首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Caenhorhabditis elegans Unc104 kinesin transports synaptic vesicles at rapid velocities. Unc104 is primarily monomeric in solution, but recent motility studies suggest that it may dimerize when concentrated on membranes. Using cryo-electron microscopy, we observe two conformations of microtubule-bound Unc104: a monomeric state in which the two neck helices form an intramolecular, parallel coiled coil; and a dimeric state in which the neck helices form an intermolecular coiled coil. The intramolecular folded conformation is abolished by deletion of a flexible hinge separating the neck helices, indicating that it acts as a spacer to accommodate the parallel coiled-coil configuration. The neck hinge deletion mutation does not alter motor velocity in vitro but produces a severe uncoordinated phenotype in transgenic C. elegans, suggesting that the folded conformation plays an important role in motor regulation. We suggest that the Unc104 neck regulates motility by switching from a self-folded, repressed state to a dimerized conformation that can support fast processive movement.  相似文献   

2.
Kinesin-1 dimerizes via the coiled-coil neck domain. In contrast to animal kinesins, neck dimerization of the fungal kinesin-1 NcKin requires additional residues from the hinge. Using chimeric constructs containing or lacking fungal-specific elements, the proximal part of the hinge was shown to stabilize the neck coiled-coil conformation in a complex manner. The conserved fungal kinesin hinge residue W384 caused neck coiled-coil formation in a chimeric NcKin construct, including parts of the human kinesin-1 stalk. The stabilizing effect was retained in a NcKinW384F mutant, suggesting important pi-stacking interactions. Without the stalk, W384 was not sufficient to induce coiled-coil formation, indicating that W384 is part of a cluster of several residues required for neck coiled-coil folding. A W384-less chimera of NcKin and human kinesin possessed a non-coiled-coil neck conformation and showed inhibited activity that could be reactivated when artificial interstrand disulfide bonds were used to stabilize the neck coiled-coil conformation. On the basis of yeast two-hybrid data, we propose that the proximal hinge can bind kinesin's cargo-free tail domain and causes inactivation of kinesin by disrupting the neck coiled-coil conformation.  相似文献   

3.
Kinesin-3 motors have been shown to transport cellular cargo along microtubules and to function according to mechanisms that differ from the conventional hand-over-hand mechanism. To find out whether the mechanisms described for Kif1A and CeUnc104 cover the full spectrum of Kinesin-3 motors, we characterize here NcKin3, a novel member of the Kinesin-3 family that localizes to mitochondria of ascomycetes. We show that NcKin3 does not move in a K-loop-dependent way as Kif1A or in a cluster-dependent way as CeUnc104. Its in vitro gliding velocity ranges between 0.30 and 0.64 mum/s and correlates positively with motor density. The processivity index (k(bi,ratio)) of approximately 3 reveals that not more than three ATP molecules are hydrolyzed per productive microtubule encounter. The NcKin3 duty ratio of 0.03 indicates that the motor spends only a minute fraction of the ATPase cycle attached to the filament. Unlike other Kinesin-3 family members, NcKin3 forms stable dimers, but only one subunit releases ADP in a microtubule-dependent fashion. Together, these data exclude a processive hand-over-hand mechanism of movement and suggest a power-stroke mechanism where nucleotide-dependent structural changes in a single motor domain lead to displacement of the motor along the filament. Thus, NcKin3 is the first plus end-directed kinesin motor that is dimeric but moves in a nonprocessive fashion to its destination.  相似文献   

4.
Long-distance transport is crucial for polar-growing cells, such as neurons and fungal hyphae. Kinesins and myosins participate in this process, but their functional interplay is poorly understood. Here, we investigate the role of kinesin motors in hyphal growth of the plant pathogen Ustilago maydis. Although the microtubule plus-ends are directed to the hyphal tip, of all 10 kinesins analyzed, only conventional kinesin (Kinesin-1) and Unc104/Kif1A-like kinesin (Kinesin-3) were up-regulated in hyphae and they are essential for extended hyphal growth. deltakin1 and deltakin3 mutant hyphae grew irregular and remained short, but they were still able to grow polarized. No additional phenotype was detected in deltakin1rkin3 double mutants, but polarity was lost in deltamyo5rkin1 and deltamyo5rkin3 mutant cells, suggesting that kinesins and class V myosin cooperate in hyphal growth. Consistent with such a role in secretion, fusion proteins of green fluorescent protein and Kinesin-1, Myosin-V, and Kinesin-3 accumulate in the apex of hyphae, a region where secretory vesicles cluster to form the fungal Spitzenk?rper. Quantitative assays revealed a role of Kin3 in secretion of acid phosphatase, whereas Kin1 was not involved. Our data demonstrate that just two kinesins and at least one myosin support hyphal growth.  相似文献   

5.
Unlike most kinesins, mitotic centromere-associated kinesin (MCAK) does not translocate along the surface of microtubules (MTs), but instead depolymerizes them. Among the motile kinesins, refinements that are unique for specific cellular functions, such as directionality and processivity, are under the control of a "neck" domain adjacent to the ATP-hydrolyzing motor domain. Despite its apparent lack of motility, MCAK also contains a neck domain. We found that deletions and alanine substitutions of highly conserved positively charged residues in the MCAK neck domain significantly reduced MT depolymerization activity. Furthermore, substitution of MCAK's neck domain with either the positively charged KIF1A K-loop or poly-lysine rescues the loss of MT-depolymerizing activity observed in the neckless MCAK mutant. We propose that the neck, analogously to the K-loop, interacts electrostatically with the tubulin COOH terminus to permit diffusional translocation of MCAK along the surface of MTs. This weak-binding interaction may also play an important role in processivity of MCAK-induced MT depolymerization.  相似文献   

6.
In an effort to understand how specific structural features within the kinesin neck, a region of the heavy chain located between the catalytic core and stalk domains, may contribute to motor processivity (an ability to remain attached to the microtubule filament), we have prepared several synthetic peptides corresponding to the neck region of human conventional kinesin and determined their secondary structure content and stability by CD spectroscopy. Our results show that the coiled-coil dimerization domain within the human kinesin neck region corresponds to residues 337 to 369 in solution, and thus is in excellent agreement with the recent X-ray crystallographic structures of rat brain kinesin. Further, we show that the first and last heptads of this region are absolutely critical for creating the high stability and association of the dimeric structure. Interestingly, addition of the 7 N-terminal neck-linker residues (330-336) to the coiled-coil domain significantly increased its stability (Delta GdnHCl midpoint of 1 M or an increase of approximately 1.5 kcal/mol), indicating that a strong structural link exists between the neck-linker and coiled-coil region. Subsequent high-resolution structural analysis of the residues located at the junction of the neck-linker and coiled-coil revealed the presence of the two helix capping motifs, the capping box (a reciprocal interaction of Thr 336 with Gln 339) and the hydrophobic staple (a hydrophobic packing interaction of Leu 335 with Trp 340). Substitution of Leu 335 and Thr 336 (the capping residues) with Gly completely eliminated the increased stability of the coiled-coil region observed in the presence of the neck-linker residues. Correspondingly, substitution of Trp 340, the first hydrophobic core d position residue of the coiled-coil, with an Ala residue resulted in a greater than expected decrease in stability and helicity of the coiled-coil structure. Subsequent analysis of the X-ray structure and substitution analysis of Lys 341 revealed that Trp 340 makes an important interchain hydrophobic interaction with Lys 341 of the opposite chain. Taken together these results reveal that a set of strong intra- and inter-chain interactions made up of the helix "capping box," "hydrophobic staple," and the newly identified "Leu-Trp-Lys sandwich" motifs stabilize the kinesin neck coiled-coil structure, thus preventing it from fraying and unfolding.  相似文献   

7.
The kinesin-3 family (KIF) is one of the largest among the kinesin superfamily and an important driver of a variety of cellular transport events. Whereas all kinesins contain the highly conserved kinesin motor domain, different families have evolved unique motor features that enable different mechanical and functional outputs. A defining feature of kinesin-3 motors is the presence of a positively charged insert, the K-loop, in loop 12 of their motor domains. However, the mechanical and functional output of the K-loop with respect to processive motility of dimeric kinesin-3 motors is unknown. We find that, surprisingly, the K-loop plays no role in generating the superprocessive motion of dimeric kinesin-3 motors (KIF1, KIF13, and KIF16). Instead, we find that the K-loop provides kinesin-3 motors with a high microtubule affinity in the motor''s ADP-bound state, a state that for other kinesins binds only weakly to the microtubule surface. A high microtubule affinity results in a high landing rate of processive kinesin-3 motors on the microtubule surface. We propose that the family-specific K-loop contributes to efficient kinesin-3 cargo transport by enhancing the initial interaction of dimeric motors with the microtubule track.  相似文献   

8.
Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.  相似文献   

9.
Neurospora crassa kinesin NcKin3 belongs to a unique fungal-specific subgroup of small Kinesin-3-related motor proteins. One of its functions appears to be the transport of mitochondria along microtubules. Here, we present the X-ray structure of a C-terminally truncated monomeric construct of NcKin3 comprising the motor domain and the neck linker, and a 3-D image reconstruction of this motor domain bound to microtubules, by cryoelectron microscopy. The protein contains Mg.ADP bound to the active site, yet the structure resembles an ATP-bound state. By comparison with structures of the Kinesin-3 motor Kif1A in different nucleotide states (Kikkawa, M. et al. (2001) Nature (London, U.K.) 411, 439-445), the NcKin3 structure corresponds to the AMPPCP complex of Kif1A rather than the AMPPNP complex. NcKin3-specific differences in the coordination of the nucleotide and asymmetric interactions between adjacent molecules in the crystal are discussed in the context of the unusual kinetics of the dimeric wild-type motor and the monomeric construct used for crystal structure analysis. The NcKin3 motor decorates microtubules at a stoichiometry of one head per alphabeta-tubulin heterodimer, thereby forming an axial periodicity of 8 nm. In spite of unusual extensions at the N-terminus and within flexible loops L2, L8a, and L12 (corresponding to the K-loop of monomeric kinesins), the microtubule binding geometry is similar to that of other members of the kinesin family.  相似文献   

10.
Kinesins are dimeric motor proteins that move processively along microtubules. It has been proposed that the processivity of conventional kinesins is increased by electrostatic interactions between the positively charged neck of the motor and the negatively charged C-terminus of tubulin (E-hook). In this report we challenge this anchoring hypothesis by studying the motility of a fast fungal kinesin from Neurospora crassa (NcKin). NcKin is highly processive despite lacking the positive charges in the neck. We present a detailed analysis of how proteolytic removal of the E-hook affects truncated monomeric and dimeric constructs of NcKin. Upon digestion we observe a strong reduction of the processivity and speed of dimeric motor constructs. Monomeric motors with truncated or no neck display the same reduction of microtubule gliding speed as dimeric constructs, suggesting that the E-hook interacts with the head only. The E-hook has no effect on the strongly bound states of NcKin as microtubule digestion does not alter the stall forces produced by single dimeric motors, suggesting that the E-hook affects the interaction site of the kinesin.ADP-head and the microtubule. In fact, kinetic and binding experiments indicate that removal of the E-hook shifts the binding equilibrium of the weakly attached kinesin.ADP-head toward a more strongly bound state, which may explain reduced processivity and speed on digested microtubules.  相似文献   

11.
Unc104/KIF1A, a kinesin family member, is reported to be monomeric in solution, though its polypeptide has regions that potentially form coiled coils. For a better understanding of the mechanism underlying Unc104/KIF1A's motility, it is important to evaluate the dimerization ability of this protein. The CD measurement of relevant segments of Caenorhabditis elegans Unc104 indicated that peptides having a common region (N358-K379) showed spectra characteristic to an alpha-helix. Dimerization by coiled-coil formation was confirmed by analytical ultracentrifugation. By analyzing the concentration dependence of the CD spectra, the monomer-dimer dissociation constant, Kd, of (N354-E388) was estimated to be about 5 microM, which is considerably larger than that of the corresponding segment of human kinesin (62 nM). Though its dimerization ability is rather moderate, Unc104/KIF1A could nonetheless dimerize and therefore could move by the same mechanism as human kinesin when the concentration of Unc104 is high due to, e.g., local crowding. This suggests that the motility could be controlled by the concentration of the motor protein.  相似文献   

12.
We investigated the folding, stability, and specificity of dimerization of the neck-hinge region (residues 356-416) of the kinesin-like protein Kif3A. We showed that the predicted coiled-coil on its own (residues 356-377) will fold autonomously in solution. We then explored the ability of oppositely charged regions to specify heterodimer formation in coiled-coils by synthesizing analogs of the neck coiled-coil region with and without various negatively and positively charged extensions to the C-terminus of the neck coiled-coil and characterizing these analogs by circular dichroism spectroscopy. The charged region alone (residues 378-416) adopted a random-coil structure and this region remained unfolded in the presence of the coiled-coil. Redox experiments demonstrated that oppositely charged regions specified the formation of a hetero-two-stranded coiled-coil. Denaturation studies with urea demonstrated a decrease in coiled-coil stability with the addition of negatively charged residues in the homostranded coiled-coil; conversely, the addition of the positively charged region (residues 403-416) of Kif3A C-terminally to the neck coiled-coil did not affect coiled-coil stability. Overall, our results suggest that electrostatic attractions drive the specificity of heterodimerization of the coiled-coil, not the removal of positive or negative charge-charge repulsions, while maintaining the stability of the heterodimer compared to that of the stablest homodimer.  相似文献   

13.
Conventional kinesin, a dimeric molecular motor, uses ATP-dependent conformational changes to move unidirectionally along a row of tubulin subunits on a microtubule. Two models have been advanced for the major structural change underlying kinesin motility: the first involves an unzippering/zippering of a small peptide (neck linker) from the motor catalytic core and the second proposes an unwinding/rewinding of the adjacent coiled-coil (neck coiled-coil). Here, we have tested these models using disulfide cross-linking of cysteines engineered into recombinant kinesin motors. When the neck linker motion was prevented by cross-linking, kinesin ceased unidirectional movement and only showed brief one-dimensional diffusion along microtubules. Motility fully recovered upon adding reducing agents to reverse the cross-link. When the neck linker motion was partially restrained, single kinesin motors showed biased diffusion towards the microtubule plus end but could not move effectively against a load imposed by an optical trap. Thus, partial movement of the neck linker suffices for directionality but not for normal processivity or force generation. In contrast, preventing neck coiled-coil unwinding by disulfide cross-linking had relatively little effect on motor activity, although the average run length of single kinesin molecules decreased by 30-50%. These studies indicate that conformational changes in the neck linker, not in the neck coiled-coil, drive processive movement by the kinesin motor.  相似文献   

14.
Conventional kinesin (Kinesin-1) is a microtubule-based molecular motor that supports intracellular vesicle/organelle transport in various eukaryotic cells. To arrange kinesin motors similarly to myosin motors on thick filaments in muscles, the motor domain of rat conventional kinesin (amino acid residues 1-430) fused to the C-terminal 829 amino acid residues of catchin (KHC430Cat) was bacterially expressed and attached to catchin filaments that can attach to and arrange myosin molecules in a bipolar manner on their surface. Unlike the case of myosin where actin filaments move toward the center much faster than in the opposite direction along the catchin filaments, microtubules moved at the same speed in both directions. In addition, many microtubules moved across the filaments at the same speed with various angles between the axes of the microtubule and catchin filament. Kinesin/catchin chimera proteins with a shorter kinesin neck domain were also prepared. Those without the whole hinge 1 domain and the C-terminal part of the neck helix moved microtubules toward the center of the catchin filaments significantly, but only slightly, faster than in the opposite direction, although the movements in both directions were slower than those of the KHC430Cat construct. The results suggest that kinesin has substantial mechanical flexibility within the motor domain, possibly within the neck linker, enabling its interaction with microtubules having any orientation.  相似文献   

15.
Kinesin-1 is a dimeric motor protein that moves stepwise along microtubules. A two-stranded alpha-helical coiled-coil formed by the neck domain links the two heads of the molecule, and forces the motor heads to alternate. By exchanging the particularly soft neck region of the conventional kinesin from the fungus Neurospora crassa with an artificial, highly stable coiled-coil we investigated how this domain affects motor kinetics and motility. Under unloaded standard conditions, both motor constructs developed the same gliding velocity. However, in a force-feedback laser trap the mutant showed increasing motility defects with increasing loads, and did not reach wild-type velocities and run lengths. The stall force dropped significantly from 4.1 to 3.0 pN. These results indicate the compliance of kinesin's neck is important to sustain motility under load, and reveal a so far unknown constrain on the imperfect coiled-coil heptad pattern of Kinesin-1. We conclude that coiled-coil structures, a motif encountered in various types of molecular motors, are not merely a clamp for linking two heavy chains to a functional unit but may have specifically evolved to allow motor progression in a viscous, inhomogeneous environment or when several motors attached to a transported vesicle are required to cooperate efficiently.  相似文献   

16.
We investigated the folding, stability, and specificity of dimerization of the neck regions of the kinesin-like proteins Kif3A (residues 356-416) and Kif3B (residues 351-411). We showed that the complementary charged regions found in the hinge regions (which directly follow the neck regions) of these proteins do not adopt any secondary structure in solution. We then explored the ability of the complementary charged regions to specify heterodimer formation for the neck region coiled-coils found in Kif3A and Kif3B. Redox experiments demonstrated that oppositely charged regions specified the formation of a heterodimeric coiled-coil. Denaturation studies with urea demonstrated that the negatively charged region of Kif3A dramatically destabilized its neck coiled-coil (urea1/2 value of 3.9 m compared with 6.7 m for the coiled-coil alone). By comparison, the placement of a positively charged region C-terminal to the neck coiled-coil of Kif3B had little effect on stability (urea1/2 value of 8.2 m compared with 8.8 m for the coiled-coil alone). The pairing of complementary charged regions leads to specific heterodimer formation where the stability of the heterodimeric neck coiled-coil with charged regions had similar stability (urea1/2 value of 7.8 m) to the most stable homodimer (Kif3B) with charged regions (urea1/2 value of 8.0 m) and dramatically more stable than the Kif3A homodimer with charged regions (urea1/2, value of 3.9 m). The heterodimeric coiled-coil with charged extensions has essentially the same stability as the heterodimeric coiled-coil on its own (urea1/2 values of 7.8 and 8.1 m, respectively) suggesting that specificity of heterodimerization is driven by non-specific attraction of the oppositely unstructured charged regions without affecting stability of the heterodimeric coiled-coil.  相似文献   

17.
Kinesin-1 is a dimeric motor protein that moves cargo processively along microtubules. Kinesin motility has been proposed to be driven by the coordinated forward extension of the neck linker (a approximately 12-residue peptide) in one motor domain and the rearward positioning of the neck linker in the partner motor domain. To test this model, we have introduced fluorescent dyes selectively into one subunit of the kinesin dimer and performed 'half-molecule' fluorescence resonance energy transfer to measure conformational changes of the neck linker. We show that when kinesin binds with both heads to the microtubule, the neck linkers in the rear and forward heads extend forward and backward, respectively. During ATP-driven motility, the neck linkers switch between these conformational states. These results support the notion that neck linker movements accompany the 'hand-over-hand' motion of the two motor domains.  相似文献   

18.
Lee JR  Shin H  Choi J  Ko J  Kim S  Lee HW  Kim K  Rho SH  Lee JH  Song HE  Eom SH  Kim E 《The EMBO journal》2004,23(7):1506-1515
Motor proteins not actively involved in transporting cargoes should remain inactive at sites of cargo loading to save energy and remain available for loading. KIF1A/Unc104 is a monomeric kinesin known to dimerize into a processive motor at high protein concentrations. However, the molecular mechanisms underlying monomer stabilization and monomer-to-dimer transition are not well understood. Here, we report an intramolecular interaction in KIF1A between the forkhead-associated (FHA) domain and a coiled-coil domain (CC2) immediately following the FHA domain. Disrupting this interaction by point mutations in the FHA or CC2 domains leads to a dramatic accumulation of KIF1A in the periphery of living cultured neurons and an enhancement of the microtubule (MT) binding and self-multimerization of KIF1A. In addition, point mutations causing rigidity in the predicted flexible hinge disrupt the intramolecular FHA-CC2 interaction and increase MT binding and peripheral accumulation of KIF1A. These results suggest that the intramolecular FHA-CC2 interaction negatively regulates KIF1A activity by inhibiting MT binding and dimerization of KIF1A, and point to a novel role of the FHA domain in the regulation of kinesin motors.  相似文献   

19.
The motor domain regions of three novel members of the kinesin superfamily TLKIF1, TLKIFC, and TLBIMC were identified in a thermophilic fungus Thermomyces lanuginosus. Based on sequence similarity, they were classified as members of the known kinesin families Unc104/KIF1, KAR3, and BIMC. TLKIF1 was subsequently expressed in Escherichia coli. The expression level was high, and the protein was mostly soluble, easy to purify, and enzymatically active. TLKIF1 is a monomeric kinesin motor, which in a gliding motility assay displays a robust plus-directed microtubule movement up to 2 microm/s. The discovery of TLKIF1 also demonstrates that a family of kinesin motors not previously found in fungi may in fact be used in this group of organisms.  相似文献   

20.
Kinesin motor proteins execute a variety of intracellular microtubule-based transport functions [1]. Kinesin motor domains contain a catalytic core, which is conserved throughout the kinesin superfamily, followed by a neck region, which is conserved within subfamilies and has been implicated in controlling the direction of motion along a microtubule [2] [3]. Here, we have used mutational analysis to determine the functions of the catalytic core and the approximately 15 amino acid 'neck linker' (a sequence contained within the neck region) of human conventional kinesin. Replacement of the neck linker with a designed random coil resulted in a 200-500-fold decrease in microtubule velocity, although basal and microtubule-stimulated ATPase rates were within threefold of wild-type levels. The catalytic core of kinesin, without any additional kinesin sequence, displayed microtubule-stimulated ATPase activity, nucleotide-dependent microtubule binding, and very slow plus-end-directed motor activity. On the basis of these results, we propose that the catalytic core is sufficient for allosteric regulation of microtubule binding and ATPase activity and that the kinesin neck linker functions as a mechanical amplifier for motion. Given that the neck linker undergoes a nucleotide-dependent conformational change [4], this region might act in an analogous fashion to the myosin converter, which amplifies small conformational changes in the myosin catalytic core [5,6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号