首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J G Naglich  R E Andrews 《Plasmid》1988,20(2):113-126
The Staphylococcus aureus plasmids pC194 and pUB110 were introduced into Bacillus thuringiensis subsp. israelensis by using the Streptococcus faecalis transposon Tn916 as a mobilizing agent. Plasmid transfer occurred only when B. thuringiensis subsp. israelensis was mated with a B. subtilis donor that contained both pC194 and pUB110 and Tn916; plasmid transfer was not observed in the absence of the transposon. B. thuringiensis transconjugants resistant to chloramphenicol (Cmr) and tetracycline (Tetr) were detected at a frequency of 1.96 x 10(-6) per recipient cell, whereas the Tetr phenotype, but not the Cmr, was observed at a frequency of 1.09 x 10(-4). The converse, Cmr but not Tetr, was observed at a frequency of 2.94 X 10(-5). The transfer of pUB110 from B. subtilis to B. thuringiensis subsp. israelensis was observed at a frequency of 3.0 x 10(-6) per recipient cell but concomitant transfer of pUB110 and Tn916 was not observed. Mobilization of plasmid pE194 was not observed under these conditions. Transconjugants were detected in filter matings only, not in broth. The Tn916 phenotype was maintained during serial passage of B. thuringiensis without selection, whereas the pC194 phenotype was not. Unlike pC194, however, pUB110 remained stable in B. thuringiensis during several passages through nonselective medium. Southern hybridization analysis demonstrated that Tn916 had inserted into several different sites on the B. thuringiensis chromosome and that pC194 and pUB110 were maintained as an autonomous plasmid.  相似文献   

2.
The conjugative Streptococcus faecalis transposon Tn916 was introduced into Bacillus thuringiensis subsp. israelensis by filter matings with S. faecalis. B. thuringiensis transconjugants resistant to tetracycline (Tetr) were detected at a frequency of approximately 7.0 X 10(-7) per recipient cell during filter matings, whereas transfer of Tn916 was not observed in broth matings. The Tetr phenotype in subsp. israelensis was stable in the absence of antibiotic selection. Southern hybridization analysis revealed that Tn916 had inserted into several different sites on the B. thuringiensis subsp. israelensis chromosome but insertion into plasmid DNA was not observed. Movement of Tn916 was demonstrated when Tetr B. thuringiensis transconjugants were mated with isogenic recipients. Southern hybridizations, however, showed that the resulting Tetr isolates contained Tn916 junction fragments that were nearly identical to the donor, suggesting that this movement resulted from transfer of chromosomal DNA from donor to recipient or from a fusion of mating cells, rather than conjugative transposition of the Tn element.  相似文献   

3.
As part of an effort to develop systems for genetic analysis of strains of Bacillus pumilus which are being used as a microbial hay preservative, we introduced the conjugative Enterococcus faecalis transposon Tn916 into B. pumilus ATCC 1 and two naturally occurring hay isolates of B. pumilus. B. pumilus transconjugants resistant to tetracycline were detected at a frequency of approximately 6.5 x 10(-7) per recipient after filter mating with E. faecalis CG110. Southern hybridization confirmed the insertion of Tn916 into several different sites in the B. pumilus chromosome. Transfer of Tn916 also was observed between strains of B. pumilus in filter matings, and one donor strain transferred tetracycline resistance to recipients in broth matings at high frequency (up to 3.4 x 10(-5) per recipient). Transfer from this donor strain in broth matings was DNase-resistant and was not mediated by culture filtrates. Transconjugants from these broth matings contained derivatives of a cryptic plasmid (pMGD302, approx 60 kb) from the donor strain with Tn916 inserted at various sites. The plasmids containing Tn916 insertions transferred to a B. pumilus recipient strain at frequencies of approx 5 x 10(-6) per recipient. This evidence suggests that pMGD302 can transfer by a process resembling conjugation between strains of B. pumilus.  相似文献   

4.
The transposon Tn916 and self-mobilizing plasmid pAM beta 1 were conjugated from Enterococcus faecalis to the ruminal bacterium Streptococcus bovis JB1. Transconjugants were identified by resistance to tetracycline (Tn916) or erythromycin (pAM beta 1) and by Southern hybridization analyses. Transfer frequencies were 7.0 x 10(-6) and 1.0 x 10(-6) per recipient cell for Tn916 and pAM beta 1, respectively. The transconjugants JB1/Tn916 and JB1/pAM beta 1 were used as donors for matings with E. faecalis, Bacillus subtilis, and the ruminal bacterium Butyrivibrio fibrisolvens. While pAM beta 1 was successfully transferred to all three organisms, Tn916 was transferred only into B. subtilis and B. fibrisolvens at very low frequencies. This is the first report of conjugal DNA transfers between two ruminal organisms.  相似文献   

5.
The transposon Tn916 and self-mobilizing plasmid pAM beta 1 were conjugated from Enterococcus faecalis to the ruminal bacterium Streptococcus bovis JB1. Transconjugants were identified by resistance to tetracycline (Tn916) or erythromycin (pAM beta 1) and by Southern hybridization analyses. Transfer frequencies were 7.0 x 10(-6) and 1.0 x 10(-6) per recipient cell for Tn916 and pAM beta 1, respectively. The transconjugants JB1/Tn916 and JB1/pAM beta 1 were used as donors for matings with E. faecalis, Bacillus subtilis, and the ruminal bacterium Butyrivibrio fibrisolvens. While pAM beta 1 was successfully transferred to all three organisms, Tn916 was transferred only into B. subtilis and B. fibrisolvens at very low frequencies. This is the first report of conjugal DNA transfers between two ruminal organisms.  相似文献   

6.
The conjugative streptococcal transposon Tn916 was found to transfer naturally between a variety of gram-positive and gram-negative eubacteria. Enterococcus faecalis hosting the transposon could serve as a donor for Alcaligenes eutrophus, Citrobacter freundii, and Escherichia coli at frequencies of 10(-6) to 10(-8). No transfer was observed with several phototrophic species. Mating of an E. coli strain carrying Tn916 yielded transconjugants with Bacillus subtilis, Clostridium acetobutylicum, Enterococcus faecalis, and Streptococcus lactis subsp. diacetylactis at frequencies of 10(-4) to 10(-6). Acetobacterium woodii was the only gram-positive organism tested that did not accept the transposon from a gram-negative donor. The results prove the ability of conjugative transposable elements such as Tn916 for natural cross-species gene transfer, thus potentially contributing to bacterial evolution.  相似文献   

7.
The tetracycline resistance plasmid pCF10 (58 kilobases [kb]) of Streptococcus faecalis possesses two separate conjugation systems. A 25-kb region of the plasmid (designated TRA) was shown previously to determine pheromone response and conjugation functions required for transfer of pCF10 between S. faecalis cells (P. J. Christie and G. M. Dunny, Plasmid 15:230-241, 1986). When S. faecalis cells were mixed with Bacillus subtilis in broth, tetracycline resistance was transferred from S. faecalis. The tetracycline-resistant B. subtilis cells contained a 16-kb region of pCF10 (distinct from TRA) that carried the tetracycline resistance determinant (Tetr). This Tetr element was found to transfer between S. faecalis and B. subtilis strains in the absence of plasmids. Genetic and molecular techniques were used to establish locations of the element at several different sites on the B. subtilis chromosome. The Tetr element could be transferred in filter matings from B. subtilis to S. faecalis strains and between recombination-proficient and -deficient S. faecalis strains in the absence of any plasmid DNA. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The Tetr element was shown to transpose from the S. faecalis chromosome to various locations within the hemolysin plasmid pAD1. Together, the data indicate that the Tetr element, termed transposon Tn925, is very similar to the conjugative transposon Tn916 in both structure and function. A derivative of Tn925, containing transposon Tn917 inserted into a site approximately 3 kb from one end, exhibited elevated transfer frequencies and may provide a useful means for delivering Tn917 by conjugation into various gram-positive species.  相似文献   

8.
The conjugative transposon Tn916 and a derivative Tn916 delta E was transferred from Bacillus subtilis into Clostridium difficile CD37 by filter mating. All the C. difficile transconjugants appeared to contain one copy of the transposon integrated into the same position in the genome. Transposition from the original site of integration was not observed. Like Tn916 the transferable tetracycline resistance determinant (Tc-CD) of C. difficile has a preferred site of integration in C. difficile and is homologous with Tn916 along the whole length of Tn916. However comparisons of the distribution of TaqI and Sau3AI sites in the homologous regions of the two elements did not demonstrate any hybridizing fragments in common.  相似文献   

9.
A tetracycline resistance (Tcr) determinant from Clostridium difficile strain 630 was cloned into the Escherichia coli plasmid vector pUC13. The resulting plasmid pPPM20, containing an insert of 3.4 kbp, was mapped and a 1.1 kbp SacI-HindIII fragment wholly within the Tcr gene was identified. Dot-blot hybridization studies with the 1.1 kbp fragment showed that the Tcr gene belonged to hybridization class M. Tcr could be transferred between C. difficile strains and to Bacillus subtilis at a frequency of 10(-7) per donor cell. The element could be returned from B. subtilis to C. difficile at a frequency of 10(-8) per donor cell. This is the first demonstration of C. difficile acting as a recipient in intergeneric crosses. DNA from C. difficile transconjugants digested with EcoRV always has two hybridizing fragments of 9.5 and 11.0 kbp when probed with pPPM20. DNA from B. subtilis transconjugants digested with EcoRV produced one hybridizing band of variable size when probed with pPPM20. The behaviour of the element was reminiscent of the conjugative transposons. Therefore we compared the element to the conjugative transposon Tn916. The HincII restriction maps of the two elements differed and no hybridization was detected to oligonucleotides directed to the ends of Tn916. However, the elements do have some sequence homology, detected by hybridization analysis.  相似文献   

10.
M R Natarajan  P Oriel 《Plasmid》1991,26(1):67-73
A gene for thermostable amylase has been inserted at the BstXI site of Tn916. Mating experiments demonstrated that unlike Tn916, the recombinant transposon, designated Tn916A, could transfer from Escherichia coli to Bacillus stearothermophilus BR219 in broth matings, resulting in chromosomal integration of the transposon and expression of the amylase at significant levels.  相似文献   

11.
Tn10-derived transposons active in Bacillus subtilis.   总被引:4,自引:3,他引:1       下载免费PDF全文
Small derivatives of the Escherichia coli transposon Tn10, comprising IS10 ends and a chloramphenicol resistance gene, were introduced in Bacillus subtilis on a thermosensitive plasmid, pE194. In the presence of the Tn10 transposase gene fused to signals functional in B. subtilis, these derivatives transposed with a frequency of 10(-6) per element per generation. They had no highly preferred insertion site or region, as judged by restriction analysis of the chromosomal DNA, and generated auxotrophic and sporulation-deficient mutants with a frequency of about 1%. These results suggest that Tn10 derivatives might be a useful genetic tool in B. subtilis and possibly other gram-positive microorganisms.  相似文献   

12.
Transfer of the conjugative transposon Tn916 from the chromosome of Bacillus subtilis to a transposon-free Streptococcus pyogenes strain occurs at the same frequency as transfer to a Tn916-containing recipient. This rules out a model for conjugal transfer of Tn916 in which a copy of the element in the recipient represses transposition of a copy introduced by conjugation. Homology-directed integration of the incoming transposon into the resident one is less frequent than insertion elsewhere in the chromosome. This shows that after conjugation, transposition occurs more frequently than homologous recombination. However, because transconjugants arising from homologous recombination can be selected, it is possible to use Tn916 as a shuttle for gram-positive organisms for which there is no easy means of introducing DNA.  相似文献   

13.
A 58.7-kb nonconjugative plasmid (pKQ1) previously reported in a clinical isolate of Enterococcus faecium was found to contain both a tetM and an erythromycin resistance (erm) determinant. The plasmid contained a region homologous to the A, F, H, and G HincII fragments of Tn916. However, the 4.8-kb B fragment of Tn916 which contained the tetM determinant was replaced by a 7.3-kb fragment, and the 3.6-kb HincII C fragment of Tn916 was missing. An element homologous to Tn917 was juxtaposed to the truncated Tn916-like element. The Tn917-like element was similar in size to the erm transposon Tn917 as determined by a ClaI restriction digest which spanned approximately 99% of the transposon. When Bacillus subtilis or Streptococcus sanguis were transformed with pKQ1, no zygotically induced transposition of the tetM element was detected. Similarly no transposition of the Tn917-like element was detected.  相似文献   

14.
In matings between Lactococcus lactis strains, the conjugative transposons Tn916 and Tn919 are found in the chromosome of the transconjugants in the same place as in the chromosome of the donor, indicating that no transposition has occurred. In agreement with this, the frequency of L. lactis transconjugants from intraspecies matings is the same whether the donor contains the wild-type form of the transposon or the mutant Tn916-int1, which has an insertion in the transposon's integrase gene. However, in intergeneric crosses with Bacillus subtilis or Enterococcus faecalis donors, Tn916 and Tn919 transpose to different locations on the chromosome of the L. lactis transconjugants. Moreover, Tn916 and Tn919 could not be transferred by conjugation from L. lactis and B. subtilis, E. faecalis or Streptococcus pyogenes. This suggests that excision of these elements does not occur in L. lactis. When cloned into E. coli with adjacent chromosomal DNA from L. lactis, the conjugative transposons were able to excise, transpose and promote conjugation. Therefore, the inability of these elements to excise in L. lactis is not caused by a permanent structural alteration in the transposon. We conclude that L. lactis lacks a factor required for excision of conjugative transposons.  相似文献   

15.
Tn5397 is a conjugative transposon that was originally isolated from Clostridium difficile. Previous analysis had shown that the central region of Tn5397 was closely related to the conjugative transposon Tn916. However, in this work we obtained the DNA sequence of the ends of Tn5397 and showed that they are completely different to those of Tn916. Tn5397 did not contain the int and xis genes, which are required for the excision and integration of Tn916. Instead, the right end of Tn5397 contained a gene, tndX, that appears to encode a member of the large resolvase family of site-specific recombinases. TndX is closely related to the TnpX resolvase from the mobilizable but nonconjugative chloramphenicol resistance transposons, Tn4451 from Clostridium perfringens and Tn4453 from C. difficile. Like the latter elements, inserted copies of Tn5397 were flanked by a direct repeat of a GA dinucleotide. The Tn5397 target sites were also shown to contain a central GA dinucleotide. Excision of the element in C. difficile completely regenerated the original target sequence. A circular form of the transposon, in which the left and right ends of the element were separated by a GA dinucleotide, was detected by PCR in both Bacillus subtilis and C. difficile. A Tn5397 mutant in which part of tndX was deleted was constructed in B. subtilis. This mutant was nonconjugative and did not produce the circular form of Tn5397, indicating that the TndX resolvase has an essential role in the excision and transposition of Tn5397 and is thus the first example of a member of the large resolvase family of recombinases being involved in conjugative transposon mobility. Finally, we showed that introduction of Tn916 into a strain containing Tn5397 induced the loss of the latter element in 95.6% of recipients.  相似文献   

16.
Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum   总被引:4,自引:0,他引:4  
Tn1545, a conjugative transposon originally discovered in Streptococcus pneumoniae, has been transferred from Enterococcus faecalis and Bacillus subtilis to Clostridium acetobutylicum NCIB 8052. Transfer between different strains of C. acetobutylicum has also been observed. Insertion of Tn1545 into the C. acetobutylicum chromosome occurred at multiple sites, as shown by Southern hybridization. Although ermAM (erythromycin-resistance) was the most satisfactory marker for primary selection of transconjugants, all three Tn1545-encoded antibiotic resistance genes (aphA-3, ermAM, and tetM) were apparently expressed in C. acetobutylicum. Our results indicate that Tn1545 is potentially useful for undertaking mutagenesis and mutational cloning in this industrially important organism. Transfer of another conjugative transposon, Tn916, from E. faecalis to C. acetobutylicum NCIB 8052 was also apparently detected. Circumstantial evidence suggests that there may be a hot spot for Tn916 insertion in the C. acetobutylicum NCIB 8052 chromosome.  相似文献   

17.
Mycoplasma hominis was transformed by electroporation with plasmid pAM120 containing the transposon Tn916 that carried the tetM gene responsible for the resistance to tetracycline. The frequency of transformation was 10(-7)-10(-8) colony-forming units (CFU) per 10 micrograms of plasmid DNA. The PCR analysis of transformed DNA confirmed the transposon integration into the mycoplasma genome.  相似文献   

18.
Tn916-dependent mobilization of nonconjugative plasmids pUB110 and its derivative pUB110Deltam was compared. Deleting a 787-bp fragment from the pUB110 mob region created plasmid pUB110Deltam. Deletion of the mob region of pUB110 rendered the plasmid nontransferable by the conjugative plasmids of Bacillus thuringiensis subsp. israelensis. During matings between Bacillus subtilis (Tn916) and B. thuringiensis subsp. israelensis, however, Tn916-dependent mobilization of plasmids pUB110 and pUB110Deltam was observed at a frequency of approximately 2 x 10(-6) transconjugants per donor. The results show that Tn916-mediated conjugal transfer of plasmids is a mob-independent event. Jaworski and Clewell (J. Bacteriol 177; 6644-6651) recently demonstrated the presence of an IncP-like nicking site in the oriT of Tn916. These data suggest that a IncP-like nickling site is essential for Tn916-mediated plasmid transfer.  相似文献   

19.
Few genetic systems for studying mycoplasmas exist, but transposon Tn916 has been shown to transpose into the genomes of some species and can be used as an insertional mutagen. In the current study, the ability of Enterococcus faecalis to serve as a donor for the conjugative transfer of transposon Tn916 into the genome of the avian pathogen Mycoplasma gallisepticum strain PG31 was examined. Transconjugants were obtained at a frequency of > or =6 x 10(-8) per recipient CFU. To determine the transposon insertion site, an oligonucleotide primer corresponding to the 3' end of Tn916 was designed for the purpose of directly sequencing genomic DNA without PCR amplification. Using the direct sequencing approach, Tn916 was shown to insert into any of numerous sites in the M. gallisepticum genome. This is the first report of conjugal transposition of Tn916 into the M. gallisepticum genome. The ability to determine transposon insertion sites in mycoplasmas by genomic sequencing has not been previously described and allows rapid sequence analysis of transposon-generated mutants.  相似文献   

20.
The conjugative plasmid pCF-10 (58 kb) of Streptococcus faecalis has been mapped with restriction enzymes. By restriction mapping and Southern hybridization analysis, a 16-kb segment of the plasmid was shown to resemble closely the conjugative tetracycline resistance transposon, Tn916. Mutagenesis of the plasmid with the erythromycin resistance transposon Tn917 was used to localize a tetracycline resistance determinant and several regions involved in conjugal transfer. Fifty Tn917 insertions (outside the region of the plasmid homologous to Tn916) affecting mating behavior and the ability of donor cells to respond to the sex pheromone cCF-10 were mapped to nine distinct segments, or tra regions. Insertions into tra regions 1-3 and 7-9 led to an enhanced transfer ability of mutant plasmids relative to the transfer frequency obtained for the wild-type plasmid. Cells carrying these mutant plasmids differed in colony morphology or growth in broth culture from cells carrying pCF-10. Insertions into tra regions 4-6 resulted in reduced plasmid transfer, or completely eliminated the mating potential of donor cells. Insertions generating transfer-defective plasmids could be grouped further according to the ability of strains harboring the mutant plasmids to respond to cCF-10. HindIII fragments of pCF-10 coding for transfer functions have been cloned into Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号