首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host shifts and the formation of insect-host races are likely common processes in the speciation of herbivorous insects. The interactions of goldenrods Solidago (Compositae), the gall fly Eurosta solidaginis (Diptera: Tephritidae) and the beetle Mordellistena convicta (Coleoptera: Mordellidae) provide behavioural, ecological and genetic evidence of host races that may represent incipient species forming via sympatric speciation. We summarize evidence for Eurosta host races and show that M. convicta has radiated from goldenrod stems to Eurosta galls to form host-part races and, having exploited the galler's host shift, has begun to differentiate into host races within galls. Thus, host-race formation has occurred in two interacting, but unrelated organisms representing two trophic levels, resulting in 'sequential radiation' (escalation of biodiversity up the trophic system). Distributions of host races and their behavioural isolating mechanisms suggest sympatric differentiation. Such differentiation suggests host-race formation and subsequent speciation may be an important source of biodiversity.  相似文献   

2.
Abstract.— We show that a predator, the tumbling flower beetle Mordellistena convicta (Coleoptera: Mordellidae), has formed host races in response to a host-plant shift and subsequent host-race formation by its prey, the gall-inducing fly Eurosta solidaginis (Diptera: Tephritidae). This fly has formed two host races, one that induces stem galls on the ancestral host plant, Solidago altissima (Compositae), and another that induces stem galls on the closely related S. gigantea . We found that subpopulations of M. convicta that attack E. solidaginis galls on the different host plants have significantly different emergence times and, although slight, these allochronic differences are consistent across a range of temperatures. More importantly, we found that beetles assortatively mate according to their natal host plants, and female M. convicta preferentially attack and/or their offspring have higher survival in galls on natal host plants. Our data suggest that subpopulations of M. convicta that attack E. solidaginis galls on S. altissima and S. gigantea have formed host races. This is one of the first studies to demonstrate that a host shift and subsequent host-race formation by an herbivorous insect may have resulted in subsequent diversification by one of its natural enemies.  相似文献   

3.
Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector‐borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host‐associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within‐host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation.  相似文献   

4.
Phenological differences between host plants can contribute to allochronic isolation of host races of phytophagous insects. Host races of the gallmaking fly, Eurosta solidaginis, that live on different species of goldenrod (Solidago altissima and S. gigantea) exhibit different emergence phenologies. These differences could result from adaptation to corresponding phenological differences between the hosts in periods of optimal suitability for gall formation and survival to adulthood. In order to test this, some flies of each host race were allowed to emerge naturally while the emergence times of others were manipulated to correspond to the emergence and oviposition periods of the other host race. Percent gall formation and survival to adulthood were examined for three oviposition periods: the peak time of emergence and oviposition of the earlier-emerging host race (that from S. gigantea), that of the later-emerging host race (that from S. altissima), and a week after the peak emergence of the host race from S. altissima. Flies of both host races were allowed to ovipuncture plants of the appropriate species during each of these periods. Plant relative growth rates were measured during each of these periods. The experiment was repeated twice over a two-year period. Relative growth rates of both host species were highest during the earliest oviposition period (the period during which the host race from S. gigantea normally emerges). Percent gall formation was significantly correlated with plant relative growth rate, but the coefficient of determination was low. In both years of the study, percent gall formation of both host races was highest during the earliest oviposition period (the period during which the host race from S. gigantea normally oviposits). Likewise, percent survival to adulthood in both host races was highest during the earliest oviposition period. There was no significant effect of oviposition period on the percent of larval death due to parasitism by Eurytoma gigantea or predation by Mordellistena unicolor. These results suggest that the host race from S. altissima does not emerge at the time that its host is optimally suited for gall formation or survival to adulthood. Therefore, differences in emergence phenologies do not appear to be due to corresponding phenological differences between the host species in suitability for gall formation or survival to adulthood.  相似文献   

5.
Host shifts and subsequent host-race formation likely play amore common role in the speciation of herbivorous insects thanhas generally been recognized. Our studies of the interactionsof goldenrod host plants (Solidago: Compositae), the gall flyEurosta solidaginis (Diptera: Tephritidae), and the stem- andgall-boring Mordellistena convicta (Coleoptera: Mordellidae)provide behavioral, ecological, and genetic evidence of insecthost races that may represent incipient species formed via sympatricspeciation. Eurosta solidaginis has developed genetically differentiatedand reproductively isolated host races that are associated withthe ancestral host Solidago altissima and the derived host S.gigantea. Conventional wisdom suggests that shifts even to closelyrelated host plants are limited by host preferences or the inabilityto utilize a chemically and developmentally distinct host. However,our preliminary work with Eurosta from S. gigantea implies thathost choice and gall induction do not deter a shift to S. canadensis.The galling of Solidago by Eurosta created a new resource thathas led to a subsequent host range expansion by the stem-boringbeetle. Mordellistena convicta from stems and galls are geneticallydistinct and likely shifted from stems to galls. Beetles fromS. altissima versus S. gigantea galls exhibit assortative matingand higher preference for and/or performance on their natalhost. The present-day distributions of the Eurosta host racesand their behavioral isolating mechanisms do not suggest thatgeographic isolation was required for their formation; ratherthese characteristics suggest a sympatric mode of differentiation.Our findings lend credence to recent assertions that sympatricspeciation may be an important source of biodiversity.  相似文献   

6.
The importance of sympatric speciation remains controversial. An empirical observation frequently offered in its support is the occurrence of sister taxa living in sympatry but using different resources. To examine the possibility of sympatric differentiation in producing such cases, I measured genetic, behavioral, and demographic differentiation between populations of the tropical sponge-dwelling shrimp Synalpheus brooksi occupying two alternate host species on three reefs in Caribbean Panama. This species belongs to an apparently monophyletic group of ≥ 30 species of mostly obligate, host-specific sponge-dwellers, many of which occur in sympatry. Demographic data demonstrated the potential for disruptive selection imposed by the two host species: shrimp demes from the sponge Agelas clathrodes were consistently denser, poorer in mature females, more heavily parasitized by branchial bopyrid isopods, and less parasitized by thoracic isopods, than conspecific shrimp from the sponge Spheciospongia vesparium. Laboratory assays demonstrated divergence in host preference: shrimp on all three reefs tended to choose their native sponge species more often than did conspecific shrimp from the other host. Because S. brooksi mates within the host, this habitat selection should foster assortative mating by host species. A hierarchical survey of protein-electrophoretic variation also supported host-mediated divergence, revealing the following: (1) shrimp from the two hosts are conspecific, as evidenced by absence of fixed allelic differences at any of nine allozyme loci scored; (2) strong genetic subdivision among populations of this philopatric shrimp on reefs separated by 1–3 km; and (3) significant host-associated genetic differentiation within two of the three reefs. Finally, intersexual aggression (a proxy for mating incompatibility) between shrimp from different host species was significantly elevated on the one reef where host-associated genetic differences were strongest, demonstrating concordance between genetic and behavioral estimates of divergence. Adjacent reefs appear to be semi-independent sites of host-associated differentiation, as evidenced by differences in the degree of host-associated behavioral and genetic differentiation, and in the specific loci involved, on different reefs. In philopatric organisms with highly subdivided populations, such as S. brooksi, resource-associated differentiation can occur independently in different populations, thus providing multiple “experiments” in differentiation and resulting in a mosaic pattern of polymorphism as reflected by neutral genetic markers. Several freshwater fishes, an amphipod, and a snail similarly show independent but remarkably convergent patterns of resource-associated divergence in different conspecific populations, often in the absence of obvious spatial barriers. In each case, substantial differentiation has occurred in the face of continuing gene flow.  相似文献   

7.
We investigated genetic diversity in West European populations of the fungal pathogen Microbotryum violaceum in sympatric, parapatric and allopatric populations of the host species Silene latifolia and S. dioica, using four polymorphic microsatellite loci. In allopatric host populations, the fungus was highly differentiated by host species, exhibiting high values of F(ST) and R(ST), and revealed clear and distinct host races. In sympatric and parapatric populations we found significant population differentiation as well, except for one sympatric population in which the two host species grew truly intermingled. The mean number of alleles per locus for isolates from each of the host species was significantly higher in sympatric/parapatric than in allopatric populations. This suggests that either gene flow between host races in sympatry, or in case of less neutral loci, selection in a more heterogeneous host environment can increase the level of genetic variation in each of the demes. The observed pattern of host-related genetic differentiation among these geographically spread populations suggest a long-term divergence between these host races. In sympatric host populations, both host races presumably come in secondary contact, and host-specific alleles are exchanged depending on the amount of fungal gene flow.  相似文献   

8.
The existence of a continuous array of sympatric biotypes - from polymorphisms, through ecological or host races with increasing reproductive isolation, to good species - can provide strong evidence for a continuous route to sympatric speciation via natural selection. Host races in plant-feeding insects, in particular, have often been used as evidence for the probability of sympatric speciation. Here, we provide verifiable criteria to distinguish host races from other biotypes: in brief, host races are genetically differentiated, sympatric populations of parasites that use different hosts and between which there is appreciable gene flow. We recognize host races as kinds of species that regularly exchange genes with other species at a rate of more than ca. 1% per generation, rather than as fundamentally distinct taxa. Host races provide a convenient, although admittedly somewhat arbitrary intermediate stage along the speciation continuum. They are a heuristic device to aid in evaluating the probability of speciation by natural selection, particularly in sympatry. Speciation is thereby envisaged as having two phases: (i) the evolution of host races from within polymorphic, panmictic populations; and (ii) further reduction of gene flow between host races until the diverging populations can become generally accepted as species. We apply this criterion to 21 putative host race systems. Of these, only three are unambiguously classified as host races, but a further eight are strong candidates that merely lack accurate information on rates of hybridization or gene flow. Thus, over one-half of the cases that we review are probably or certainly host races, under our definition. Our review of the data favours the idea of sympatric speciation via host shift for three major reasons: (i) the evolution of assortative mating as a pleiotropic by-product of adaptation to a new host seems likely, even in cases where mating occurs away from the host; (ii) stable genetic differences in half of the cases attest to the power of natural selection to maintain multilocus polymorphisms with substantial linkage disequilibrium, in spite of probable gene flow; and (iii) this linkage disequilibrium should permit additional host adaptation, leading to further reproductive isolation via pleiotropy, and also provides conditions suitable for adaptive evolution of mate choice (reinforcement) to cause still further reductions in gene flow. Current data are too sparse to rule out a cryptic discontinuity in the apparently stable sympatric route from host-associated polymorphism to host-associated species, but such a hiatus seems unlikely on present evidence. Finally, we discuss applications of an understanding of host races in conservation and in managing adaptation by pests to control strategies, including those involving biological control or transgenic parasite-resistant plants.  相似文献   

9.
The geographic mosaic theory of coevolution predicts that geographic variation in species interactions will lead to differing selective pressures on interacting species, producing geographic variation in the traits of interacting species (Thompson 2005). We supported this hypothesis in a study of the geographic variation in the interactions among Eurosta solidaginis and its natural enemies. Eurosta solidaginis is a fly (Diptera: Tephritidae) that induces galls on subspecies of tall goldenrod, Solidago altissima altissima and S. a. gilvocanescens. We measured selection on E. solidaginis gall size and shape in the prairie and forest biomes in Minnesota and North Dakota over an 11-year period. Galls were larger and more spherical in the prairie than in the forest. We supported the hypothesis that the divergence in gall morphology in the two biomes is due to different selection regimes exerted by natural enemies of E. solidaginis. Each natural enemy exerted similar selection on gall diameter in both biomes, but differences in the frequency of natural enemy attack created strong differences in overall selection between the prairie and forest. Bird predation increased with gall diameter, creating selection for smaller-diameter galls. A parasitic wasp, Eurytoma gigantea, and Mordellistena convicta, an inquiline beetle, both caused higher E. solidaginis mortality in smaller galls, exerting selection for increased gall diameter. In the forest there was stabilizing selection on gall diameter due to a combination of bird predation on larvae in large galls, and M. convicta- and E. gigantea-induced mortality on larvae in small galls. In the prairie there was directional selection for larger galls due to M. convicta and E. gigantea mortality on larvae in small galls. Mordellistena convicta-induced mortality was consistently higher in the prairie than in the forest, whereas there was no significant difference in E. gigantea-induced mortality between biomes. Bird predation was nonexistent in the prairie so the selection against large galls found in the forest was absent. We supported the hypothesis that natural enemies of E. solidaginis exerted selection for spherical galls in both biomes. In the prairie M. convicta exerts stabilizing selection to maintain spherical galls. In the forest there was directional selection for more spherical galls. Eurytoma gigantea exerted selection on gall shape in the forest in a complex manner that varied among years. We also supported the hypothesis that E. gigantea is coevolving with E. solidaginis. The parasitoid had significantly longer ovipositors in the prairie than in the forest, indicating the possibility that it has evolved in response to selection to reach larvae in the larger-diameter prairie galls.  相似文献   

10.
We address the controversy over the processes causing divergence during speciation. Host races of the fruit fly Tephritis conura attack the thistles Cirsium oleraceum and Cirsium heterophyllum. By studying the genetic divergence of T. conura in areas where host plants are sympatric, parapatric and allopatric, we assessed the contribution of geography in driving host-race divergence. We also evaluated the relative importance of genetic drift and selection in the diversification process, by analysis of the geographic distribution of genetic variation. Host races were significantly diverged at five out of 13 polymorphic allozyme loci. Variance at two loci, Hex and Pep D, was almost exclusively attributable to host-plant affiliation in all geographic settings. However, Hex was significantly more differentiated between host races in sympatry/parapatry than in allopatry. This result might be explained by selection against hybridisation or against incorrect host choice in contact areas. Linkage disequilibrium tests suggest the latter: gene flow in contact areas may occur from males of the host-race C. heterophyllum to females of the host-race C. oleraceum, whereas incorrect oviposition events were never observed. The distinctive patterns of genetic differentiation at the two highly differentiated loci implicate the action of selection (acting directly or on linked loci) rather than genetic drift. Despite their restricted interactions in sympatry, we conclude that host races are stable and that the major diversification process took place before species arrived in today's geographical settings.  相似文献   

11.
Most models of ecological speciation concern phytophagous insects in which speciation is thought to be driven by host shifts and subsequent adaptations of populations. Despite the ever-increasing number of studies, the current evolutionary status of most models remains incompletely resolved, as estimates of gene flow between taxa remain extremely rare. We studied the population genetics of two taxa of the Ostrinia genus--one feeding mainly on maize and the other on mugwort and hop--occurring in sympatry throughout France. The actual level of divergence of these taxa was unknown because the genetic structure of populations had been investigated over a limited geographical area and the magnitude of gene flow between populations had not been estimated. We used 11 microsatellite markers to investigate the genetic structure of populations throughout France and the extent of gene flow between the two Ostrinia taxa at several sites at which they are sympatric. We observed clear genetic differentiation between most populations collected on the typical respective hosts of each taxon. However, populations displaying intermediate allelic frequencies were found on hop plants in southern France. Individual assignments revealed that this result could be accounted for by the presence of both taxa on the same host. Gene flow, estimated by determining the proportion of hybrids detected, was low: probably<1% per generation, regardless of site. This indicates that the two Ostrinia taxa have reached a high level of genetic divergence and should be considered sibling species rather than host races.  相似文献   

12.
D. ZUBER  A. WIDMER 《Molecular ecology》2009,18(9):1946-1962
Mistletoes are bird dispersed, hemi-parasitic shrubs infecting a large number of woody host plants. Chloroplast fragment length polymorphisms were used to study genetic differentiation among presumed host races, population genetic structure, and to elucidate the postglacial migration history of mistletoe ( Viscum album ) across the entire natural distribution range in Europe. The populations sampled belong to four closely related taxa, three of which are widely distributed and differ in their host trees, whereas a fourth taxon is rare and endemic to the Island of Crete. The molecular analysis of chloroplast DNA variation supported the distinction of these four taxa. We further found evidence for phylogeographical structure in each of the three widely distributed host races. Independent of host race, mistletoe haplotypes from Turkey were distinct and distant from those found elsewhere in Europe, suggesting that highly differentiated populations, and possibly new taxa, exist at the range limit of the species.  相似文献   

13.
Aguin-Pombo D 《Heredity》2002,88(6):415-422
The limited importance ascribed to sympatric speciation processes via host race formation is partially due to the few cases of host races that have been reported among host populations. This work sheds light on the taxonomy of Alebra leafhoppers and examines the possible existence of host races among host-associated populations. The species of this genus show varying degrees of host association with deciduous trees and shrubs and, frequently, host populations of uncertain taxonomic status coexist and occasionally become pests. Allozyme electrophoresis of 21 Greek populations including sympatric, local and geographically distant samples collected on 13 different plant species, show that they represent at least five species: A. albostriella Fallén, A. viridis (Rey) (sensu Gillham), A. wahlbergi Boheman and two new species. Of these, one is associated to Quercus frainetto and other is specific to Crataegus spp. Significant genetic differences among sympatric and local host populations were found only in A. albostriella, between populations on Turkey oak, beech and common alder. It is suggested that the last two of these host populations may represent different host races. The results show that both the host plant and geographical distance affect the patterns of differentiation in the genus. The formation of some species seems to have been the result of allopatric speciation events while, for others, their origin can be equally explained either by sympatric or allopatric speciation.  相似文献   

14.
Host-race evolution is a prime candidate for sympatric speciation because host shifts must take place in the presence of both hosts. However, the geographic context in which the shift takes place may have strong allopatric or peripatric components if the primary host within a localized area is scarce or even goes extinct. Inference of the relative importance of the geographic mode of speciation may be gained from phylogeographic imprints. Here, we investigate the phylogeography of host races of the tephritid fly Tephritis conura from sympatric, parapatric and allopatric populations of Cirsium heterophyllum and Cirsium oleraceum (Asteraceae) in Europe, for addressing the age and direction, and the geographic context of host-race formation. Haplotype networks of the host races differed significantly in molecular diversity and topology. However, host-race haplotypes were nested within the same network, with a central haplotype H1 being the most common haplotype in both host races. C. heterophyllum flies were genetically more diverse and substructured than flies from C. oleraceum, suggesting that the latter is the derived race. The phylogeographic imprint indicates either that C. heterophyllum flies colonized C. oleraceum during range expansion or that heterophyllum flies went extinct in an area where oleraceum flies persisted (followed by re-immigration). These imprints are in concordance with peripatric diversification, probably in the European Alps and related to the last ice age, where the host-race diversification was largely completed before the postglacial range expansion on C. oleraceum to current areas of sympatry and parapatry with C. heterophyllum.  相似文献   

15.
Understanding the factors promoting species formation is a major task in evolutionary research. Here, we employ an integrative approach to study the evolutionary history of the Californian scrub white oak species complex (genus Quercus). To infer the relative importance of geographical isolation and ecological divergence in driving the speciation process, we (i) analysed inter‐ and intraspecific patterns of genetic differentiation and employed an approximate Bayesian computation (ABC) framework to evaluate different plausible scenarios of species divergence. In a second step, we (ii) linked the inferred divergence pathways with current and past species distribution models (SDMs) and (iii) tested for niche differentiation and phylogenetic niche conservatism across taxa. ABC analyses showed that the most plausible scenario is the one considering the divergence of two main lineages followed by a more recent pulse of speciation. Genotypic data in conjunction with SDMs and niche differentiation analyses support that different factors (geography vs. environment) and modes of speciation (parapatry, allopatry and maybe sympatry) have played a role in the divergence process within this complex. We found no significant relationship between genetic differentiation and niche overlap, which probably reflects niche lability and/or that multiple factors, have contributed to speciation. Our study shows that different mechanisms can drive divergence even among closely related taxa representing early stages of species formation and exemplifies the importance of adopting integrative approaches to get a better understanding of the speciation process.  相似文献   

16.
Tropical herbivorous insects are astonishingly diverse, and many are highly host‐specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host‐specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent‐wide analyses reveal – in all but one instance – that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use.  相似文献   

17.
The pea aphid, Acyrthosiphon pisum, encompasses distinct host races specialized on various Fabaceae species, but the extent of genetic divergence associated with ecological specialization varies greatly depending on plant and geographic origins of aphid populations. Here, we studied the genetic structure of French sympatric pea aphid populations collected on perennial (pea and faba bean) and annual (alfalfa and red clover) hosts using 14 microsatellite loci. Classical and Bayesian population genetics analyses consistently identified genetic clusters mostly related to plant origin: the pea/faba bean cluster was highly divergent from the red clover and the alfalfa ones, indicating they represent different stages along the continuum of genetic differentiation. Some genotypes were assigned to a cluster differing from the one expected from their plant origin while others exhibited intermediate genetic characteristics. These results suggest incomplete barriers to gene flow. However, this limited gene flow seems insufficient to prevent ecological specialization and genetic differentiation in sympatry.  相似文献   

18.
Due to the close association between parasites and their hosts, many ‘generalist’ parasites have a high potential to become specialized on different host species. We investigated this hypothesis for a common ectoparasite of seabirds, the tick Ixodes uriae that is often found in mixed host sites. We examined patterns of neutral genetic variation between ticks collected from Black‐legged kittiwakes (Rissa tridactyla) and Atlantic puffins (Fratercula arctica) in sympatry. To control for a potential distance effect, values were compared to differences among ticks from the same host in nearby monospecific sites. As predicted, there was higher genetic differentiation between ticks from different sympatric host species than between ticks from nearby allopatric populations of the same host species. Patterns suggesting isolation by distance were found among tick populations of each host group, but no such patterns existed between tick populations of different hosts. Overall, results suggest that host‐related selection pressures have led to the specialization of I. uriae and that host race formation may be an important diversifying mechanism in parasites.  相似文献   

19.
Generalist parasites regularly evolve host-specific races that each specialize on one particular host species. Many host-specific races originate from geographically structured populations where local adaptations to different host species drive the differentiation of distinct races. However, in sympatric populations where several host races coexist, gene flow could potentially disrupt such host-specific adaptations. Here, we analyse genetic differentiation among three sympatrically breeding host races of the brood-parasitic common cuckoo, Cuculus canorus. In this species, host-specific adaptations are assumed to be controlled by females only, possibly via the female-specific W-chromosome, thereby avoiding that gene flow via males disrupts local adaptations. Although males were more likely to have offspring in two different host species (43% versus 7%), they did not have significantly more descendants being raised outside their putative foster species than females (9% versus 2%). We found significant genetic differentiation for both biparentally inherited microsatellite DNA markers and maternally inherited mitochondrial DNA markers. To our knowledge, this is the first study that finds significant genetic differentiation in biparentally inherited markers among cuckoo host-specific races. Our results imply that males also may contribute to the evolution and maintenance of the different races, and hence that the genes responsible for egg phenotype may be found on autosomal chromosomes rather than the female-specific W-chromosome as previously assumed.  相似文献   

20.
Allozyme electrophoresis of 98 Hypodontus macropi from eight different species of hosts using 24 enzymes revealed a complex of at least six sibling species, with 15-50% fixed genetic differences between taxa. Except for the taxon parasitizing Macropus rufus/M. robustus, pairs of parasite taxa were, in each case, sympatric at each locality examined, thus supporting the conclusion that they represent valid species. The existence of a series of host-specific nematode taxa explains many of the inconsistencies noted previously in the host distribution of H. macropi. Comparison of parasite allozyme phenograms with host phylogeny suggests that four of the speciation events could be attributable to cospeciation and two to host switching. A clear case of host switching between M. rufus/M. robustus and M. fuliginosus was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号