首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host shifts and the formation of insect-host races are likely common processes in the speciation of herbivorous insects. The interactions of goldenrods Solidago (Compositae), the gall fly Eurosta solidaginis (Diptera: Tephritidae) and the beetle Mordellistena convicta (Coleoptera: Mordellidae) provide behavioural, ecological and genetic evidence of host races that may represent incipient species forming via sympatric speciation. We summarize evidence for Eurosta host races and show that M. convicta has radiated from goldenrod stems to Eurosta galls to form host-part races and, having exploited the galler's host shift, has begun to differentiate into host races within galls. Thus, host-race formation has occurred in two interacting, but unrelated organisms representing two trophic levels, resulting in 'sequential radiation' (escalation of biodiversity up the trophic system). Distributions of host races and their behavioural isolating mechanisms suggest sympatric differentiation. Such differentiation suggests host-race formation and subsequent speciation may be an important source of biodiversity.  相似文献   

2.
Abstract.— We show that a predator, the tumbling flower beetle Mordellistena convicta (Coleoptera: Mordellidae), has formed host races in response to a host-plant shift and subsequent host-race formation by its prey, the gall-inducing fly Eurosta solidaginis (Diptera: Tephritidae). This fly has formed two host races, one that induces stem galls on the ancestral host plant, Solidago altissima (Compositae), and another that induces stem galls on the closely related S. gigantea . We found that subpopulations of M. convicta that attack E. solidaginis galls on the different host plants have significantly different emergence times and, although slight, these allochronic differences are consistent across a range of temperatures. More importantly, we found that beetles assortatively mate according to their natal host plants, and female M. convicta preferentially attack and/or their offspring have higher survival in galls on natal host plants. Our data suggest that subpopulations of M. convicta that attack E. solidaginis galls on S. altissima and S. gigantea have formed host races. This is one of the first studies to demonstrate that a host shift and subsequent host-race formation by an herbivorous insect may have resulted in subsequent diversification by one of its natural enemies.  相似文献   

3.
Host‐associated differentiation (HAD) is considered a step towards ecological speciation and an important mechanism promoting diversification in phytophagous insects. Although the number of documented cases of HAD is increasing, these still represent only a small fraction of species and feeding guilds among phytophagous insects, and most reports are based on a single type of evidence. Here we employ a comprehensive approach to present behavioural, morphological, ecological and genetic evidence for the occurrence of HAD in the gall midge Dasineura folliculi (Diptera: Cecidomyiidae) on two sympatric species of goldenrods (Solidago rugosa and S. gigantea). Controlled experiments revealed assortative mating and strong oviposition fidelity for the natal‐host species. Analysis of mitochondrial DNA showed an amount of genetic divergence between the two host‐associated populations compatible with cryptic species rather than host races. Lower levels of within‐host genetic divergence, gall development and natural‐enemy attack in the S. gigantea population suggest this is the derived host.  相似文献   

4.
    
Variation in traits affecting preference for, and performance on, new habitats is a key factor in the initiation of ecological specialisation and adaptive speciation. However, habitat and resource use also involves other traits whose influence on ecological and genetic divergence remains poorly understood. In the present study, we investigated the extent of variation of life-history traits among sympatric populations of the pea aphid Acyrthosiphon pisum , which shows several host races that are specialised on various plants of the family Fabaceae plants and is an established model for ecological speciation. First, we assessed the community structure of microbial partners within host populations of the pea aphid. The effect of these microbes on host fitness is uncertain, although there is growing evidence that they may modulate various important adaptive traits of their host such as plant utilisation and resistance against natural enemies. Second, we performed a multivariate analysis on several ecologically relevant features of host populations recorded in the present and previous studies (including microbial composition, colour morph, reproductive mode, and male dispersal phenotype), enabling the identification of correlations between phenotypic traits. We discuss the ecological significance of these associations of traits in relation to the habitat characteristics of pea aphid populations, and their consequences for the evolution of ecological specialisation and sympatric speciation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 718–727.  相似文献   

5.
    
1. Certain groups of fruit flies in the genus Rhagoletis (Diptera: Tephritidae) are exemplars for sympatric speciation via host plant shifting. Flies in these species groups are morphologically similar and overlap in their geographic ranges, yet attack different, non‐overlapping sets of host plants. Ecological adaptations related to differences in host choice and preference have been shown to be important prezygotic barriers to gene flow between these taxa, as Rhagoletis flies mate on or near the fruit of their respective host plants. Non‐host‐related assortative mating is generally absent or present at low levels between these sympatrically diverging fly populations. 2. However, some Rhagoletis taxa occasionally migrate to ‘non‐natal’ plants that are the primary hosts of other, morphologically differentiated fly species in the genus. These observations raise the question of whether sexual isolation may reduce courtship and copulation between morphologically divergent species of Rhagoletis flies, contributing to their prezygotic isolation along with host‐specific mating. 3. Using reciprocal multiple‐choice mating trials, we measured sexual isolation among nine species pairs of morphologically differentiated Rhagoletis flies. Complete sexual isolation was observed in eight of the nine comparisons, while partial sexual isolation was observed in the remaining comparison. 4. We conclude that sexual isolation can be an effective prezygotic barrier to gene flow contributing to substantial reproductive isolation between many morphologically distinct Rhagoletis species, even in the absence of differential host plant choice and host‐associated mating.  相似文献   

6.
    
Sympatric populations can diverge when variation in phenology or life cycle causes them to mate at distinctly different times. We report patterns consistent with this process (allochronic speciation) in North American gall-forming aphids, in the absence of a host or habitat shift. Pemphigus populi-transversus Riley and P. obesinymphae Aoki form a monophyletic clade within the North American Pemphigus group. They are sympatric on the eastern cottonwood, Populus deltoides (Salicaceae), but have distinctly different life cycles, with sexual stages offset by approximately six months. Field evidence indicates that intermediate phenotypes do not commonly occur, and mitochondrial and bacterial endosymbiont DNA sequences show no maternal gene flow between the two species. Because a genetically distinct population of P. obesinymphae occurs in the southwestern United States on Populus fremontii, we consider the possibility of an initial allopatric phase in the divergence. We discuss the likely origins of the host use patterns in P. obesinymphae, and the larger sequence of evolutionary changes that likely led to the sympatric divergence of P. populi-transversus and P. obesinymphae. A plausible interpretation at this stage of investigation is that a shift in timing of the life cycle in an ancestral population, correlated with an underlying phenological complexity in its host plant, spurred divergence between the incipient species.  相似文献   

7.
The pea aphid, Acyrthosiphon pisum, encompasses distinct host races specialized on various Fabaceae species, but the extent of genetic divergence associated with ecological specialization varies greatly depending on plant and geographic origins of aphid populations. Here, we studied the genetic structure of French sympatric pea aphid populations collected on perennial (pea and faba bean) and annual (alfalfa and red clover) hosts using 14 microsatellite loci. Classical and Bayesian population genetics analyses consistently identified genetic clusters mostly related to plant origin: the pea/faba bean cluster was highly divergent from the red clover and the alfalfa ones, indicating they represent different stages along the continuum of genetic differentiation. Some genotypes were assigned to a cluster differing from the one expected from their plant origin while others exhibited intermediate genetic characteristics. These results suggest incomplete barriers to gene flow. However, this limited gene flow seems insufficient to prevent ecological specialization and genetic differentiation in sympatry.  相似文献   

8.
    
1. The importance of host‐race formation to herbivorous insect diversity depends on the likelihood that successful populations can be established on a new plant host. A previously unexplored ecological aid to success on a novel host is better nutritional quality. The role of nutrition was examined in the shift of the stem‐boring beetle Mordellistena convicta to fly‐induced galls on goldenrod and the establishment there of a genetically distinct gall host race. 2. First, larvae of the host race inhabiting stems of Solidago gigantea were transplanted into stems and galls of greenhouse‐grown S. gigantea plants. At the end of larval development, the mean mass of larvae transplanted to galls was significantly greater than the mass of larvae transplanted to stems, indicating a likely nutritional benefit during the shift. This advantage was slightly but significantly diminished when the gall‐inducing fly feeding at the centre of the gall died early in the season. Additionally, there was a suggestion of a trade‐off in the increased mortality of smaller beetle larvae transplanted into galls. 3. In a companion experiment, S. gigantea gall‐race beetle larvae were likewise transplanted to S. gigantea stems and galls. Besides the expected greater mass in galls, the larvae also exhibited adaptations to the gall nutritional environment: larger inherent size, altered tunnelling behaviour, and no diminution of mass pursuant to gall‐inducer mortality. 4. In a third line of inquiry, chemical analyses of field‐collected S. gigantea plants revealed higher levels of mineral elements important to insect nutrition in galls as compared with stems.  相似文献   

9.
Via S  West J 《Molecular ecology》2008,17(19):4334-4345
Early in ecological speciation, the genomically localized effects of divergent selection cause heterogeneity among loci in divergence between incipient species. We call this pattern of genomic variability in divergence the 'genetic mosaic of speciation'. Previous studies have used F(ST) outliers as a way to identify divergently selected genomic regions, but the nature of the relationship between outlier loci and quantitative trait loci (QTL) involved in reproductive isolation has not yet been quantified. Here, we show that F(ST) outliers between a pair of incipient species are significantly clustered around QTL for traits that cause ecologically based reproductive isolation. Around these key QTL, extensive 'divergence hitchhiking' occurs because reduced inter-race mating and negative selection decrease the opportunity for recombination between chromosomes bearing different locally adapted QTL alleles. Divergence hitchhiking is likely to greatly increase the opportunity for speciation in populations that are sympatric, regardless of whether initial divergence was sympatric or allopatric. Early in ecological speciation, analyses of population structure, gene flow or phylogeography based on different random or arbitrarily chosen neutral markers should be expected to conflict--only markers in divergently selected genomic regions will reveal the evolutionary history of adaptive divergence and ecologically based reproductive isolation. Species retain mosaic genomes for a very long time, and gene exchange in hybrid zones can vary dramatically among loci. However, in hybridizing species, the genomic regions that affect ecologically based reproductive isolation are difficult to distinguish from regions that have diverged for other reasons.  相似文献   

10.
Adaptation to different environments may be a powerful source of genetic differentiation between populations. The biological traits selected in each environment can pleiotropically induce assortative mating between individuals of these genetically differentiated populations. This situation may facilitate sympatric speciation. Successful host shifts in phytophagous insects provide some of the best evidence for the ecological speciation that occurs, or has occurred, in sympatry. The European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae), colonized maize after its introduction into Europe by humans about 500 years ago. In northern France, two sympatric host races feed on maize (Zea mays) and mugwort (Artemisia vulgaris), respectively. We investigated the factors involved in the genetic isolation of these two races at a field site near Paris, France. We identified two biological differences that might make a significant contribution to the genetic divergence between sympatric populations feeding on the two host plants. First, assortative mating may be due to differences in the moth emergence pattern between the two races: mugwort-race moths emerged on average 10 days earlier than maize-race moths. In addition, the males emerged earlier than females in both races. Hence, the likelihood of mating between maize-race males and mugwort-race females was higher than that of mating between mugwort-race males and maize-race females. Second, the females feeding on mugwort and maize produced sex pheromones with different E/Z isomeric ratios of delta-11-tetradecenyl acetate. This difference in mate recognition systems reinforces the potential for assortative mating in the two races. During the experiment, overwintering mortality was much lower on maize than on mugwort. This difference was due to a braconid parasitoid wasp, Macrocentrus cingulum, that killed more than 50% of the larvae overwintering on mugwort but did not infest larvae diapausing on maize. Hence, by colonizing maize, European corn borer populations probably escaped from numerous predators, competitors, and parasitoids, such as M. cingulum. This decrease in host-associated selection may have favored the colonization of this new host. Finally, throughout this experiment we observed selection at two allozyme loci (or at linked loci): Tpi and Mpi. The Tpi locus is tightly linked with the genes involved in the response of the male to the sex pheromone and in developmental timing. The location of these traits on the Z chromosome may play a role in shortening the time required for the evolution of premating barriers.  相似文献   

11.
Here, we investigate the evolutionary history and pattern of genetic divergence in the Rhagoletis pomonella (Diptera: Tephritidae) sibling species complex, a model for sympatric speciation via host plant shifting, using 11 anonymous nuclear genes and mtDNA. We report that DNA sequence results largely coincide with those of previous allozyme studies. Rhagoletis cornivora was basal in the complex, distinguished by fixed substitutions at all loci. Gene trees did not provide reciprocally monophyletic relationships among US populations of R. pomonella, R. mendax, R. zephyria and the undescribed flowering dogwood fly. However, private alleles were found for these taxa for certain loci. We discuss the implications of the results with respect to identifiable genetic signposts (stages) of speciation, the mosaic nature of genomic differentiation distinguishing formative species and a concept of speciation mode plurality involving a biogeographic contribution to sympatric speciation in the R. pomonella complex.  相似文献   

12.
The suggestion that genetic divergence can arise and/or be maintained in the face of gene flow has been contentious since first proposed. This controversy and a rarity of good examples have limited our understanding of this process. Partially reproductively isolated taxa have been highlighted as offering unique opportunities for identifying the mechanisms underlying divergence with gene flow. The African malaria vector, Anopheles gambiae s.s., is widely regarded as consisting of two sympatric forms, thought by many to represent incipient species, the M and S molecular forms. However, there has been much debate about the extent of reproductive isolation between M and S, with one view positing that divergence may have arisen and is being maintained in the presence of gene flow, and the other proposing a more advanced speciation process with little realized gene flow because of low hybrid fitness. These hypotheses have been difficult to address because hybrids are typically rare (<1%). Here, we assess samples from an area of high hybridization and demonstrate that hybrids are fit and responsible for extensive introgression. Nonetheless, we show that strong divergent selection at a subset of loci combined with highly asymmetric introgression has enabled M and S to remain genetically differentiated despite extensive gene flow. We propose that the extent of reproductive isolation between M and S varies across West Africa resulting in a 'geographic mosaic of reproductive isolation'; a finding which adds further complexity to our understanding of divergence in this taxon and which has considerable implications for transgenic control strategies.  相似文献   

13.
同域物种形成是指在缺少地理隔离的情况下分化出新种,相比异域物种形成更为罕见,存在较多的研究空白.该文分析了近十年来与被子植物同域物种形成相关的国内外研究,着重论述同域物种形成的影响因素和种对间的生殖隔离.考虑到历史上的地理隔离难以确定,加之种对间亲缘关系很近,同域物种的判定容易引发争议.其成因可分为生态因素和突变因素:...  相似文献   

14.
Sympatric speciation has been contentious since its inception, yet is increasingly recognized as important based on accumulating theoretical and empirical support. Here, we present a compelling case of sympatric speciation in a taxon of marine reef fishes using a comparative and mechanistic approach. Hexagrammos otakii and H. agrammus occur in sympatry throughout their ranges. Molecular sequence data from six loci, with complete sampling of the genus, support monophyly of these sister species. Although hybridization occurrs frequently with an allopatric congener in an area of slight distributional overlap, we found no F1 hybrids between the focal sympatric taxa throughout their coextensive ranges. We present genetic evidence for complete reproductive isolation based on SNP analysis of 382 individuals indicating fixed polymorphisms, with no shared haplotypes or genotypes, between sympatric species. To address questions of speciation, we take a mechanistic approach and directly compare aspects of reproductive isolation between allopatric and sympatric taxa both in nature and in the laboratory. We conclude that the buildup of reproductive isolation is strikingly different in sympatric vs. allopatric taxa, consistent with theoretical predictions. Lab reared hybrids from allopatric species crosses exhibit severe fitness effects in the F1 or backcross generation. No intrinsic fitness effects are observed in F1 hybrids from sympatric species pairs, however these treatments exhibited reduced fertilization success and complete pre‐mating isolation is implied in nature because F1 hybrid adults do not occur. Our study addresses limitations of previous studies and supports new criteria for inferring sympatric speciation.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Categorizing speciation into dichotomous allopatric versus nonallopatric modes may not always adequately describe the geographic context of divergence for taxa. If some of the genetic changes generating inherent barriers to gene flow between populations evolved in geographic isolation, whereas others arose in sympatry, then the mode of divergence would be mixed. The apple maggot fly, Rhagoletis pomonella, has contributed to this emerging concept of a mixed speciation mode \"plurality.\" Genetic studies have implied that a source of diapause life-history variation associated with inversions and contributing to sympatric host race formation and speciation for R. pomonella in the United States may have introgressed from the Eje Volcanico Trans Mexicano (EVTM; a.k.a. the Altiplano) in the past. A critical unresolved issue concerning the introgression hypothesis is how past gene flow occurred given the current 1200-km disjunction in the ranges of hawthorn-infesting flies in the EVTM region of Mexico and the southern extreme of the U.S. population in Texas. Here, we report the discovery of a hawthorn-infesting population of R. pomonella in the Sierra Madre Oriental Mountains (SMO) of Mexico. Sequence data from 15 nuclear loci and mitochondrial DNA imply that the SMO flies are related to, but still different from, U.S. and EVTM flies. The host affiliations, diapause characteristics, and phylogeography of the SMO population are consistent with it having served as a conduit for gene flow between Mexico and the United States. We also present evidence suggesting greater permeability of collinear versus rearranged regions of the genome to introgression, in accord with recent models of chromosomal speciation. We discuss the implications of the results in the context of speciation mode plurality. We do not argue for abandoning the terms sympatry or allopatry, but caution that categorizing divergence into either/or geographic modes may not describe the genetic origins of all species. For R. pomonella in the United States, the proximate selection pressures triggering race formation and speciation stem from sympatric host shifts. However, some of the phenological variation contributing to host-related ecological adaptation and reproductive isolation in sympatry at the present time appears to have an older history, having originated and become packaged into inversion polymorphism in allopatry.  相似文献   

16.
杂交种子研究在一定程度上能说明是否存在杂种不活机制,在植物生殖隔离研究中具有重要意义。通过对同域分布的西藏杓兰(Cypripedium tibeticum)、黄花杓兰(C.flavum)和褐花杓兰(C.calcicola)的自交、异交、杂交种子的形态特征及活性进行分析,发现3种杓兰属植物两两之间均可产生杂交种子,且杂交种子活性较高,杂交种子与其他处理所得种子的外观、表面纹饰无显著性差异;种子宽度、种子长度、有胚率、着色率并没有比自交或异交种子显著低。这一结果表明这3种同域杓兰属植物种与种之间具有相当高的亲和性,它们之间不存在明显的杂种不活机制。黄花杓兰与西藏杓兰或褐花杓兰间的传粉者大小明显不同,黄花杓兰由丽蝇和熊蜂工蜂传粉,而西藏杓兰和褐花杓兰由体形较大的熊蜂蜂王传粉,传粉者隔离已使得它们之间的物种界限比较清晰,因此已经没有必要再产生杂种不活等其他隔离机制。而西藏杓兰与褐花杓兰的传粉者相同,又没有明显的杂种不活隔离机制,暗示它们之间有其他合子后隔离机制或应将其合并为一个种。  相似文献   

17.
    
Host plant-associated fitness trade-offs are central to models of sympatric speciation proposed for certain phytophagous insects. But empirical evidence for such trade-offs is scant, which has called into question the likelihood of nonallopatric speciation. Here, we report on the second in a series of studies testing for host-related selection on pupal life-history characteristics of apple- (Malus pumila L.) and hawthorn- (Crataegus mollis L. spp.) infesting races of the Tephritid fruit fly, Rhagoletis pomonella (Walsh). In particular, we examine the effects of winter length on the genetics of these flies. We have previously found that the earlier fruiting phenology of apple trees exposes apple-fly pupae to longer periods of warm weather preceding winter than hawthorn-fly pupae. Because R. pomonella has a facultative diapause, we hypothesized that this selects for pupae with more recalcitrant pupal diapauses (or slower metabolic/development rates) in the apple-fly race. A study in which we experimentally manipulated the length of the prewintering period for hawthorn-origin pupae supported this prediction. If the period preceding winter is important for apple- and hawthorn-fly pupae, then so too should be the length (duration) of winter; the rationale for this prediction is that “fast developing” pupae that break diapause too early will deplete their energy reserves and disproportionately die during long winters. To test this possibility, we chilled apple- and hawthorn-origin pupae collected from a field site near Grant, Michigan, in a refrigerator at 4°C for time periods ranging from one week to two years. Our a priori expectation was that longer periods of cold storage would select against allozyme markers that were associated with faster rates of development in our earlier study. Since these electromorphs are typically found at higher frequencies in hawthorn flies, extending the overwintering period should favor “apple-fly alleles” in both races. The results from this “overwinter” experiment supported the diapause hypothesis. The anticipated genetic response was observed in both apple and hawthorn races, as allele frequencies became significantly more “apple-fly-like” in eclosing adults surviving longer chilling periods. This indicates that it is the combination of environmental conditions before and during winter that selects on the host races. Many tests for trade-offs fail to adequately consider the interplay between insect development, host plant phenology, and local climatic conditions. Our findings suggest that such oversight may help to explain the paucity of reported fitness trade-offs.  相似文献   

18.
    
The recent shift of Rhagoletis pomonella Walsh (Diptera: Tephritidae) from its ancestral host hawthorn to apple is a model for incipient sympatric speciation in action. Previous studies have shown that changes in the over‐wintering pupal diapause are critical for differentially adapting R. pomonella flies to a difference in the fruiting times of apples vs. hawthorns, generating ecologically based reproductive isolation. Here, we exposed pupae of the hawthorn race to various combinations of pre‐ and over‐wintering rearing conditions and analyzed their effects on eclosion time and genetics. We report certain unexpected results in regards to a combination of brief pre‐winter and over‐wintering periods indicative of gene*environment interactions requiring a reassessment of our current understanding of R. pomonella diapause. We present a hypothesis that involves physiological factors related to stored energy reserves in pupae that influences the depth and duration of Rhagoletis diapause. This ‘pupal energy reserve’ hypothesis can account for our findings and help clarify the role host plant‐related life history adaptation plays in phytophage biodiversity.  相似文献   

19.
    
Changes in acoustic and substrate-borne sexual signals in phytophagous insects associated with host plant shifts are known to have the potential to promote assortative mating, reproductive isolation and speciation. In this article, we ask whether the switch between pure herbivory and intraguild predation (IGP), which is common amongst phytophagous insects, has similar potential. Male flies in the genus Lipara (Diptera: Chloropidae) search for females by vibrating reed stems and waiting for a reply. By kleptoparasitizing other phytophagous species in the genus (a form of IGP), Lipara rufitarsis can increase its nonsexual fitness considerably. We looked at the impact of IGP on the timing of hatching, body size and attractiveness of male calls in L. rufitarsis . L. rufitarsis males that had engaged in IGP hatched significantly earlier than purely phytophagous flies and were significantly larger, but their calls were less likely to elicit responses from females during playback experiments. We conclude that, although behavioural observations of females provided no evidence of 'like preferring like', changes in phenology associated with IGP are likely to promote assortative mating in this system. The general preference of females for the calls of smaller males is a phenomenon worthy of further study: it may have no adaptive significance, or it may indicate that mating with large males is associated with a fitness cost.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 171–180.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号