesis, the lack of glycogen inclusions and the presence of intracytoplasmic walls. The pattern of spermiogenesis is similar to that in Metadilepididae and Taeniidae, which are considered phylogenetically close to Paruterinidae.  相似文献   

4.
Pecio A 《Folia biologica》2003,51(1-2):55-62
The main characteristic features of spermiogenesis in Chilodus punctatus (Characiformes) are rotation of the nucleus, development of a nuclear fossa, which extends as a narrow invagination deep into the nucleus and the way in which flagellum is formed. The chromatin condensation proceeds during the spermiogenesis from heterogeneous through homogenous and granular to a highly compact one present in the mature spermatozoon. Mature Ch. punctatus spermatozoon shows a spherical nucleus, short midpiece and flagellum with lateral fins. The centrioles are in perpendicular arrangement and are located in the deep nuclear fossa, which extends towards the anterior pole of the nucleus. The midpiece contains a few mitochondria, which are separated from the anterior fragment of flagellum by the cytoplasmic channel. Spermiogenesis and spermatozoon ultrastructure conform to the pattern observed in other ostariophysans, but for the first time the presence of lateral fins along flagellum has been documented in a representative of Characiformes.  相似文献   

5.
Miquel, J., Torres, J., Foronda, P. and Feliu, C. 2010. Spermiogenesis and spermatozoon ultrastructure of the davaineid cestode Raillietina micracantha. — Acta Zoologica (Stockholm) 91 : 212–221 The spermiogenesis and the ultrastructural organization of the spermatozoon of the davaineid cestode Raillietina micracantha are described by means of transmission electron microscopy. Spermiogenesis begins with the formation of a zone of differentiation containing two centrioles. One of the centrioles develops a free flagellum that later fuses with a cytoplasmic extension. The nucleus migrates along the spermatid body after the proximodistal fusion of the flagellum and the cytoplasmic extension. During advanced stages of spermiogenesis a periaxonemal sheath and intracytoplasmic walls appear in the spermatids. Spermiogenesis finishes with the appearance of two helicoidal crested bodies at the base of spermatids and, finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of R. micracantha is a long and filiform cell, tapered at both ends, which lacks mitochondria. It exhibits two crested bodies of different lengths, one axoneme of the 9 + ‘1’ pattern of trepaxonematan Platyhelminthes, twisted cortical microtubules, a periaxonemal sheath, intracytoplasmic walls, granules of glycogen and a spiralled nucleus. The anterior extremity of the spermatozoon is characterized by the presence of an electron‐dense apical cone and two spiralled crested bodies while the posterior extremity of the male gamete exhibits only the axoneme and an electron‐dense posterior tip.  相似文献   

6.
Levron, C., Yoneva, A. and Kalbe, M. 2011. Spermatological characters in the diphyllobothriidean Schistocephalus solidus (Cestoda). —Acta Zoologica (Stockholm) 00 : 1–8. The spermiogenesis and the mature spermatozoon of Schistocephalus solidus (Cestoda: Diphyllobothriidea) are described using transmission electron microscopy. Spermiogenesis in S. solidus begins with the formation in the spermatid of a differentiation zone surrounded by cortical microtubules and delimited by arching membranes. This conical area presents two centrioles associated with striated rootlets and a median cytoplasmic extension between them. The centrioles are separated by an intercentriolar body composed of three electron‐dense plates dividing four electron‐lucent plates. The centrioles give rise to two flagella that undergo a rotation and later fuse proximodistally with the median cytoplasmic expansion. The presence of an electron‐dense material in the distal part of the differentiation zone is observed in the early stage of spermiogenesis. This pattern corresponds to Type I spermiogenesis according to the classification proposed by Bâ and Marchand (Mémoires du Muséum National d’Histoire Naturelle 1995; 166 : 87). The mature spermatozoon of S. solidus presents the Type I pattern defined by Levron et al. (Biological Reviews 2010; 85 : 523). It consists of five regions that exhibit two axonemes, parallel cortical microtubules, nucleus and electron‐dense zones. The anterior tip of the spermatozoon possesses only a few singlets. The axonemes are of a 9 + ’1’ trepaxonematan pattern and do not reach the posterior extremity of the mature spermatozoon.  相似文献   

7.
The present paper describes the ultrastructure of spermiogenesis and the spermatozoon of Macracanthorhynchus hirudinaceus, an acanthocephalan parasite of the wild boar Sus scrofa. At the beginning of spermatogenesis, spermatocytes exhibit synaptonemal complexes and 2 centrioles. In the spermatid, only 1 centriole remains, generating a flagellum with a 9+2 pattern. Another ultrastructural feature observed during the spermiogenesis of M. hirudinaceus is the condensation of the chromatin, forming a "honeycomb" structure in the old spermatid and a homogeneous, electron-dense structure in the spermatozoon. The mature spermatozoon of M. hirudinaceus presents a reversed anatomy, as has been described previously in other species of the Acanthocephala. The spermatozoon is divided into 2 parts: an axoneme, and a nucleocytoplasmic derivative. The spermatozoon flagellum exhibits a 9+2 or 9+0 pattern. The process of spermiogenesis and the ultrastructural organization of the spermatozoon of M. hirudinaceus are compared with available data regarding other acanthocephalan species.  相似文献   

8.
The present paper describes the spermiogenesis and the ultrastructure of the spermatozoon of Fasciola gigantica, as revealed by transmission electron microscopy. Spermiogenesis in F. gigantica begins with the formation of a differentiation zone containing 2 centrioles with associated striated roots and an intercentriolar body between them. Each centriole develops a flagellum. Proximodistal fusion of these flagella with the median cytoplasmic extension gives rise to the spermatozoon. Spermiogenesis in F. gigantica is characterized by the formation of a dorsolateral cytoplasmic expansion, an external ornamentation of the cell membrane, and spinelike bodies. These 3 structures were also observed in the anterior part of the spermatozoon. Our study describes for the first time the simultaneous presence of dorsolateral cytoplasmic expansion, external ornamentation of the plasma membrane, and spinelike bodies in the spermatozoon of a trematode.  相似文献   

9.
The first aflagellate and immotile Coleopteran spermatozoon is described in a group of species belonging to the family Ptiliidae. The mature spermatozoon is devoid of flagellum, centrioles and mitochondria, includes a three-layered acrosomal complex (extraacrosomal layer, acrosome and perforatorium) and a long nucleus made up of two regions of different densities. A compact submembranary capsule and a thick glycocalyx are also present. Motility organelles are absent during the whole spermiogenesis, which is not regressive. The new structures peculiar for this type of sperma are designed for protection. No other sperm models with these characteristics have been described so far.  相似文献   

10.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

11.
Ultrastructure of spermiogenesis and the main characters of the mature spermatozoon of Troglotrema acutum are described by means of transmission electron microscopy. Specimens were obtained from the nasolacrimal sinuses of an American mink (Mustela vison). Spermiogenesis in T. acutum follows the general pattern of digeneans. The zone of differentiation is a conical-shaped area bordered by cortical microtubules and delimited at its base by a ring of arched membranes. This area contains 2 centrioles associated with striated rootlets and an intercentriolar body between them. The centrioles develop 2 free flagella that grow ortogonally to the median cytoplasmic process. The posterior flagellar rotation and proximodistal fusion of the free flagella with the median cytoplasmic process originate the spermatozoon. The mature spermatozoon of T. acutum is characterized by the presence of 2 axonemes of different lengths presenting the 9+'1' trepaxonematan pattern, 2 bundles of parallel cortical microtubules, 2 mitochondria, a nucleus, and granules of glycogen. These ultrastructural characters are compared with other digenean species previously studied and the importance of different spermatological features is discussed.  相似文献   

12.
B. Hosfeld 《Zoomorphology》1994,114(4):195-202
Summary The spermatophore, mature spermatozoon and spermiogenesis of Heterolaophonte minuta have been investigated by light and electron microscopy. The spermatophore contains three different secretions which are responsible for the discharge of the contents of the spermatophore, the formation of the fertilization tube and the storage of the spermatozoa. The spermatozoon represents a type new for the Copepoda. It is a filiform cell about 25 m in length, ellipsoid in transverse section and tapered at the posterior end. The elongated nucleus contains chromatin fibrils and does not possess a nuclear envelope. Posterior to the nucleus, six mitochondria are placed one after the other. The posterior part of the spermatozoon contains parallel pseudomembranes. The gamete is not helically twisted and is without a flagellum and centrioles. The most remarkable feature of the spermatozoon is an osmiophilic cap in front of the nucleus. This cap corresponds to the acrosome of the spermatozoon. Early stages of spermiogenesis take place in the testis, where the spermatids are incorporated into accessory cells. The origin of the chromatin fibrils and the glycocalyx, as well as the breakdown of the nuclear envelope and centrioles, represent the final steps of spermiogenesis which occur in the vas deferens.  相似文献   

13.
Ultrastructural characters in spermiogenesis and spermatozoa are considered important tools to elucidate the phylogenetic relationships within the Platyhelminthes. In the Anoplocephalidae, ultrastructural data refer to the spermatozoon of 14 species, whereas data on spermiogenesis refer to only 7 species. The present study focused on the spermiogenesis and spermatozoon of the anoplocephalid cestode Mosgovoyia ctenoides, as revealed by transmission electron microscopy. Type IV spermiogenesis was detected, beginning with the formation of a differentiation zone containing 2 centrioles, with a centriolar adjunct and vestigial striated rootlets. Different forms of the latter character have been described in other anoplocephalids. This study supports spermiogenesis of type IV as the most frequent in the Anoplocephalidae and confirms the presence of a centriolar adjunct in yet another type IV spermiogenesis species. The spermatozoon of M. ctenoides possesses 1 axoneme of the 9+ '1' trepaxonematan type, 2 crestlike bodies, dense plates, and granules of electron-dense cytoplasmic material, nucleus, and twisted cortical microtubules. It was again confirmed that the presence of granular material and the absence of both a periaxonemal sheath and intracytoplasmic walls are constant characters in the spermatozoa of all the Anoplocephalinae.  相似文献   

14.
Spermiogenesis in Mesostoma viaregginum begins with the formation of a zone of differentiation containing striated rootlets, two centrioles, and an intercentriolar body in-between. These centrioles generate two parallel free-flagella with the 9+“1” pattern of the Trepaxonemata growing out in opposite directions. Spermatid differentiation is characterised by a 90° latero-ventral rotation of flagella and a subsequent disto-proximal centriolar rotation, with a distal cytoplasmic projection. The former rotation involves the compression of a row of cortical microtubules and allows recognising a flagellar side and an aflagellar side in the late spermatid and in the mature spermatozoon. At the end of the differentiation, centrioles and microtubules lie parallel to the spermatid axis. The disto-proximal centriolar rotation is proposed as a synapomorphy for the Rhabdocoela. The modifications of the intercentriolar body during spermiogenesis and the migration of the nucleus and the centrioles towards the cytoplasmic distal projection are also described. The mature spermatozoon of M. viaregginum is filiform and tapered at both ends and presents many features found in the Rhabdocoela gametes. The nucleus disappears before the flagellar insertion and a density gradient of mitochondria is observed along the sperm axis. The anterior end of the spermatozoon of M. viaregginum is characterised by a tapering capped by a membrane expansion. This study has enabled us to describe precisely the orientation of spermatozoa in the Rhabdocoela in general: the centriolar extremity is proposed as the anterior one for the Rhabdocoela.  相似文献   

15.
本项研究应用光学显微镜、扫描和透射电子显微镜,观察了扩张莫尼茨绦虫的精细胞分化、精子形成全过程及精子的精细结构。扩张莫尼茨绦虫的精细胞分化过程为:1)初级精原细胞主要发生于幼节的睾丸滤泡中;2)次级精原细胞发生不完全分裂形成16个细胞一簇的初级精母细胞群,以共同的中央细胞质相连;3)初级精母细胞的特征为细胞核中出现联会复合体结构;4)紧接着的第二次成熟分裂,产生64个由中央细胞质相连的细胞核较小的精细胞。精子形成始于精细胞中分化区的形成,成熟精子缺乏线粒体,具有质膜和冠状体、1—4个领域排布的质膜下皮层微管,细胞质中存在电子致密的颗粒状物质,具一个不规则形态的细胞核,具有“9 1”类型的轴丝构造,缺乏轴丝周围鞘。从精子的纵切面上可将精子区分为5个区段(Ⅰ一Ⅴ区)。在精子形成过程中,中心粒基部出现螺旋形小根结构在寄生虫中为首次报导;成熟精子具有游离鞭毛,在绦虫中为首次发现[动物学报49(3):370—379,2003]。  相似文献   

16.
The spermatogenesis and mature spermatozoon of Paravortex cardii were studied by transmission electron microscopy. Meiotic divisions occur without cytokinesis and the spermatid nuclei appear embedded in a common cytoplasmic mass. The mature spermatozoon is filiform, very regular in contour and circular in cross-section. A tubular lining of microtubules lying close to the plasma membrane is found along the spermatozoon. Rows of spherical glycogen particles with helical arrangement lay internal to the cortical microtubules. The spermatozoon of P. cardii may be divided into two regions, nuclear and cytoplasmic regions. The nuclear region contains an elongated nucleus with a densely packed nuclear material. The mitochondria are distributed throughout the cytoplasmic region; they pack tightly together and often fuse to form one large one. This spermatozoon lacks both acrosome and the so-called dense bodies. A ciliary or centriolar apparatus was not observed. Accordingly, the spermatozoon of P. cardii is considered to be aflagellate in type. Spermatozoa are compared among flatworms, and some considerations on the significance of their ultrastructure for phylogeny in the Platyhelminthes are tentatively given.  相似文献   

17.
Using transmission electron microscopy, spermiogenesis and the spermatozoon ultrastructural organization are described in Ligula intestinalis (Linnaeus, 1758) (Diphyllobothriidea), a parasite of the great crested grebe Podiceps cristatus (Linnaeus, 1758). Spermiogenesis starts with the differentiation zone of 2 striated rootlets, 2 centrioles giving rise to 2 flagella, and an intercentriolar body. The latter is composed of 5 electron-dense layers separating 4 electron-lucent layers. In the early stages of spermiogenesis, an electron-dense material is present in the apical region of the differentiation zone. Later, the flagella undergo a rotation and fuse with the cytoplasmic extension in a proximo-distal process. The spermatozoon contains 2 axonemes with a 9 + "1" trepaxonematan pattern, the nucleus, the cortical microtubules, and an electron-dense zone. The spermatozoon anterior extremity in L. intestinalis is characterized by the absence of crested bodies and a ring of electron-dense cortical microtubules. Some characters of spermiogenesis and spermatozoon in L. intestinalis confirm the recent splitting of "Pseudophyllidea" into 2 new orders, i.e., Bothriocephalidea and Diphyllobothriidea. The process of spermiogenesis is similar in both orders for the "type I" of spermiogenesis and the presence of electron-dense material. However, the intercentriolar body is clearly more developed in the Diphyllobothriidea than in the Bothriocephalidea. Moreover, these 2 orders seem to differ in the presence or absence of a ring of electron-dense cortical microtubules in the anterior extremity of the spermatozoon.  相似文献   

18.
The ultrastructural events of spermiogenesis and the ultrastructure of the mature spermatozoon of an acanthocotylid monogenean, Acanthocotyle lobianchi, are described. The early zone of differentiation (ZD) contains two roughly perpendicular centrioles which become parallel and produce two free flagella, although these later become incorporated into the same body of cytoplasm. No cortical microtubules were found supporting the ZD at any stage of spermiogenesis. Much of the length of the thread-like sperm contains two axonemes of the 9 + '1' pattern together with a nuclear and mitochondrial profile but the 'posterior' region is occupied only by a single axoneme and the nucleus. A laterally situated electron-lucent vesicle with specialization of the adjacent surface membrane is found in the 'anterior' region of the sperm. The phylogenetic implications of these observations are discussed.  相似文献   

19.
The sperm of Spio setosa (Polychaeta, Spionidae) are known to be very unusual in form; here, spermiogenesis and the structure of the spermatozoon in this species are described by transmission electron microscopy. While spermiogenesis is similar to that described for many other polychaetes, two notable exceptions to this process include the synthesis of abundant ring‐shaped and tubular, membrane‐bounded cytoplasmic inclusions in the midpiece, and the differentiation of a spirally shaped sperm head. Spermatids develop as free‐floating tetrads in the male's coelom. A microtubular manchette does not develop during chromatin condensation and nuclear elongation, and the spiral acrosome forms as a single Golgi‐derived vesicle that migrates anteriorly to become housed in a deep anterior nuclear fossa. Early in spermiogenesis, numerous Golgi‐derived, membrane‐bounded cytoplasmic inclusions appear in the cytoplasm; these ultimately occupy the sperm midpiece only. The mature spermatozoon in the male has a 15‐μm‐long head consisting of a nucleus coiled like a spring and a spiral acrosome with differentiated substructure, the posterior two thirds of which sits in an anterior nuclear fossa. The midpiece is wider than the rest of the spermatozoon and contains 9–10 spherical mitochondria surrounding the two centrioles, as well as numerous membrane‐bounded conoid and tubular cytoplasmic inclusions. The axoneme has a 9 + 2 arrangement of microtubules. By contrast, stored sperm in the female's seminal receptacles have lost the midpiece inclusions but contain an abundance of glycogen. The function of the midpiece inclusions remains unresolved, and the significance of their absence in stored sperm within the seminal receptacle and the appearance of midpiece glycogen stores remains unclear and requires additional investigation.  相似文献   

20.
Marigo, A.M., Bâ, C.T. and Miquel, J. 2011. Spermiogenesis and spermatozoon ultrastructure of the dilepidid cestode Molluscotaenia crassiscolex (von Linstow, 1890), an intestinal parasite of the common shrew Sorex araneus. —Acta Zoologica (Stockholm) 92 : 116–125. Spermiogenesis in Molluscotaenia crassiscolex begins with the formation of a differentiation zone containing two centrioles. One of the centrioles develops a flagellum directly into the cytoplasmic extension. The nucleus elongates and later migrates along the spermatid body. During advanced stages of spermiogenesis, a periaxonemal sheath appears in the spermatid. Spermiogenesis finishes with the appearance of a single helicoidal crested body at the base of the spermatid and, finally, the narrowing of the ring of arched membranes causes the detachment of the fully formed spermatozoon. The mature spermatozoon of M. crassiscolex exhibits a partially detached crested body in the anterior region of the spermatozoon, one axoneme, twisted cortical microtubules, a periaxonemal sheath, and a spiralled nucleus. The anterior spermatozoon extremity is characterized by the presence of an electron‐dense apical cone and a single spiralled crested body, which is attached to the sperm cell in the anterior and posterior areas of region I, whereas in the middle area it is partially detached from the cell. This crested body is described for the first time in cestodes. The posterior extremity of the male gamete exhibits only the disorganizing axoneme. Results are discussed and compared particularly with the available ultrastructural data on dilepidids sensu lato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号