首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrophobic pulmonary surfactant protein enriched in SP-C has been mixed in amounts up to 10% by weight with various phospholipids. The lipids used were dipalmitoyl phosphatidylcholine (DPPC), or DPPC plus unsaturated phosphatidylglycerol (PG), or phosphatidylinositol (PI) in molar ratios of 9:1 and 7:3. The protein enhanced the rate and extent of adsorption of each lipid preparation into the air-water interface, and its respreading after compression on a surface balance. Maximum surface pressures attained on compression of monolayers of mixtures of lipids were slightly higher in the presence of protein. The effects on rate and extent of adsorption were proportional to the amount of protein present. Mixtures containing 30 mol% PG or PI adsorbed more readily into the interface than those containing 10% acidic lipid or DPPC alone. Mixtures containing 30% PI were slightly more rapidly adsorbed than those containing 30% PG. The results suggest that mixtures of DPPC with either acidic lipid in the presence of surfactant protein could be effective in artificial surfactants.  相似文献   

2.
Premature lambs with respiratory failure [CO2 partial pressure (PCO2) greater than 70 Torr] were treated with 50 mg/kg 3H-labeled natural surfactant by tracheal instillation. Minimum surface tensions of sequential samples suctioned from the airways fell from 25 +/- 3 dyn/cm before treatment to 8 +/- 5 dyn/cm after treatment and again rose to 32 +/- 2 dyn/cm at death. Minimum surface tensions of alveolar wash samples taken at death were 27 +/- 4 dyn/cm, whereas surfactant fractions reisolated from the alveolar washes lowered surface tension to under 10 dyn/cm. The alveolar washes, surfactant reisolated from the alveolar washes, and natural surfactant had similar phospholipid compositions; however, the alveolar washes contained about 40 times more protein per micromole phosphatidylcholine. The natural surfactant used for treatment apparently was inactivated by an inhibitor of surfactant function. After intravenous injections of [14C]palmitic acid, labeled saturated phosphatidylcholine appeared on the airways, indicating endogenous synthesis and secretion. However, the specific activity of the 3H-labeled saturated phosphatidylcholine in the natural surfactant used for treatment decreased by only 30 +/- 4% in the alveolar wash; thus the treatment dose was not diluted to a large extent by endogenous pools.  相似文献   

3.
This paper studies the dynamic surface pressure-area (π-A) behavior of phosphatidylglycerol (PG) with a mixed fatty acid distribution (bacterial) in pure and binary mixed films with dipalmitoyl phosphatidylcholine (DPL). At 23°C, bacterial PG films generate maximum dynamic surface pressures of only 48–49 dyn/cm on a 0.15 M sodium chloride subphase for both dilute and surface excess initial conditions. By contrast, binary mixed films of 90:10 DPL/PG reach maximum π values of the order of 70 dyn/cm at similar conditions, the same as for pure DPL films. A collapse plateau ratio criterion is used to show that respreading after dynamic compression past film collapse is enhanced in 90:10 DPL/PG films as compared to pure DPL for a dilute surface initial condition, but not for the surface excess condition, at room temperature. Respreading in pure bacterial PG films is also slightly improved over corresponding pure DPL films for some initial conditions at 23°C, but the magnitude of this effect is not as large as might be expected from the significant unsaturated and cyclopropane fatty acid percentage present in bacterial PG. Differential Scanning Calorimetry (DSC) measurements on DPL/PG mixtures show decreasing Tc with peak broadening as the percentage of bacterial PG is increased. The experiments here do not establish a clearly required functional role for 10% PG in pulmonary surfactant surface behavior. Further surface studies are suggested before long-term clinical trials of PG containing mixtures for exogenous replacement therapy in Neonatal Respiratory Distress Syndrome (RDS) are initiated on a widespread basis.  相似文献   

4.
Epifluorescence microscopy combined with a surface balance was used to study monolayers of dipalmitoylphosphatidylcholine (DPPC)/egg phosphatidylglycerol (PG) (8:2, mol/mol) plus 17 wt % SP-B or SP-C spread on subphases containing SP-A in the presence or absence of 5 mM Ca(2+). Independently of the presence of Ca(2+) in the subphase, SP-A at a bulk concentration of 0.68 microg/ml adsorbed into the spread monolayers and caused an increase in the molecular areas in the films. Films of DPPC/PG formed on SP-A solutions showed a pressure-dependent coexistence of liquid-condensed (LC) and liquid-expanded (LE) phases. Apart from these surface phases, a probe-excluding phase, likely enriched in SP-A, was seen in the films between 7 mN/m < or = pi < or = 20 mN/m. In monolayers of SP-B/(DPPC/PG) spread on SP-A, regardless of the presence of calcium ions, large clusters of a probe-excluding phase, different from probe-excluding lipid LC phase, appeared and segregated from the LE phase at near-zero surface pressures and coexisted with the conventional LE and LC phases up to approximately 35 mN/m. Varying the levels of either SP-A or SP-B in films of SP-B/SP-A/(DPPC/PG) revealed that the formation of the probe-excluding clusters distinctive for the quaternary films was influenced by the two proteins. Concanavalin A in the subphase could not replace SP-A in its ability to modulate the textures of films of SP-B/(DPPC/PG). In films of SP-C/SP-A/(DPPC/PG), in the absence of calcium, regions consisting of a probe-excluding phase, likely enriched in SP-A, were detected at surface pressures between 2 mN/m and 20 mN/m in addition to the lipid LE and LC phases. Ca(2+) in the subphase appeared to disperse this phase into tiny probe-excluding particles, likely comprising Ca(2+)-aggregated SP-A. Despite their strikingly different morphologies, the films of DPPC/PG that contained combinations of SP-B/SP-A or SP-C/SP-A displayed similar distributions of LC and LE phases with LC regions occupying a maximum of 20% of the total monolayer area. Combining SP-A and SP-B reorganized the morphology of monolayers composed of DPPC and PG in a Ca(2+)-independent manner that led to the formation of a separate potentially protein-rich phase in the films.  相似文献   

5.
The effects of homopolymeric amino acids (molecular weight 2300 to 14,000) on the surface activity of dipalmitoyl phosphatidylcholine (DPPC) and DPPC/egg-phosphatidylglycerol (PG) were characterized by adsorption and dynamic surface tension lowering measurements at 37 degrees C. Homopolyamino acids studied included poly-L-leucine (poly-Leu) and poly-L-valine (poly-Val), since Leu and Val are known to be prominent in the structure of hydrophobic lung surfactant apoprotein SP-B and SP-C. In addition, several other homopolyamino acids with varying hydrophobicity index were also investigated, including poly-L-phenylalanine (poly-Phe), poly-L-serine (poly-Ser), poly-L-lysine (poly-Lys) and poly-L-glutamic acid (poly-Glu). Results showed that hydrophobic poly-Leu and poly-Phe at 1 and 10 weight percent greatly increased the adsorption facility of DPPC and DPPC/PG mixtures, with maximum surface pressures (up to 49 mN/m) near the equilibrium limit for phospholipid systems. In oscillating bubble studies, 1% mixture of poly-Leu or poly-Phe with DPPC or 8:2 DPPC/PG lowered surface tension into the range (near 1 mN/m) associated with active lung surfactant. In contrast, mixtures of DPPC and DPPC/PG with the more hydrophilic peptides poly-Ser, poly-Lys and poly-Glu showed little or no enhancement of surface activity over the phospholipids alone. Mixtures of poly-Val and phospholipids did not combine well with the simple co-sonication procedure used, and also exhibited little improvement in surface activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
J A Ibdah  M C Phillips 《Biochemistry》1988,27(18):7155-7162
To better understand the factors controlling the binding of apolipoprotein molecules at the surfaces of serum lipoprotein particles, the adsorption of human apolipoprotein A-I to phospholipid monolayers has been studied. The influence of lipid packing was investigated by spreading the monolayers at various initial surface pressures (pi i) and by using various types of lipid. The adsorption of 14C-methylated apolipoprotein A-I was monitored by simultaneously following the surface radioactivity (which could be converted to the surface concentration of protein, gamma) and the change in surface pressure (delta pi). In general, increasing the pi i of lipid monolayers reduces the adsorption of apolipoprotein A-I; for expanded egg phosphatidylcholine (PC) monolayers at pi i greater than or equal to 32 dyn/cm, gamma and delta pi are zero. The degree of adsorption of the apolipoprotein is also influenced by the physical state of the lipid monolayers. Thus, at a given pi i, apolipoprotein A-I adsorbs more to expanded monolayers than to condensed monolayers so that, at a given subphase concentration of protein, gamma of apolipoprotein A-I with various phospholipid monolayers decreases in the order egg PC greater than egg sphingomyelin greater than distearoyl-PC. The plot of gamma against pi i for adsorption of apolipoprotein A-I to dipalmitoylphosphatidylcholine (DPPC) monolayers shows an inflection at pi i = 8 dyn/cm; at this pi, the DPPC monolayer undergoes a phase transition from liquid (expanded) to solid (condensed) state. Addition of cholesterol generally decreases the adsorption of apolipoprotein A-I to egg PC monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Surfactant proteins B and C (SP-B and SP-C) are present in natural derived surfactant preparations used for treatment of respiratory distress syndrome. Herein the surface activity of an SP-C analogue (SP-C(LKS)), a hybrid peptide between SP-C and bacteriorhodopsin (SP-C/BR) and a model peptide (KL(4)) was studied with a captive bubble surfactometer (CBS). The peptides were mixed with either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/phosphatidylglycerol (PG) (7:3, by weight) or DPPC/PG/palmitic acid (68:22:9, by weight) at a concentration of 1 mg/ml in HEPES buffer, pH 6.9 and a polypeptide/lipid weight ratio of 0.02--0.03. In some lipid/peptide preparations also 2% of SP-B was included. Adsorption, monitored as surface tension vs. time for 10 min after bubble formation did not show discernible differences for the whole set of preparations. Equilibrium surface tensions of approximately 25 mN/m were reached after 5--10 min for all preparations, although those with SP-C/BR appeared not to reach end point of adsorption within 10 min. Area compression needed to reach minimum surface tension of 0.5--2.0 mN/m was least for the KL(4) preparation, about 13% in the first cycle. 3% SP-C(LKS) in DPPC:PG (7:3, by weight) reached minimum surface tension upon 27% compression in the first cycle. If DPPC:PG:PA (68:22:9, by weight) was used instead only 16% area compression was needed and 14% if also 2% SP-B was included. 3% SP-C(LKS) in DPPC:PG (7:3, by weight)+2% SP-B needed 34% compression to reach minimum surface tension. The replenishment of material from a surface associated surfactant reservoir was estimated with subphase depletion experiments. With the 2% KL(4) preparation incorporation of excess material took place at a surface tension of 25--35 mN/m during stepwise bubble expansion and excess material equivalent to 4.3 monolayers was found. When 2% SP-B was added to 3% SP-C(LKS) in DPPC:PG (7:3, by weight) the number of excess monolayers increased from 1.5 to 3.6 and the incorporation took place at 30--40 mN/m. When SP-B was added to 3% SP-C(LKS) in DPPC:PG:PA (68:22:9, by weight) the number of excess monolayers increased from 0.5 to 3.4 and incorporation took place at 40--50 mN/m. With 2% SP-C/BR incorporation took place at 40--45 mN/m, frequent instability clicks were observed and excess material of approximately 1.1 monolayer was estimated.  相似文献   

8.
The surface tension (σ) of batter prepared with one or two of the major ingredients of wheat flour, egg and sucrose was measured by the maximum bubble pressure method. The surface tension of the soft- and hard-wheat flour suspension decreased as the solid content of wheat flour was increased, finally reaching 48.2 and 52.7 dyn/cm, respectively. The surface tension of the wheat flour suspension was lower than that of its supernatant, which suggests that the precipitate reduced the surface tension. Gelatinization of the wheat flour suspension lowered its surface tension. The surface tension of the whole egg dispersion decreased markedly to about 53 dyn/cm as the solid concentration was increased from 0 to 1%, and remained almost constant as the concentration was increased further. This tendency was almost the same as that of the egg yolk dispersion. The surface tension of mixtures of two ingredients such as egg and wheat flour, and egg and sucrose was almost equal to that of the ingredient with the lower surface tension at the same concentration as in the mixture.  相似文献   

9.
Isotherms have been obtained near 37 degrees C for a series of repetitive compressions and expansions of monolayers that contain major components of lung surfactant. The minimum surface tension or maximum surface pressure which could be achieved under conditions of dynamic compression, and the rate of return of lipid from excluded phase to the monolayers were measured. Monolayers of pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or of DPPC plus 10 or 30 mol% of the calcium salt of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG) (POPG-Ca) achieved very high surface pressures or low surface tensions (near 0 mN m-1), but they showed no return of material from the collapse phases under the test conditions. Monolayers of POPG-Ca alone collapsed at relatively low surface pressures (high surface tensions), but showed good return of material from the collapse phase into the monolayer. Monolayers containing more complex mixtures of lipids (DPPC, phosphatidylglycerol (PG), unsaturated phosphatidylcholine (PC), cholesterol (chol] in ratios similar to those found in surfactant achieved minimum surface tensions intermediate between those of monolayers with less complex compositions. These more complex mixtures showed a better rate of return of lipids from the collapse phases to the monolayer than did simple DPPC-POPG mixtures. 31P-NMR and differential scanning calorimetric investigations of the mixture DPPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/POP G/DPPG/chol (10:4:2:1:3) showed that in the bulk phase at 37 degrees C, it was in bilayers in the liquid-crystalline state.  相似文献   

10.
Surface areas and fluctuations evaluated from 50 ns molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine (DPPC) bilayers in a 1:2 trehalose:lipid ratio carried out at surface tensions 10, 17 and 25 dyn/cm/leaflet are compared with those of pure bilayers under the same conditions. Trehalose increases the surface area, as consistent with the surface tension lowering observed in simulations at constant area. The system bulk elastic modulus K b  = 1.5 ± 0.3 × 1010 dyn/cm2. It is independent of bilayer surface area and trehalose content within statistical error. In contrast, the area elastic modulus K a shows a strong area dependence. At 64 Å2/lipid (the experimental surface area), K a  = 138 ± 26 dyn/cm for a pure DPPC bilayer and 82 ± 10 dyn/cm for one with trehalose; i.e. trehalose increases fluidity of the bilayer surface at this area per lipid.  相似文献   

11.
Membrane-active peptides participate in many cellular processes, and therefore knowledge of their mode of interaction with phospholipids is essential for understanding their biological function. Here we present a new methodology based on electron spin-echo envelope modulation to probe, at a relatively high resolution, the location of membrane-bound lytic peptides and to study their effect on the water concentration profile of the membrane. As a first example, we determined the location of the N-terminus of two membrane-active amphipathic peptides, the 26-mer bee venom melittin and a de novo designed 15-mer D,L-amino acid amphipathic peptide (5D-L9K6C), both of which are antimicrobial and bind and act similarly on negatively charged membranes. A nitroxide spin label was introduced to the N-terminus of the peptides and measurements were performed either in H2O solutions with deuterated model membranes or in D2O solutions with nondeuterated model membranes. The lipids used were dipalmitoyl phosphatidylcholine (DPPC) and phosphatidylglycerol (PG), (DPPC/PG (7:3 w/w)), egg phosphatidylcholine (PC) and PG (PC/PG (7:3 w/w)), and phosphatidylethanolamine (PE) and PG (PE/PG, 7:3w/w). The modulation induced by the 2H nuclei was determined and compared with a series of controls that produced a reference "ruler". Actual estimated distances were obtained from a quantitative analysis of the modulation depth based on a simple model of an electron spin situated at a certain distance from the bottom of a layer with homogeneously distributed deuterium nuclei. The N-terminus of both peptides was found to be in the solvent layer in both the DPPC/PG and PC/PG membranes. For PE/PG, a further displacement into the solvent was observed. The addition of the peptides was found to change the water distribution in the membrane, making it "flatter" and increasing the penetration depth into the hydrophobic region.  相似文献   

12.
Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA(2)-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA(2)-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1-5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA(2) (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from hydrolysis mediated by multiple sPLA(2) in both vesicles (alveolar subphase) and monomolecular films (air-liquid interface).  相似文献   

13.
Binary mixed liposomes were prepared from dipalmitoylphosphatidylcholine (DPPC) and a minor compound, e.g., egg phosphatidylglycerol (PG) at a ratio of 9:1. Using different preparative techniques, large unilamellar vesicles (LUV), small unilamellar vesicles (SUV) or multilamellar vesicles (MLV) were obtained and were studied with an electron microscope for morphology, with a Wilhelmy balance for spreading and surface tension lowering potential, and in the surfactant-depleted isolated rat lung for their ability to restore expiratory lung capacity. Only the simultaneous investigation of phospholipids by negative staining and thin sectioning allows unequivocal classification of liposomes. The surface-active structures prepared with the technique of Bangham et al. (Bangham, A.D., Hill, M.W. and Miller, N.G.A. (1974) in Methods in Membrane Biology (Korn, E., ed.), Vol. 1, pp. 1-68, Plenum Press, New York) at room temperature are LUV. LUV containing DPPC:PG at a ratio of 9:1 rapidly spread to a film with high surface tension lowering potential. Within 5 min after injection into the subphase they rise to the surface and form a film at the air/liquid interface able to lower the surface tension to less than 1 mN/m at compression. SUV of the same chemical composition, however, are immediately surface-active only when spread directly onto the surface. MLV exhibit poor surface activity. LUV or pure DPPC, applied onto the surface, are weakly surface active within 5 min. DPPC vesicles injected into the subphase at 37 degrees C do not adsorb to any film with surface tension lowering potential in this time. The minor compounds PE, PI, PS, PA, lysoPC enable DPPC to form surface-active films after application on saline at 37 degrees C. Removal of surfactant decreases the expiratory lung capacity of the isolated rat lung from 49.7 to 12.4% at 4 cmH2O. After substitution with natural surfactant, the expiratory lung capacity is twice that of the washed lung (25.9%), but the original distensibility of the native lung is not restituted. The effect of LUV containing DPPC:PG at a ratio of 9:1 is also remarkable (21.2%).  相似文献   

14.
Taneva SG  Keough KM 《Biochemistry》2000,39(20):6083-6093
Surface balance techniques were used to study the interactions of surfactant protein SP-A with monolayers of surfactant components preformed at the air-water interface. SP-A adsorption into the monolayers was followed by monitoring the increase in the surface pressure Deltapi after injection of SP-A beneath the films. Monolayers of dipalmitoylphosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (8:2, mol/mol) spread at initial surface pressure pi(i) = 5 mN/m did not promote the adsorption of SP-A at a subphase concentration of 0.68 microg/mL as compared to its adsorption to the monolayer-free surface. Surfactant proteins, SP-B or SP-C, when present in the films of DPPC:PG spread at pi(i) = 5 mN/m, enhanced the incorporation of SP-A in the monolayers to a similar extent; the Deltapi values being dependent on the levels of SP-B or SP-C, 3-17 wt %, in the lipid films. Calcium in the subphase did not affect the intrinsic surface activity of SP-A but reduced the Deltapi values produced by the adsorption of the protein to all the preformed films independently of their compositions and charges. The divalent ions likely modified the interaction of SP-A with the monolayers through their effects on the conformation, self-association, and charge state of SP-A. Values of Deltapi produced by adsorption of SP-A to the films of DPPC:PG with or without SP-B or SP-C were a function of the initial surface pressure of the films, pi(i). In the range of pressures 5 相似文献   

15.
Galactosyltransferase was purified from rat liver Golgi membranes. The Triton X-100, used to solubilize the enzyme was removed immediately prior to the lipid interaction studies. In lipid vesicles, prepared from a variety of phosphatidylcholines (PCs), including egg PC, DOPC, DMPC, DPPC and DSPC, the ability of the lipids to stimulate the enzyme decreased in the order egg PC greater than DOPC greater than DMPC greater than DPPC greater than DSPC, i.e. the lower the transition temperature (Tc) the greater the stimulation of the enzyme. A second, neutral lipid, phosphatidylethanolamine was used to permit a comparison of the effect of a different head group of the same net charge at neutral pH. The PEs included, egg PE, soy PE, Pl-PE, PE(PC) and DPPE in order of increasing Tc. The effect of the PEs was opposite to that of the PCs, i.e. the higher the Tc, the greater the stimulation of the enzyme. In fact egg PE and soy PE which have the lowest Tc values were inhibitory. Thus the modulation of the Golgi membrane galactosyltransferase by these lipids was different from that reported earlier for the bovine milk galactosyltransferase. The effects of two acidic lipids, egg phosphatidic acid (PA) and egg phosphatidylglycerol (PG) were studied also. Both totally inhibited the enzyme even at low concentrations of lipid, however, the PA was more effective than PG. In mixtures of neutral lipid (PC) and acidic lipid (PA or PG), the effect of the acidic lipid dominated. Even in the presence of excess PC, total inhibition of the enzyme was observed. It was concluded that the enzyme bound the acidic lipid preferentially to itself. The choice of the lipids allowed us to make several direct comparisons concerning the effect of the nature of the lipid head group on the activity of the enzyme. For example PE(PC), egg PA and egg PG would have fatty acid chains identical to egg PC since these three lipids are all prepared by modification of egg PC. As well, DPPE differs from DPPC only by nature of the head group. These comparisons indicated that not only the net charge but also chemical nature of the head group were important in the lipid modulation of Golgi galactosyltransferase.  相似文献   

16.
Luminal epithelial projections formed during bronchoconstriction define interstices in which liquid can collect. Liquid in these interstices could amplify the degree of luminal compromise due to muscular contraction in at least two distinct ways. First, the luminal cross-sectional area is reduced by simple filling of the interstices. Second, if the surface tension (gamma) of the air-liquid interface is positive, the pressure drop across the interface produces an additional inward force that can further constrict the airway. We present a theoretical treatment of these two mechanisms together with data which suggest that both may significantly amplify the luminal narrowing due to airway smooth muscle contraction, particularly in small airways when gamma is high. To qualitatively assess the effects of altered gamma, guinea pig lungs with normal and altered airway liquid lining layers were frozen and studied while fully hydrated by low-temperature scanning electron microscopy. Airway gamma was altered in these animals by intratracheal instillation of 0.5 mg lysoplatelet-activating factor (lyso-PAF). The interstices of normal airways were dry, whereas the interstices of airways with altered surface lining layers were liquid filled. In addition, the surfactant inhibitory properties of lyso-PAF, 2-arachidonyl-PAF, and dipalmitoyl phosphatidylcholine (DPPC) were measured with a pulsating bubble surfactometer, using surfactant TA as the model surfactant. Minimal gamma (gamma min) of surfactant TA alone was 4.0 +/- 0.2 dyn/cm; a 5% mixture of lyso-PAF with surfactant TA resulted in a significantly (P less than 0.02) greater gamma min of 8.8 +/- 1.8 dyn/cm. In contrast, 2-arachidonyl-PAF and DPPC had minimal effects on gamma min of surfactant TA.  相似文献   

17.
Images of giant unilamellar vesicles (GUVs) formed by different phospholipid mixtures (1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1, 2-dilauroyl-sn-glycero-3-phosphocholine (DPPC/DLPC) 1:1 (mol/mol), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPE/DPPC), 7:3 and 3:7 (mol/mol) at different temperatures were obtained by exploiting the sectioning capability of a two-photon excitation fluorescence microscope. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN), 6-propionyl-2-dimethylamino-naphthalene (PRODAN), and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE) were used as fluorescent probes to reveal domain coexistence in the GUVs. We report the first characterization of the morphology of lipid domains in unsupported lipid bilayers. From the LAURDAN intensity images the excitation generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domain. On the basis of the phase diagram of each lipid mixture, we found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region in all lipid mixtures. At temperatures corresponding to the phase coexistence region we observed lipid domains of different sizes and shapes, depending on the lipid sample composition. In the case of GUVs formed by DPPE/DPPC mixture, the gel DPPE domains present different shapes, such as hexagonal, rhombic, six-cornered star, dumbbell, or dendritic. At the phase coexistence region, the gel DPPE domains are moving and growing as the temperature decreases. Separated domains remain in the GUVs at temperatures corresponding to the solid region, showing solid-solid immiscibility. A different morphology was found in GUVs composed of DLPC/DPPC 1:1 (mol/mol) mixtures. At temperatures corresponding to the phase coexistence, we observed the gel domains as line defects in the GUV surface. These lines move and become thicker as the temperature decreases. As judged by the LAURDAN GP histogram, we concluded that the lipid phase characteristics at the phase coexistence region are different between the DPPE/DPPC and DLPC/DPPC mixtures. In the DPPE/DPPC mixture the coexistence is between pure gel and pure liquid domains, while in the DLPC/DPPC 1:1 (mol/mol) mixture we observed a strong influence of one phase on the other. In all cases the domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This observation is also novel for unsupported lipid bilayers.  相似文献   

18.
This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A(2) (PLA(2)) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA(2) in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf?) was significantly degraded by PLA(2). The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response.  相似文献   

19.
The effects of molar NaCl concentrations on the phase behaviour of the total lipid extracts and binary mixtures of the major phospholipids, namely phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), isolated from the moderately halophilic eubacterium, Vibrio costicola, grown in 1 M and 3 M NaCl containing media have been studied using X-ray diffraction and freeze-fracture electron microscopy. The effect of both the PE/PG ratio and alterations in fatty acid composition were examined by using binary mixtures which mimicked the PE/PG ratio found in the native bacterial membranes. We show that the samples exhibited complex phase behaviour, including the formation of non-bilayer phases, which depend upon the salinity of both the bacterial culture medium and the suspending solution. The total lipid from bacteria cultured in 1 M NaCl-containing medium and dispersed in 1 M NaCl exhibited a mixture of L alpha and hexagonal-II phases at the optimum growth temperature of the organism (i.e., 30 degrees C), whereas the same lipid dispersed in 3 M NaCl showed only a hexagonal-II phase down to a temperature of +3 degrees C. The total lipid extracted from 3 M NaCl cultures showed only lamellar phases over the temperature range studied (+50 degrees C to -50 degrees C), but the phase transition temperatures of the various lamellar phases were generally higher when the lipid was dispersed in 3 M compared with 1 M NaCl. The phase behaviour of the binary mixtures was similar but not identical to that of the corresponding total lipid extracts and it is suggested that the minor lipid components (diphosphatidylglycerol, lysophosphatidylethanolamine and lysophosphatidylglycerol) play a part in determining the phase behaviour of the native membranes. These results show that the PE/PG ratio and fatty acid composition of the individual phospholipids, which are normally regulated by Vibrio costicola in vivo in response to culture medium salinity, are both important in maintaining a stable bilayer structure within the membrane.  相似文献   

20.
The interaction of the pulmonary surfactant protein SP-A fluorescently labeled with Texas Red (TR-SP-A) with monolayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC/dipalmitoylphosphatidylglycerol 7:3 w/w has been investigated. The monolayers were spread on aqueous subphases containing TR-SP-A. TR-SP-A interacted with the monolayers of DPPC to accumulate at the boundary regions between liquid condensed (LC) and liquid expanded (LE) phases. Some TR-SP-A appeared in the LE phase but not in the LC phase. At intermediate surface pressures (10-20 mN/m), the protein caused the occurrence of more, smaller condensed domains, and it appeared to be excluded from the monolayers at surface pressure in the range of 30-40 mN/m. TR-SP-A interaction with DPPC/dipalmitoylphosphatidylglycerol monolayers was different. The protein did not appear in either LE or LC but only in large aggregates at the LC-LE boundary regions, a distribution visually similar to that of fluorescently labeled concanavalin A adsorbed onto monolayers of DPPC. The observations are consistent with a selectivity of interaction of SP-A with DPPC and for its accumulation in boundaries between LC and LE phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号