首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diethyl pyrocarbonate (DEPC) has been useful in vitro as an agent relatively specific for binding to imidazole of histidine. Administered via the cisterna magna DEPC inhibits central chemosensitivity in conscious rabbits, supporting the alphastat hypothesis for central chemoreceptor function. In this study I have applied DEPC via 1 X 3 mm cottonoid pledgets to each of the three ventrolateral medulla (VLM) chemosensitive areas in glomectomized, vagotomized, paralyzed, and servo-ventilated alpha-chloralose-urethan-anesthetized cats. CO2 responses measured by integrated phrenic nerve output were evaluated before and after DEPC application. A dose of 40 mmol/l applied to the rostral chemosensitive area increased the CO2 threshold (5.3%) and significantly decreased (P less than 0.03; Wilcoxon sign rank test) the initial slope (-43%) and the maximum (-41%) of the CO2 response. No significant effects were observed with DEPC application in the intermediate or caudal areas. Treatment with 40 mmol/l hydroxylamine immediately after DEPC in the rostral area prevented the effects supporting the interpretation that imidazole was the reactant with DEPC. The results are consistent with the hypothesis that imidazole-histidine is involved in the mechanism of central chemoreception and indicate that only the rostral area utilizes a DEPC inhibitable mechanism.  相似文献   

2.
Application by pledget of the M1-antimuscarinic receptor agent pirenzepine (40 mM) to the rostral chemosensitive areas of the ventrolateral medulla in anesthetized, paralyzed, vagotomized, glomectomized, and servoventilated cats inhibited the slope of the integrated phrenic response to CO2 by 32.5% (P less than 0.03) and the maximum value by 21.1% (P less than 0.01). Similar application of the imidazole-histidine blocking agent diethyl pyrocarbonate (DEPC) decreased the slope by 40.3% (P less than 0.01) and the maximum value by 29.3% (P less than 0.05). Both responses confirm previous results. DEPC treatment decreased the effectiveness of subsequent pirenzepine application such that although slope and maximum were further decreased, the values were not significantly different from those after DEPC. Pirenzepine treatment prevented any subsequent DEPC inhibitory effect. The results raise the possibility that the inhibitory effects of DEPC on CO2 chemosensitivity are via muscarinic receptors and that muscarinic receptor involvement in CO2 chemosensitivity requires the presence of imidazole-histidine. Analysis by scintillation counting of successive 100-micron sections of medulla after rostral area application of [3H]pirenzepine indicated that the pirenzepine and DEPC effects are most probably within 2.0 mm of the ventral surface as measured from the midline, well away from the dorsal and ventral respiratory group neurons.  相似文献   

3.
The muscarinic receptor antagonist atropine (105 mM) dramatically decreased the response to increased CO2 when applied by cotton pledgets to the rostral ventrolateral medulla ventilatory chemosensitive area in anesthetized, paralyzed, vagotomized, glomectomized, and servoventilated cats with integrated phrenic nerve activity used as respiratory center output. Lower dose atropine (4.4 mM) and the M1-muscarinic receptor subtype antagonist pirenzepine (10 mM) also significantly decreased the mean CO2 response slope 48.3 +/- 6.2 and 40.7 +/- 6.0% (SE), respectively, and significantly decreased the maximum response value 26.3 +/- 8.1 and 19.2 +/- 3.2%, respectively, without significant effects on blood pressure or on the phrenic response to carotid sinus nerve stimulation. The M2-muscarinic receptor subtype antagonist AF-DX 116 (10 mM) had no significant effect on phrenic output or blood pressure. Application of carbachol (10 mM) at the rostral area augmented eucapnic phrenic output and the maximum value of the CO2 response but decreased the initial slope, effects blocked by atropine. Carbachol also decreased the response to carotid sinus nerve stimulation, suggesting that the system was saturated by carbachol stimulation. Muscarinic cholinergic receptors accessible to surface application at the rostral ventrolateral medulla antagonized by pirenzepine but not AF-DX 116 appear to be involved in the central chemoreceptor process.  相似文献   

4.
We used the neurotoxin, kainic acid, which is known to stimulate neuronal cell bodies as opposed to axons of passage by binding to specific amino acid receptors to determine whether cells with such receptors have access to the ventrolateral medullary surface and are involved in central ventilatory chemosensitivity. Pledgets with 4.7 mM kainic acid were placed bilaterally on the rostral, intermediate, or caudal ventilatory chemosensitive areas for 1-2 min in chloralose-urethan-anesthetized, paralyzed, vagotomized, glomectomized, and servo-ventilated cats. Application of kainic acid on the caudal or intermediate areas produced no consistent significant effects on eucapnic phrenic output or on the slope or maximum value of the phrenic nerve response to increased end-tidal PCO2. Rostral area kainic acid produced immediate augmentation and then diminution of blood pressure and phrenic output. Apnea developed in six of nine cats by 40 min. In all five cats in which it could be tested, the slope of the CO2 response was clearly decreased. Of [3H]kainic acid applied to the rostral area, 88.4% was shown to be within 2 mm of the ventral surface. Comparison of surface application sites of this and other studies suggests that an area overlapping the border of the original rostral and intermediate areas allows access to neurons involved in the chemoreception process, which may also provide tonic facilitatory input to cardiorespiratory systems.  相似文献   

5.
Kainic acid (4.7 mM) applied to the rostral ventrolateral medulla (RVLM) surface decreases phrenic output, CO2 sensitivity, and blood pressure in chloralose-urethan-anesthetized, vagotomized, paralyzed, glomectomized, servoventilated cats. In this study using the same preparation, bilateral 50- to 100-nl kainate injections just below the RVLM surface better localized these responses topographically. The physiological responses to unilateral 10-nl kainate injections were then correlated with anatomic location determined by fluorescent microbeads (0.5 micron diam). Many sites were associated with no effect, a few rostral and caudal sites with increased phrenic activity, and cluster of sites with decreased phrenic activity often to apnea, decreased CO2 sensitivity, and decreased responses to carotid sinus nerve stimulation. Blood pressure was unaffected. These sites, within 400 microns of the surface, were ventral to the facial nucleus, ventrolateral to the nucleus paragigantocellularis lateralis, caudal to the superior olive, and rostral to the retrofacial nucleus. They appeared to be within the recently described retrotrapezoid nucleus, which contains cells with respiratory-related activity and projections to the dorsal and ventral respiratory groups. Cells within this site appear able to provide tonic input to respiration and to affect peripheral and central chemoreception.  相似文献   

6.
Neurokinin-1 receptor immunoreactive (NK1R-ir) neurons and processes are widely distributed within the medulla, prominently at central chemoreceptor sites. Focal lesions of NK1R-ir neurons in the medullary raphe or the retrotrapezoid nucleus partially reduced the CO(2) response in conscious rats. We ask if NK1R-ir cells and processes over a wide region of the ventral medulla are essential for central and peripheral chemoreception by cisterna magna injection of SSP-SAP, a high-affinity version of substance P-saporin. After 22 days, NK1R-ir cell loss was -79% in the retrotrapezoid nucleus and -65% in the A5 region, which lie close to the ventral surface, and -38% in the medullary raphe and -49% in the pre-B?tzinger complex/rostral ventral respiratory group, which lie deeper. Dorsal chemoreceptor sites, the caudal nucleus tractus solitarius and the A6 region, were unaffected. At 8 and 22 days, these lesions produced 1) hypoventilation during air breathing in wakefulness ( approximately 8%) and in non-rapid eye movement (NREM) ( approximately 9%) and rapid eye movement ( approximately 14%) sleep, as measured over a 4-h period; 2) a substantially reduced ventilatory response to 7% CO(2) by 61% in wakefulness and 46-57% in NREM sleep; and 3) a decreased ventilatory response to 12% O(2) by 40% in wakefulness and 35% in NREM sleep at 8 days, with partial recovery by 22 days. NK1R-ir neurons in the ventral medulla are essential for normal central chemoreception, provide a drive to breathe, and modulate the peripheral chemoreceptor responses. These effects are not state dependent.  相似文献   

7.
The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. This nucleus is a mesencephalic structure of the amphibian brain and is probably homologous to the LC in mammals. There are no data available for the role of LC in the central chemoreception of amphibians. Thus the present study was designed to investigate whether LC of toads (Bufo schneideri) is a CO2/H+ chemoreceptor site. Fos immunoreactivity was used to verify whether the nucleus is activated by hypercarbia (5% CO2 in air). In addition, we assessed the role of noradrenergic LC neurons on respiratory and cardiovascular responses to hypercarbia by using 6-hydroxydopamine lesion. To further explore the role of LC in central chemosensitivity, we examined the effects of microinjection of solutions with different pH values (7.2, 7.4, 7.6, 7.8, and 8.0) into the nucleus. Our main findings were that 1) a marked increase in c-fos-positive cells in the LC was induced after 3 h of breathing a hypercarbic gas mixture; 2) chemical lesions in the LC attenuated the increase of the ventilatory response to hypercarbia but did not affect ventilation under resting conditions; and 3) microinjection with acid solutions (pH = 7.2, 7.4, and 7.6) into the LC elicited an increased ventilation, indicating that the LC of toads participates in the central chemoreception.  相似文献   

8.
We made unilateral chemical (10- or 50-nl microinjections; 4.7 mM kainic acid) or electrolytic (5-15 mA; 15 s) lesions in a region of the rostral ventrolateral medulla (VLM) caudal to the retrotrapezoid nucleus in 10 decerebrate, paralyzed, vagotomized, and servo-ventilated cats. The lesions were 3.0-4.2 mm lateral to the midline, within 2 mm caudal to the facial nucleus, and within 2.5 mm of the VLM surface. Four control injections (mock cerebrospinal fluid and fluorescent beads alone) produced small and inconsistent effects over 3-5 h. The predominant effect of the lesions was a significant decrease in baseline integrated phrenic nerve amplitude (PNA) (apnea in 2 cases), total respiratory cycle duration, and the response to increased CO2 (slope < 15% of control in 3 cases). The respiratory-related peak amplitude of the integrated sympathetic signal, blood pressure, and the sympathetic nerve activity response to CO2 were also decreased after the majority of lesions. Not all lesions produced all effects, and some lesions resulted in increased PNA and respiratory cycle duration. The lesioned region appears functionally to represent a caudal extension of the retrotrapezoid nucleus containing neurons necessary for normal baseline PNA and CO2 sensitivity. In addition, it contains neurons involved in the determination of resting respiratory frequency and normal sympathetic activity and blood pressure. The pattern of mixed responses among animals suggests that a heterogeneity of function is present within a relatively small VLM region.  相似文献   

9.
We studied the influence of central and peripheral chemoreceptor stimulation on the activities of the phrenic and internal intercostal (iic) nerves in decerebrate, vagotomized, and paralyzed cats with bilateral pneumothoraces. Whole iic nerves of the rostral thorax (T2-T5) usually discharged during neural inspiration, whereas those of the caudal thorax (T7-T11) were primarily active during neural expiration. Filaments of rostral iic nerves that terminated in iic muscles generally discharged during expiration, suggesting that inspiratory activity recorded in whole iic nerves may have innervated other structures, possibly parasternal muscles. All nerves were phasically active at hyperoxic normocapnia and increased their activities systematically with hypercapnia. Isocapnic hypoxia or intra-arterial NaCN injection consistently increased phrenic and inspiratory iic nerve activities. In contrast, expiratory iic nerve discharges were either decreased (10 cats) or increased (7 cats) by hypoxia. Furthermore, expiratory responses to NaCN were highly variable and could not be predicted from the corresponding response to hypoxia. The results show that central and peripheral chemoreceptor stimulation can affect inspiratory and expiratory motoneuron activities differentially. The variable effects of hypoxia on expiratory iic nerve activity may reflect a relatively weak influence of carotid body afferents on expiratory bulbospinal neurons. However, the possibility that the magnitude of expiratory motoneuron activity is influenced by the intensity of the preceding centrally generated inspiratory discharge is also discussed.  相似文献   

10.
The purpose of the current study was to examine where arginine vasopressin (AVP) inhibits respiration by direct action on the areas of the ventrolateral medulla (VLM) in the rat. The animal was anesthetized by urethane (1.2 g/kg, i.p.), paralyzed with gallamine triethiodide, and artificially ventilated. Catheterization of the femoral artery and vein, and bilateral vagotomy were performed. The rat was then placed upon a stereotaxic instrument in a prone position. The phrenic nerve was separated and cut peripherally. Phrenic nerve activity (PNA) was monitored at normocapnia and hypercapnia in hyperoxia. Microinjection of AVP into various subregions of the VLM was then performed. In response to AVP microinjection, a transient period of apnea and then a significant decrease in PNA amplitude were observed. Arterial blood pressure was unchanged. This inhibition of PNA with AVP treatment was site-specific, attenuated by raising CO2 concentration, and totally abolished by pretreatment with AVP V1A receptor antagonist. Data of the present study indicate that endogenous resource of AVP may produce an inhibitory effect upon respiration via AVP receptors presented on neurons within the VLM.  相似文献   

11.
Arginine vasopressin (AVP) is an important neurohormone in the regulation of many aspects of central nervous system, yet its modulation on the respiratory function remains largely unknown. The aims of this study were to investigate the modulation of phrenic (PNA) and hypoglossal nerve activity (HNA) by central administration of AVP and to identify the involvement of AVP V1A receptors in this modulation. Animals were anesthetized with urethane (1.2 g/kg, i.p.), paralyzed with gallamine triethiodide (5 mg/kg, i.v.), and artificially ventilated. The rat was then placed on a stereotaxic apparatus in a prone position. PNA and HNA were monitored at normocapnia in hyperoxia. Microinjection of AVP into the medial ventrolateral medulla (VLM) and/or rostral ventral respiratory group (rVRG) produced a dose-dependent inhibition on both PNA and HNA, whereas the microinjection of AVP into the region of lateral VLM resulted in a similar inhibition of these nerve activities and a pressor response. Systemic administration of phentolamine abolished the pressor effect but did not affect the inhibition of PNA and HNA evoked by AVP injection into the lateral VLM and/or rVRG, suggesting that AVP-induced inhibition of PNA and HNA was not due to the side effect of pressor response. These cardiopulmonary modulations were totally abolished by the central pretreatment of AVP V1A receptor antagonist. Our results suggested that AVP may activate neurons located at the VLM and/or rVRG via the AVP V1A receptor to inhibit respiratory-related HNA and thus to regulate upper airway aperture.  相似文献   

12.
The rostral fastigial nucleus (FNr) of the cerebellum facilitates the respiratory response to hypercapnia. We hypothesized that some FNr sites are chemosensitive to focal tissue acidosis and contribute, at least partially, to respiratory modulation. Minute ventilation (VE) was recorded in 21 anesthetized and spontaneously breathing rats. Acetazolamide (AZ; 50 microM) was microinjected unilaterally into the FNr while an isocapnic condition was maintained throughout the experiment. AZ (1 or 20 nl) injection into the FNr significantly elevated VE (46.0 +/- 6.7%; P < 0.05), primarily via an increase in tidal volume (31.7 +/- 3.8%; P < 0.05), with little effect on arterial blood pressure. This augmented ventilatory response was initiated at 6.3 +/- 0.8 min and reached the peak at 19.7 +/- 4.1 min after AZ administration. The same dose of AZ delivered into the interposed and lateral cerebellar nuclei, or vehicle injection into the FNr, failed to elicit detectable cardiorespiratory responses. To determine whether the ventilatory response to AZ injection into the FNr resulted from an increase in respiratory central drive, the minute phrenic nerve activity (MPN) was recorded in seven paralyzed and ventilated rats. Similar to VE, MPN was increased by 38.9 +/- 8.9% (P < 0.05) after AZ administration. Our results suggest that elevation of CO2/H+ within the FNr facilitates respiratory output, supporting the presence of ventilatory chemoreception in rat FNr.  相似文献   

13.
Effects of oligomycin on carotid chemoreceptor responses to O2 and CO2 were investigated using an in situ perfusion technique. Cats were anesthetized, paralyzed, and artificially ventilated. To avoid a possible reaction between an oligomycin-ethanol mixture and blood, we administered oligomycin to the carotid body via cell- and protein-free perfusate. Except for the perfusion periods, the carotid body received its own natural blood supply. Responses to O2, CO2, sodium cyanide, and nicotine of the same carotid chemoreceptor afferents were studied before and after each perfusion. An appropriate low dose of oligomycin completely blocked carotid chemoreceptor response to O2 while preserving the CO2 response. At the same time cyanide response was attenuated leaving nicotine response intact. Additional doses of oligomycin attenuated carotid chemoreceptor response to CO2 as well. Perfusion with a blank solution containing ethanol did not change the carotid body chemoreceptor responses. These effects of oligomycin on carotid chemoreceptor responses to O2 and CO2 were reversible, and restoration of the response to CO2 preceded that to O2. In addition, oligomycin administered into the blood with close intra-arterial injection produced similar differential blockade of O2 and CO2 chemoreception, preserving the nicotine and dopamine effects. This study confirmed the previous findings and provided new evidence showing that 1) the responses of carotid chemoreceptor to O2 and CO2 were separable by oligomycin due to the inhibition of oxidative phosphorylation and 2) the responses to nicotine and dopamine were intact even after blockade of O2 response.  相似文献   

14.
The aim of this study was to test the hypothesis that capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function but does not alter other vagal pulmonary receptor functions or peripheral and central chemoreceptor functions. Eleven lambs were randomized to receive a subcutaneous injection of either 25 mg/kg capsaicin (6 lambs) or solvent (5 lambs) under general anesthesia. Capsaicin-treated lambs did not demonstrate the classical ventilatory response consistently observed in response to capsaicin bolus intravenous injection in control lambs. Moreover, the ventilatory responses to stimulation of the rapidly adapting pulmonary stretch receptors (intratracheal water instillation) and slowly adapting pulmonary stretch receptors (Hering-Breuer inflation reflex) were similar in both groups of lambs. Finally, the ventilatory responses to various stimuli and depressants of carotid body activity and to central chemoreceptor stimulation (CO(2) rebreathing) were identical in control and capsaicin-treated lambs. We conclude that 25 mg/kg capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function without significantly affecting the other vagal pulmonary receptor functions or that of peripheral and central chemoreceptors.  相似文献   

15.
Stimulation of chemo-, irritant, and pulmonary C-fiber receptors reflexly constricts airway smooth muscle and alters ventilation in mature animals. These reflex responses of airway smooth muscle have, however, not been clearly characterized during early development. In this study we compared the maturation of reflex pathways regulating airway smooth muscle tone and ventilation in anesthetized, paralyzed, and artificially ventilated 2- to 3- and 10-wk-old piglets. Tracheal smooth muscle tension was measured from an open tracheal segment by use of a force transducer, and phrenic nerve activity was measured from a proximal cut end of the phrenic nerve. Inhalation of 7% CO2 caused a transient increase in tracheal tension in both age groups, whereas hypoxia caused no airway smooth muscle response in either group. The phrenic responses to 7% CO2 and 12% O2 were comparable in both age groups. Lung deflation and capsaicin (20 micrograms/kg iv) administration did not alter tracheal tension in the younger piglets but caused tracheal tension to increase by 87 +/- 28 and 31 +/- 10%, respectively, in the older animals (both P less than 0.05). In contrast, phrenic response to both stimuli was comparable between ages: deflation increased phrenic activity while capsaicin induced neural apnea. Laryngeal stimulation did not increase tracheal tension but induced neural apnea in both age groups. These data demonstrate that between 2 and 10 wk of life, piglets exhibit developmental changes in the reflex responses of airway smooth muscle situated in the larger airways in response to irritant and C-fiber but not chemoreceptor stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Hypertension is a major cause of morbidity. The neuropeptide catestatin [human chromogranin A-(352-372)] is a peptide product of the vesicular protein chromogranin A. Studies in the periphery and in vitro studies show that catestatin blocks nicotine-stimulated catecholamine release and interacts with β-adrenoceptors and histamine receptors. Catestatin immunoreactivity is present in the rostral ventrolateral medulla (RVLM), a key site for blood pressure control in the brain stem. Recently, we reported that microinjection of catestatin into the RVLM is sympathoexcitatory and increases barosensitivity. Here, we report the effects of microinjection of catestatin (1 mM, 50 nl) into the caudal ventrolateral medulla (CVLM) in urethane-anesthetized, bilaterally vagotomized, artificially ventilated Sprague-Dawley rats (n = 8). We recorded resting arterial pressure, splanchnic sympathetic nerve activity, phrenic nerve activity, heart rate, and measured cardiovascular homeostatic reflexes. Homeostatic reflexes were evaluated by measuring cardiovascular responses to carotid baroreceptor and peripheral chemoreceptor activation. Catestatin decreased basal levels of arterial pressure (-23 ± 4 mmHg), sympathetic nerve activity (-26.6 ± 5.7%), heart rate (-19 ± 5 bpm), and phrenic nerve amplitude (-16.8 ± 3.3%). Catestatin caused a 15% decrease in phrenic inspiratory period (T(i)) and a 16% increase in phrenic expiratory period (T(e)) but had no net effect on the phrenic interburst interval (T(tot)). Catestatin decreased sympathetic barosensitivity by 63.6% and attenuated the peripheral chemoreflex (sympathetic nerve response to brief hypoxia; range decreased 39.9%; slope decreased 30.1%). The results suggest that catestatin plays an important role in central cardiorespiratory control.  相似文献   

17.
To investigate if chorda tympani (CT) taste nerve responses to strong (HCl) and weak (CO(2) and acetic acid) acidic stimuli are dependent upon NADPH oxidase-linked and cAMP-sensitive proton conductances in taste cell membranes, CT responses were monitored in rats, wild-type (WT) mice, and gp91(phox) knockout (KO) mice in the absence and presence of blockers (Zn(2+) and diethyl pyrocarbonate [DEPC]) or activators (8-(4-chlorophenylthio)-cAMP; 8-CPT-cAMP) of proton channels and activators of the NADPH oxidase enzyme (phorbol 12-myristate 13-acetate [PMA], H(2)O(2), and nitrazepam). Zn(2+) and DEPC inhibited and 8-CPT-cAMP, PMA, H(2)O(2), and nitrazepam enhanced the tonic CT responses to HCl without altering responses to CO(2) and acetic acid. In KO mice, the tonic HCl CT response was reduced by 64% relative to WT mice. The residual CT response was insensitive to H(2)O(2) but was blocked by Zn(2+). Its magnitude was further enhanced by 8-CPT-cAMP treatment, and the enhancement was blocked by 8-CPT-adenosine-3'-5'-cyclic monophospho-rothioate, a protein kinase A (PKA) inhibitor. Under voltage-clamp conditions, before cAMP treatment, rat tonic HCl CT responses demonstrated voltage-dependence only at ±90 mV, suggesting the presence of H(+) channels with voltage-dependent conductances. After cAMP treatment, the tonic HCl CT response had a quasi-linear dependence on voltage, suggesting that the cAMP-dependent part of the HCl CT response has a quasi-linear voltage dependence between +60 and -60 mV, only becoming sigmoidal when approaching +90 and -90 mV. The results suggest that CT responses to HCl involve 2 proton entry pathways, an NADPH oxidase-dependent proton channel, and a cAMP-PKA sensitive proton channel.  相似文献   

18.
Central CO(2) chemoreception and the role of carbonic anhydrase were assessed in brain stems from Rana catesbeiana tadpoles and frogs. Buccal and lung rhythms were recorded from cranial nerve VII and spinal nerve II during normocapnia and hypercapnia before and after treatment with 25 microM acetazolamide. The lung response to acetazolamide mimicked the hypercapnic response in early-stage and midstage metamorphic tadpoles and frogs. In late-stage tadpoles, acetazolamide actually inhibited hypercapnic responses. Acetazolamide and hypercapnia decreased the buccal frequency but had no effect on the buccal duty cycle. Carbonic anhydrase activity was present in the brain stem in every developmental stage. Thus more frequent lung ventilation and concomitantly less frequent buccal ventilation comprised the hypercapnic response, but the response to acetazolamide was not consistent during metamorphosis. Therefore, acetazolamide is not a useful tool for central CO(2) chemoreceptor studies in this species. The reversal of the effect of acetazolamide in late-stage metamorphosis may reflect reorganization of central chemosensory processes during the final transition from aquatic to aerial respiration.  相似文献   

19.
In the present study we investigated the involvement of the hypothalamic paraventricular nucleus (PVN) in the modulation of sympathoexcitatory reflex activated by peripheral and central chemoreceptors. We measured mean arterial blood pressure (MAP), heart rate (HR), renal sympathetic nerve activity (RSNA), and phrenic nerve activity (PNA) before and after blocking neurotransmission within the PVN by bilateral microinjection of 2% lidocaine (100 nl) during specific stimulation of peripheral chemoreceptors by potassium cyanide (KCN, 75 microg/kg iv, bolus dose) or stimulation of central chemoreceptors with hypercapnia (10% CO(2)). Typically stimulation of peripheral chemoreceptors evoked a reflex response characterized by an increase in MAP, RSNA, and PNA and a decrease in HR. Bilateral microinjection of 2% lidocaine into the PVN had no effect on basal sympathetic and cardiorespiratory variables; however, the RSNA and PNA responses evoked by peripheral chemoreceptor stimulation were attenuated (P < 0.05). Bilateral microinjection of bicuculline (50 pmol/50 nl, n = 5) into the PVN augmented the RSNA and PNA response to peripheral chemoreceptor stimulation (P < 0.05). Conversely, the GABA agonist muscimol (0.2 nmol/50 nl, n = 5) injected into the PVN attenuated these reflex responses (P < 0.05). Blocking neurotransmission within the PVN had no effect on the hypercapnia-induced central chemoreflex responses in carotid body denervated animals. These results suggest a selective role of the PVN in processing the sympathoexcitatory and ventilatory component of the peripheral, but not central, chemoreflex.  相似文献   

20.
These studies investigated the role of the intermediate area of the ventral surface of the medulla (VMS) in the tracheal constriction produced by hypercapnia. Experiments were performed in chloralose-anesthetized, paralyzed, and artificially ventilated cats. Airway responses were assessed from pressure changes in a bypassed segment of the rostral cervical trachea. Hyperoxic hypercapnia increased tracheal pressure and phrenic nerve activity. Intravenous atropine pretreatment or vagotomy abolished the changes in tracheal pressure without affecting phrenic nerve discharge. Rapid cooling of the intermediate area reversed the tracheal constriction produced by hypercapnia. Graded cooling produced a progressive reduction in the changes in maximal tracheal pressure and phrenic nerve discharge responses caused by hypercapnia. Cooling the intermediate area to 20 degrees C significantly elevated the CO2 thresholds of both responses. These findings demonstrate that structures near the intermediate area of the VMS play a role in the neural cholinergic responses of the tracheal segment to CO2. It is possible that neurons or fibers in intermediate area influence the motor nuclei innervating the trachea. Alternatively, airway tone may be linked to respiratory motor activity so that medullary interventions that influence respiratory motor activity also alter bronchomotor tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号