首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In almost all cell types, adenylate cyclase is located in the plasma membrane. In lymphocytes, however, this enzyme has been claimed to be largely present in intracellular compartments. In this study, the distribution of adenylate cyclase activity in subcellular fractions of calf thymocytes was reinvestigated by a balance sheet approach. When subcellular fractionation was performed in the absence of ATP and dithiothreitol, less than a half of the homogenate basal activity could be recovered in the fractions, and this amount was distributed almost equally in three main compartments: the plasma membrane fraction, the microsomal and mitochondrial fractions and the nuclear fraction. However, if enzyme activity in the above fractions was measured in the presence of the stimulatory agents NaF, guanylylimidophosphate or guanosine 5'-O-(3-thio)triphosphate, or if the subcellular fractionation was performed in media containing ATP and dithiothreitol, the overall recovered activity greatly increased (up to 90%) and the distribution was shifted in favour of the plasma membrane fraction (up to 65% of the recovered activity). The adenylate cyclase properties were similar in all fractions. The ionophore alamethicin did not alter the subcellular distribution of the enzyme. The localization of adenylate cyclase in thymocytes thus appears to be primarily, if not uniquely, in the plasma membrane, as generally found in other cell types.  相似文献   

2.
3.
The intracellular localization of dopamine-sensitive adenylate cyclase was studied in rat brain striatum by means of differential and density gradient centrifugation. Most of the enzyme activity was not associated with dopaminergic nerve endings using dopamine and several enzymes as marker. Since its distribution pattern did not parallel that of mitochondria, lysosomes, nerve endings and plasma membranes, dopamine-sensitive adenylate cyclase can be proposed as a marker for striatal postsynaptic membranes.  相似文献   

4.
The subcellular localization of adenylate cyclase (ATP pyrophosphatelyase (cyclizing), EC 4.6.1.1) in bovine corpus luteum was studied using isotonic and hypotonic homogenization and fractionation conditions. All fractions prepared were assayed for adenylate cyclase, marker enzymes and DNA. Only plasma membrane marker enzyme, 5'-nucleotidase paralleled the distribution of adenylate cyclase under both isotonic and hypotonic conditions (conditionsoth isotonic and hypotonic conditions (coefficient of correlation = 0.95). Two main fractions prepared under hypotonic conditions were subfractionated by discontinuous sucrose gradient centrifugation. The highest amount of adenylate cyclase was found in a fraction having a density approximately equal to 1.13 g/cm3. The specific activity of this fraction was 4--6 times higher than that of the homogenate. The electron microscopic study of this fraction revealed the presence of a single type of particulate material consisting of small vesicles exhibiting a typical unit membrane structure. It is concluded that this adenylate cyclase is primarily localized in the plasma membranes. Basal adenylate cyclase activity of plasma membranes was stimulated 2--3 times by luteinizing hormone (10 mug/ml), 3--4 times by prostaglandin E2 (10 mug/ml), 4--6 times by NaF (0.01 M) and two times by methanol (0.2%).  相似文献   

5.
6.
7.
Adenylate cyclase from ejaculated human spermatozoa was inhibited by fluoride, Cu2+, Zn2+, Ni2+ and several carboxylic acids.  相似文献   

8.
9.
Crude homogenates of rat cardiac muscle were fractionated in order to examine the subcellular location of adenylate cyclase in this tissue. The fractionation procedure employed differential centrifugation of homonized material, followed by collagenase treatment, centrifugation on a discontinuous sucrose density gradient and extraction with 1 M KCl. The particulate fraction obtained by this procedure contained a high specific activity and yield of adenylate cyclase, moderate levels of mitochondria and low levels of sarcoplasmic reticulum and contractile protein as judged by marker enzyme activities. Adenylate cyclase was purified 20-fold with a 33% yield from the crude homogenate, while mitochondrial, sarcoplasmic reticulum and contractile protein yields were 5, 0.4 and 0.7% respectively. The membrane fractions prepared in this manner were examined by sodium dodecyl sulfate · gel electrophoresis.Adenylate cyclase copurified with ouabain-sensitive (Na+ + K+)-ATPase, a plasma membrane marker enzyme, and not with Ca2+-accumulating activity, which is associated with the sarcoplasmic reticulum. The distribution of marker enzyme activities indicates that heart adenylate cyclase is not located in the sarcoplasmic reticulum but is localized predominantly, if not exclusively, in the plasma membrane.  相似文献   

10.
11.
Adenylate kinases (AK) play a key role in nucleotide signaling processes and energy metabolism by catalyzing the reversible conversion of ATP and AMP to 2 ADP. In the malaria parasite Plasmodium falciparum this reaction is mediated by AK1, AK2, and a GTP:AMP phosphotransferase (GAK). Here, we describe two additional adenylate kinase-like proteins: PfAKLP1, which is homologous to human AK6, and PfAKLP2. Using GFP-fusion proteins and life cell imaging, we demonstrate a cytosolic localization for PfAK1, PfAKLP1, and PfAKLP2, whereas PfGAK is located in the mitochondrion. PfAK2 is located at the parasitophorous vacuole membrane, and this localization is driven by N-myristoylation.

Structured summary of protein interactions

EXP-1 and PfAK2colocalize by fluorescence microscopy (View interaction)PfAK2 and SERPcolocalize by fluorescence microscopy (View interaction)  相似文献   

12.
Abalone sperm adenylate cyclase activity is particulate in nature and displays a high Mg2+-supported activity (Mg2+/Mn2+ = 0.8) as compared to other sperm adenylate cyclases. Approximately 90% of the enzyme activity in crude homogenates is inhibited by EGTA in a concentration-dependent manner which is overcome by added micromolar free Ca2+. The EGTA-inhibited Ca2+-stimulated enzyme activity is also inhibited by phenothiazines. Added calmodulin, however, has no effect on enzyme activity prepared from crude homogenates. Preparation of a twice EGTA-extracted 48,000 X g pellet fraction yields a particulate enzyme activity that can be stimulated 10-65% by added calmodulin in the presence of micromolar free Ca2+. Detergent extraction (1% Lubrol PX) of the EGTA-washed 48,000 X g pellet solubilizes 2-5% of the total particulate adenylate cyclase activity, and this solubilized enzyme is activated up to 125% by calmodulin. The ability of the different enzyme preparations to be stimulated by calmodulin is inversely proportional to the endogenous calmodulin concentration. Calmodulin stimulation of the Lubrol PX-solubilized enzyme is specific to this Ca2+-binding protein and is mediated as an effect on the velocity of the enzyme. This stimulation is completely Ca2+ dependent and is fully reversible. These data suggest that the control of sperm cAMP synthesis by changes in Ca2+ conductance may be mediated via this Ca2+-binding protein.  相似文献   

13.
Abalone spermatozoa contain a particulate adenylate cyclase that displays maximal catalytic activity when Mn2+ is present as a metal cofactor in excess of ATP. Unlike other sperm adenylate cyclases, the abalone enzyme displays a high Mg2+-supported catalytic activity (Mg2+/Mn2+ activity ratio = 0.8). Kinetics analyses demonstrate that the enzyme contains both a MgATP catalytic site and a separate Mg2+ regulatory site. Mg2+-supported enzyme activity, however, is not stimulated by guanine nucleotides, NaF, cholera toxin, forskolin, or a variety of hormones. The enzyme from unfractionated sperm homogenates is inhibited by added Ca2+ in a concentration-dependent manner, when EGTA is not present in the assay. Methylxanthines, such as 1-methyl-3-isobutylxanthine and theophylline, also inhibit enzyme activity in a concentration-dependent manner through a noncompetitive mechanism. On the other hand, when intact cells are preincubated with Ca2+ prior to breakage and assayed for enzyme activity, Ca2+ stimulates enzyme activity at low concentrations. Enzyme activity of intact sperm preincubated with methylxanthines, in either the absence or presence of added Ca2+, is also stimulated. This effect is expressed via an effect on the velocity of the enzyme. A-23187 has similar stimulatory effects on the enzyme under these conditions. These data provide further support for the role of Ca2+ conductance in modulating sperm adenylate cyclase activity. The abalone sperm enzyme also appears to have regulatory properties that are unique among other sperm types.  相似文献   

14.
Saccharomyces cerevisiae was grown in the presence of 5% (w.v) Glucose and converter to protoplasts. The total particulate material obtained from lysed protoplasts was fractionated by sucrose density gradient ultracentrifugation and the distribution of adenylate cyclase throughout the gradient determined. Adenylate cyclase activity was found to be larger associated whith intracellular particulate fractions. Little activity was found in the plasma membrane-rich fraction.The adenylate cyclase activity was found to be inhibited by F?, pyrophosphate and aminophylline, whereas glucagon, 5-hydroxytryptamine and concanavalin A were without effect.The enzymic activity appeared to be modulated by “catabolite repressors” (glucose, fructose and α-methylglucoside) as well as by acetate. A possible role for adenylate cyclase in regulating the levels of cyclic AMP in the cell during glucose repression is suggested.  相似文献   

15.
Summary Ultrastructural localization of adenylate cyclase (AC) activity was investigated in suspensions of unfixed isolated rat thymocytes using a medium containing 0.6 mM 5-adenylylimidodiphosphate (AMP-PNP) as a substrate, 10 mM MgSO4 as an activator, 5 mM theophylline as an inhibitor of 3,5-AMP-phosphodiesterase and 2 mM lead nitrate as a capturing agent. AC activity was demonstrated in plasma membrane, perinuclear space, endoplasmic reticulum, Golgi complex, centriole microtubules and mitochondria. AC was activated with 10–4 M adrenalin in the presence of 5-guanylylimido-diphosphate (GMP-PNP) as well as with 10–2 M NaF. In the cells incubated in a medium devoid of theophylline and containing 5-AMP instead of AMP-PNP, 5-nucleotidase activity was observed in the same cell structures as AC activity. Hydrolysis of 5-AMP in the nucleus was much stronger than that of AMP-PNP. 10 mM NaF markedly inhibited hydrolysis of 5-AMP in all cell structures. No staining was observed with 2 mM -glycerophosphate as a substrate. Incubation of unfixed thymocytes in media containing AMP-PNP, 5-AMP or p-nitrophenyl phosphate, but not -glycerophosphate, induced both in the nucleus and in the cytoplasm in some cells an appearance of a transitory reticular formation consisting of about 30 nm thick strands which could penetrate the nuclear envelope and plasma membrane and form connections with adjacent cells. The transitory reticular formation seems to belong to the cytoskeleton and to be involved in cell aggregation.  相似文献   

16.
Using lead citrate as a capture reagent and adenylate-(beta, gamma-methylene) diphosphate (AMP-PCP) as a substrate, we localized adenylate cyclase activity on the non-ruffled border plasma membrane of approximately half of the osteoclasts on trabecular bone surfaces in the tibial metaphyses of chickens fed a low (0.3%)-calcium diet. The enzyme was not detectable in osteoclasts when chickens were fed a normal calcium diet. Activity was observed on the entire plasma membrane of detached osteoclasts that were situated between osteoblasts on the bone surface and blood vessels in the marrow cavity. Detection of activity on detached osteoclasts required the presence of an activator, implying lower levels in these cells than in those with ruffled borders. Staining was greater on the lateral sides of osteoblasts and osteoclasts when they were in contact with each other. Reaction specificity was indicated by the demonstration of stimulation by forskolin, guanylate-(beta, gamma-methylene) diphosphate (GMP-PCP), dimethylsulfoxide, and NaF, inhibition by alloxan and 2',5'-dideoxyadenosine, and absence of activity when sections were incubated in substrate-free medium or when GMP-PCP replaced AMP-PCP as a substrate. The finding of adenylate cyclase in osteoclast plasma membrane provides structural evidence that the adenylate cyclase-cyclic AMP system has a role in regulation of osteoclast cell function. The low-calcium diet appears to have resulted in increased amounts of adenylate cyclase in osteoclasts.  相似文献   

17.
The ultrastructural localization of adenylate cyclase was studied in bovine cumulus-oocyte complexes. Adenylate cyclase was observed on the plasma membrane of the oocyte and occasionally on the plasma membrane of cumulus cells. The cytochemical observations presented demonstrate that there is more adenylate cyclase in cumulus-oocyte complexes after in vitro stimulation with forskolin. The presence of adenylate cyclase upon the oocyte was more pronounced. In addition adenylate cyclase appeared to be localized on the cumulus cells, especially between junctional complexes of cumulus cells and on cumulus cell processes contacting the oocyte. The cumulus cells never showed the presence of adenylate cyclase in the absence of forskolin. No changes in the presence of adenylate cyclase were observed during in vitro meiotic maturation.  相似文献   

18.
Summary Adenylate cyclase activity was demonstrated in the cilia, dendritic knob and axon of rat olfactory cells by using a strontium-based cytochemical method. The activity in the cilia and the dendritic knob was enhanced by non-hydrolyzable GTP (guanosine triphosphate) analogues and forskolin, and inhibited by Ca2+, all in agreement with biochemical reports of the odorant-sensitive adenylate cyclase. The results support the hypothesis of cyclic AMP working as a second messenger in olfactory transduction and imply that the transduction sites exist not only in the olfactory cilia but also in the dendritic knob. Enzymatic activity was also observed in the olfactory dendritic shaft by treating the tissue with 0.0002% Triton X-100, although the properties and role of the enzyme in this region are uncertain. The detergent inhibited the enzymatic activity in the cilia and the dendritic knob.  相似文献   

19.
A purine-nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) from bovine thyroid tissue has been purified 670-fold utilizing the techniques of ammonium sulfate precipitation, ion-exchange and molecular-exclusion chromatography, and polyacrylamide-gel electrophoresis. The protein has an apparent molecular weight of 90,000, a single isoelectric point at 5.6, and a Michaelis constant of 0.028 mm for inosine. Double-reciprocal plots of the reaction rate for the phosphorylase-catalyzed reaction versus phosphate or arsenate concentration display a downward trend at high substrate concentrations. Two apparent Michaelis constants of 0.38 and 1.49 mm were determined for phosphate.  相似文献   

20.
V M Vostrikov 《Tsitologiia》1985,27(2):153-156
Using an electron cytochemical method and adenylylimidodiphosphate (AMP--PNP) as substrate, the localization of adenylate cyclase activity was determined in the rat's adenohypophysis. This activity was discovered in the perinuclear space, in the canaliculi of the endoplasmic reticulum and Golgi complex, in mitochondria, on the external surface of the plasma membrane. In sinusoidal capillaries, the reaction product was localized on the plasma membrane, in perinuclear space, endoplasmic reticulum and mitochondria. The addition of isoproterenol and sodium fluoride to the incubation medium led to a rise in adenylate cyclase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号