首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Mus encompasses at least 38 species divided into four subgenera: Mus , Pyromys , Nannomys and Coelomys . The subgenus Mus , which comprises the house mouse and related species, is by far the most extensively studied, although the subgenus Nannomys is the most speciose. Although the relationships within the subgenus Mus are rather well characterized, those between subgenera are still unclear. In the present study, phylogenetic analyses of the whole genus were performed using a larger species sample of Nannomys than in previous studies, and a nuclear gene (IRBP) in addition to mitochondrial data (cytochrome b and 12S rRNA). Members of the Acomyinae and Murinae were used as outgroups. Separate and combined analyses were performed with maximum parsimony, maximum likelihood and Bayesian methods, and divergence times were estimated. The results showed that the monophyly of the genus Mus and of each subgenus was strongly supported by the three genes and the combined analysis. The phylogenies derived from the three genes were on the whole congruent; however, several conflicting topologies were observed such as the relationships between the three Asian species of the subgenus Mus ( caroli , cervicolor and cookii ). Increasing the taxonomic sampling of Nannomys did not satisfactorily improve the resolution of relationships between the four subgenera. In addition, molecular calibrations indicate that the Mus and Nannomys radiation coincided with major environmental changes.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 417–427.  相似文献   

2.
The genus Mus encompasses 38 species of mice divided into four subgenera: Mus , Pyromys , Nannomys and Coelomys . Each of these four taxa is characterized by discrete morphological as well as biochemical traits. We used two different molecular approaches to determine the relationships between these subgenera: DNA/DNA hybridization and 12S rRNA mitochondrial sequences. We compared the resulting phylogenies from each method and with phylogenies derived from morphological data. The degree of resolution of each molecular approach is discussed. The two molecular studies indicate that Mus , Pyromys , Nannomys and Coelomys are clearly distinct monophyletic groups, as previously indicated by morphological data and other biochemical and molecular approaches. There is one divergence between previous morphological and the molecular and morphological studies presented here: the position of the Indian species Mus famulus . This taxon, which was formerly included in the subgenus Coelomys , is demonstrated here to belong to the subgenus Mus. We also propose the following relationships within Mus sensu lato : Mus and Pyromys are the closest relatives, followed by Nannomys and Coelomys , whose relationships are still unclear. This arrangement is more robustly supported by DNA/DNA hybridization than by 12S rRNA data. A molecular time scale for the evolution within Mus sensu lato is proposed, using as a reference the Mus/Rattus divergence estimated by the fossil record at around 12 mya.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 137 , 385–401.  相似文献   

3.
Polymorphism of C lambda genes and units of duplication in the genus Mus   总被引:4,自引:0,他引:4  
The number of Ig C lambda genes in nine geographically widespread species from the four subgenera in the genus Mus was estimated from the number of Bam HI and Eco RI restriction fragments that hybridize under high stringency conditions to cDNA probes of BALB/c inbred mouse origin (Mus musculus domesticus). Three closely related species in the subgenus Mus, M. musculus, M. spretus, and M. spicelegus, show considerable variation in the number of C lambda genes. Estimates of gene numbers in these animals range from two C lambda genes in M. spretus from Puerto Real, Spain to 12 C lambda genes in M. musculus musculus from Studenec, Czechoslovakia. Strains of mice carrying either six or 10 C lambda genes were derived from a single population of M. musculus domesticus from Centreville, MD. The hybridization patterns of mice exhibiting C lambda gene amplification indicate that duplications are of relatively recent origin and probably occurred by reiteration of a DNA segment closely related to the 6.5 kb [C lambda 3 - C lambda 1] unit found in BALB/c inbred mice. Three more distantly related species in the subgenus Mus, and a species representing the Nannomys subgenus all appear to carry only four C lambda genes. DNA of species representing the Coelomys and Pyromys subgenera hybridized weakly to the C lambda cDNA probes, but these animals also have no more than four C lambda genes. Thus, there may be a base number of four C lambda genes in most species in the genus Mus. All inbred strains of mice so far examined also have only four C lambda genes, but no feral M. musculus examined have fewer than six C lambda genes. One explanation of the discrepancy in the number of genes between inbred and feral M. musculus is that C lambda genes were deleted during the process of inbreeding.  相似文献   

4.
We examined 1140 bp of the mitochondrial cytochrome b gene and 1398 bp of the nuclear RAG2 gene to investigate the systematics of the eight species of bats within the family Mormoopidae. It was concluded that within the genus Pteronotus there were four valid subgenera: Phyllodia, Chilonycteris, Pteronotus, and an undescribed subgenus. Within Pteronotus, P. parnellii either was part of an unresolved tetratomy with the other three subgenera (cytochrome b data) or was basal (RAG2 and combined data). For three species, P. gymnonotus, P. macleayii, and P. quadridens, our sample revealed little geographic variation. In P. davyi and P. parnellii, the magnitude of genetic distance suggests the possibility of two biological species existing within the currently recognized taxa. Within P. personatus, there was substantial geographic variation partitioned in a step-like fashion among our specimens. Neither of the species within the genus Mormoops showed the deep distance nodes present in P. davyi, P. parnellii, and P. personatus. Cytochrome b and RAG2 data indicated that M. megalophylla evolved recently from its common ancestor. Although there was considerable agreement among the branching patterns for the nuclear and mitochondrial genes, both genes failed to provide robust data concerning the evolutionary relationships among the subgenera.  相似文献   

5.
Snubnose darters comprise one of the largest subgenera of the percid genus Etheostoma. Many species are described based on differences in male breeding coloration. Few morphological synapomorphies have been proposed for the subgenus and their relatives, making it difficult to delineate monophyletic clades. The phylogenetic relationships of the 20 snubnose darter species of the subgenus Ulocentra and 11 members of its proposed sister subgenus Etheostoma were investigated with partial mitochondrial DNA sequences including 1033 bp encompassing the entire mitochondrial control region, the tRNA-Phe gene, and part of the 12S rRNA gene. Two hypotheses on the relationship and monophyly of the two subgenera were evaluated. Both maximum-parsimony and neighbor-joining analyses supported monophyly of the subgenus Ulocentra and resolved some species-level relationships. The banded darter, E. zonale, and its sister taxon, E. lynceum, were not closely related to the snubnose darters and appear to be diverged from the other members of the subgenus Etheostoma, fitting their former distinction as the recognized subgenus Nanostoma. The sister group to Ulocentra appears to be a restricted species assemblage within the subgenus Etheostoma containing E. blennioides, E. rupestre, E. blennius, and the E. thalassinum species group. The placement of the harlequin darter, E. histrio, is problematic, and it may represent a basal member of Ulocentra or of the restricted subgenus Etheostoma. Despite recent estimates of divergence times between nominal Ulocentra taxa, each species exhibits its own unique set of mtDNA haplotypes, providing no direct evidence for current genetic exchange between species. The nominal taxa of snubnose darters thus appear to be evolving independently from each other and therefore constitute valid species under the Phylogenetic Species Concept.  相似文献   

6.
We examined 1140 bp of the mitochondrial cytochrome b gene and 1398 bp of the nuclear RAG2 gene to investigate the systematics of the eight species of bats within the family Mormoopidae. It was concluded that within the genus Pteronotus there were four valid subgenera: Phyllodia, Chilonycteris, Pteronotus, and an undescribed subgenus. Within Pteronotus, P. parnellii either was part of an unresolved tetratomy with the other three subgenera (cytochrome b data) or was basal (RAG2 and combined data). For three species, P. gymnonotus, P. macleayii, and P. quadridens, our sample revealed little geographic variation. In P. davyi and P. parnellii, the magnitude of genetic distance suggests the possibility of two biological species existing within the currently recognized taxa. Within P. personatus, there was substantial geographic variation partitioned in a step-like fashion among our specimens. Neither of the species within the genus Mormoops showed the deep distance nodes present in P. davyi, P. parnellii, and P. personatus. Cytochrome b and RAG2 data indicated that M. megalophylla evolved recently from its common ancestor. Although there was considerable agreement among the branching patterns for the nuclear and mitochondrial genes, both genes failed to provide robust data concerning the evolutionary relationships among the subgenera.  相似文献   

7.
Eryngium is the largest and arguably the most taxonomically complex genus in the family Apiaceae. Infrageneric relationships within Eryngium were inferred using sequence data from the chloroplast DNA trnQ-trnK 5'-exon and nuclear ribosomal DNA ITS regions to test previous hypotheses of subgeneric relationships, explain distribution patterns, reconstruct ancestral morphological features, and elucidate the evolutionary processes that gave rise to this speciose genus. In total, 157 accessions representing 118 species of Eryngium, 15 species of Sanicula (including the genus Hacquetia that was recently reduced to synonymy) and the monotypic Petagnaea were analyzed using maximum parsimony and Bayesian methods. Both separate and simultaneous analyses of plastid and nuclear data sets were carried out because of the prevalence of polyploids and hybrids within the genus. Eryngium is confirmed as monophyletic and is divided into two redefined subgenera: Eryngium subgenus Eryngium and E. subgenus Monocotyloidea. The first subgenus includes all examined species from the Old World (Africa, Europe, and Asia), except Eryngium tenue, E. viviparum, E. galioides, and E. corniculatum. Eryngium subgenus Monocotyloidea includes all examined species from the New World (North, Central and South America, and Australia; herein called the "New World sensu stricto" clade) plus the aforementioned Old World species that fall at the base of this clade. Most sectional and subgeneric divisions previously erected on the basis of morphology are not monophyletic. Within the "New World sensu stricto" group, six clades are well supported in analyses of plastid and combined plastid and nuclear data sets; the relationships among these clades, however, are unresolved. These clades are designated as "Mexican", "Eastern USA", "South American", "North American monocotyledonous", "South American monocotyledonous", and "Pacific". Members of each clade share similar geographical distributions and/or morphological or ecological traits. Evidence from branch lengths and low sequence divergence estimates suggests a rapid radiation at the base of each of these lineages. Conflict between chloroplast and nuclear data sets is weak, but the disagreements found are suggestive that hybrid speciation in Eryngium might have been a cause, but also a consequence, of the different rapid radiations observed. Dispersal-vicariance analysis indicates that Eryngium and its two subgenera originated from western Mediterranean ancestors and that the present-day distribution of the genus is explained by several dispersal events, including one trans-Atlantic dispersal. In general, these dispersals coincide with the polytomies observed, suggesting that they played key roles in the diversification of the genus. The evolution of Eryngium combines a history of long distance dispersals, rapid radiations, and hybridization, culminating in the taxonomic complexity observed today in the genus.  相似文献   

8.
Relationships among members representing each of the three subgenera of the Middle American rodent genus Orthogeomys (Rodentia: Geomyidae) were studied by comparing DNA sequence data from two regions of the mitochondrial genome. Results from 527 bp from the 16 S rDNA region and a 402-bp fragment of the cytochrome b gene indicate that the three subgenera are well differentiated genetically, with the subgenus Orthogeomys being distantly related to Macrogeomys and Heterogeomys, and Macrogeomys appearing as the most derived. Within the subgenus Macrogeomys, O. heterodus and O. cherriei form a distinct clade, as do O. dariensis and O. cavator. As with previous protein-electrophoretic studies, the placement of O. underwoodi could not be determined definitively within the subgenus Macrogeomys. We interpret our inability to determine phylogenetic relationships among these three clades as evidence for a rapid phyletic radiation within this subgenus. Sequence divergence estimates indicate that the Macrogeomys radiation took place following the time of completion of the Panamanian land bridge (1.9-2.9 mya). Additionally, the near identity of sequences of a newly described species, O. thaeleri, with those of O. dariensis (percentage sequence divergence = 0.3%) suggests that the two may be conspecific.  相似文献   

9.
Phylogenetic relationships among 17 extant species of Murinae, with special reference to the genus Apodemus, were investigated using sequence data from the nuclear protein-coding gene IRBP (15 species) and the two mitochondrial genes cytochrome b and 12S rRNA (17 species). The analysis of the three genes does not resolve the relationships between Mus, Apodemus, and Rattus but separates Micromys from these three genera. The analysis of the two mitochondrial regions supported an association between Apodemus and Tokudaia and indicated that these two genera are more closely related to Mus than to Rattus or Micromys. Within Apodemus, the mitochondrial data sets indicated that 8 of the 9 species analyzed can be sorted into two main groups: an Apodemus group, with A. agrarius, semotus, and peninsulae, and a Sylvaemus group, with uralensis, flavicollis, alpicola, sylvaticus, and hermonensis. The position of Apodemus mystacinus is ambiguous and might be either included in Sylvaemus or considered a distinct subgenus, Karstomys, more closely related to Sylvaemus than to Apodemus. Estimation of the divergence time for these taxa suggests a separation between 7 and 8 My ago for the three groups (mystacinus and the two subgenera Apodemus and Sylvaemus). Within each subgenus, divergence times are between 5.4 and 6 My for Apodemus and between 2.2 and 3.5 My for Sylvaemus and mystacinus.  相似文献   

10.
The genus Uroleucon, and the related genus Macrosiphoniella, represent a large Tertiary radiation of aphids, with a total of about 300 species distributed throughout the world, primarily on host plant species in the family Asteraceae. A molecular phylogenetic study was conducted to identify major clades within Uroleucon and to address the cladistic validity of current subgeneric categories, the evolution of host plant associations, the age of origin, and intercontinental movements in this genus. The seventeen study species included members of the three major subgenera of Uroleucon, species from Europe and North America, one member of Macrosiphoniella, and two outgroups. Data consisted of DNA sequences for three mitochondrial regions and the nuclear gene EF1alpha, for a total of 4287 sites. Nodes supported strongly in both parsimony and maximum likelihood analyses suggest that: (1) Nearctic Uromelan are a monophyletic group branching near the base of the genus and not related to European Uromelan, (2) the New World subgenus Lambersius is possibly monophyletic but is not a tightly related group and is not closely related to other North American species, and (3) Nearctic members of subgenus Uroleucon are a closely related monophyletic group not allied with Nearctic Uromelan or Lambersius. Instead they represent a separate colonization by an Old World ancestor, as they are nested within a strongly supported clade containing European members of both subgenera Uroleucon and Uromelan. Neither of these subgenera is monophyletic. Molecular clock calculations, based on calibrations of mitochondrial divergences from other insects, suggest that Uroleucon + Macrosiphoniella is a relatively recent radiation, probably no more than 5–10 million years old. Although largely confined to Asteraceae, this clade did not radiate in parallel with its host plants. Rather, lateral movement between lineages of Asteraceae must have occurred repeatedly.  相似文献   

11.
A cladistic study of Anllastrum, Angophora and Eucalyptus (Myrtaceae). Transformed cladistic; character compatibility; branch and bound, and Farris-Wagner methods gave similar solutions in a cladistic study of Arillastrum, Angophora and Eucalyptus. These analyses, based on morphological characters, indicate that Eucalyptus is a monophyletic group and that its sister taxon is Angophora.
Within Eucalyptus , subgenera Blakella and Corymbia are sister taxa to all other groups; subgenera Monocalyptus, Idiogenes and Gaubaea form a monophyletic group with subgenus Monocalyptus sister to subgenera Idiogenes and Gaubaea ; subgenera Symphyomyrtus and Telocalyptus together also form a monophyletic group and, with Eucalyptus similis (subgenus Eudesmia group 4), are sister to the Monocalyptus group. Eucalyptus subgenus Telocalyptus (4 species), Eucalyptus subgenus Idiogenes (1 species) and Eucalyptus subgenus Gaubaea (2 species) should not be recognized as subgenera and some individual species need further examination. Eucalyptus subgenus Eudesmia is a paraphyletic group.
Some characters are identified as parallelisms, e.g. axillary inflorescences, sepaline operculum, bristle glands, and clustered anthers. A more congruent interpretation of the single operculum of Eucalyptus subgenus Monocalyptus as at least partly petaline rather than solely sepaline in origin is suggested.
The area relationships for the taxa are concordant with those derived from geological and climatological information. New Caledonia is sister area to Australia, and within Australia southwestern Australia is sister area to south-eastern and north-eastern Australia.  相似文献   

12.
Several species in the rodent genus Mus are used as model research organisms, but comparative studies of these mice have been hampered by the lack of a well-supported phylogeny. We used DNA sequences from six genes representing paternally, maternally, and biparentally inherited regions of the genome to infer phylogenetic relationships among 10 species of Mus commonly used in laboratory research. Our sample included seven species from the subgenus Mus; one species each from the subgenera Pyromys, Coelomys, and Nannomys; and representatives from three additional murine genera, which served as outgroups in the phylogenetic analyses. Although each of the six genes yielded a unique phylogeny, several clades were supported by four or more gene trees. Nodes that conflicted between trees were generally characterized by weak support for one or both of the alternative topologies, thus providing no compelling evidence that any individual gene, or part of the genome, was misleading with respect to the evolutionary history of these mice. Analysis of the combined data resulted in a fully resolved tree that strongly supports monophyly of the genus Mus, monophyly of the subgenus Mus, division of the subgenus Mus into Palearctic (M. musculus, M. macedonicus, M. spicilegus, and M. spretus) and Asian (M. cervicolor, M. cookii, and M. caroli) clades, monophyly of the house mice (M. m. musculus, "M. m. molossinus," M. m. castaneus, and M. m. domesticus), and a sister-group relationship between M. macedonicus and M. spicilegus. Other clades that were strongly supported by one or more gene partitions were not strongly supported by the combined data. This appears to reflect a localized homoplasy in one partition obscuring the phylogenetic signal from another, rather than differences in gene or genome histories.  相似文献   

13.
Phylogenetic analyses of 46 species of Iris, representing all subgenera and all sections except Regelia, Brevituba, and Monolepis, utilized matK gene and trnK intron sequence data. Sequence data show that Iris is paraphyletic because Belamcanda chinensis is resolved within the genus. The two largest subgenera, Iris and Limniris, are both resolved as polyphyletic. With the removal of section Hexapogon, subgenus Iris is weakly supported as monophyletic. Relationships within subgenus Limniris are more complex with the subgenus as currently circumscribed representing eight independent origins among the species included in this study. Several potential monophyletic groups are identified including subgenus Scorpiris, series Spuria (subgenus Limniris section Limniris), and a clade of section Limniris species from North America and Asia.  相似文献   

14.
Phylogenetic relationships among members of the Aphid genus Brachycaudus (Homoptera: Aphididae) were inferred from partial sequences of mitochondrial cytochrome B oxidase (CytB), two partial fragments of mitochondrial cytochrome C oxidase subunit I (COI) and the internal transcribed spacer II (ITS2) of ribosomal DNA. Twenty-nine species, with several specimens per species, were included, representing all the historically recognized species-groups and subgenera used in the genus except the monospecific subgenus Mordvilkomemor. Results indicate that the genus Brachycaudus is a well-supported monophyletic group. While our results validate the monophyly of subgenera Thuleaphis , Appelia and Brachycaudus s. str. , they reveal two discrepancies in the classical taxonomy. First, the monotypic subgenus Nevskyaphis does not appear valid. Second, the traditionally defined Acaudus subgenus is not monophyletic. On the other hand, our phylogenetic trees corroborate Andreev's recent definition of Acaudus and Brachycaudina. However, they clearly show that the subgenera Prunaphis , Nevskyaphis and Scrophulaphis as defined by this author do not form monophyletic groups. Our results also highlight a highly supported clade that has not been discussed by previous authors; this clade could form a new subgenus, the subgenus Nevskyaphis . Finally, our study shows that molecular data and morphology meet the same limits in delimiting species groups and species themselves. Species groups in which taxonomic treatment is difficult are polytomous. Furthermore, except for one node clustering Brachycaudus s. str . and Appelia, intersubgeneric relationships remain poorly resolved even when several genes are added to the phylogenetic analysis. These results, together with previous studies in other aphid groups suggest that diversification might have been a rapid process in aphids.  相似文献   

15.
Chloroplast DNA (cpDNA) restriction site variation was examined in 32 species, representing five subgenera, of Bromus (Poaceae). Thirty-seven phylogenetically informative restriction sites were detected. Cladistic analysis of the restriction site data produced a single most-parsimonious tree of 50 steps. The cladogram indicated two major clades within the genus. One clade included B. trinii of subgenus Neobromus and species of subgenus Ceratochloa. The other was composed of subgenera Festucaria, Stenobromus, and Bromus. Within the second clade, species of subgenus Festucaria appeared in three lineages. The second clade also contained an assemblage of species belonging to subgenera Stenobromus and Bromus in a separate lineage. There was very little resolution of relationships in this assemblage since several species appeared individually in separate lineages. The cpDNA phylogenetic hypothesis did not separate species of subgenera Stenobromus and Bromus into well-defined clades as circumscribed by morphology and cytogenetics. The cpDNA tree is in agreement with the phylogenetic scheme based on traditional data in that: 1) subgenera Neobromus and Ceratochloa were the first to diverge, while Bromus and Stenobromus diverged later; 2) within the genus Bromus species with small chromosomes are ancestral; and 3) subgenera Bromus and Stenobromus probably originated from similar ancestors as Festucaria. The tree based on cpDNA data does not support that: 1) subgenera Neobromus and Ceratochloa did not have a common origin; 2) subgenus Festucaria is monophyletic; and 3) subgenera Stenobromus and Bromus are distinct entities. The mean nucleotide sequence divergence values between pairs of subgenera ranged from p = 0.0 to 0.9. These values suggest that cpDNA evolution in Bromus is slow.  相似文献   

16.
Drosophila species are extensively used in biological research; yet, important phylogenetic relationships within the genus and with related genera remain unresolved. The combined data for three genes (Adh, Sod, and Gpdh) statistically resolves outstanding issues. We define the genus Drosophila inclusively so as to include Scaptomyza and Zaprionus (considered distinct genera in the taxonomy of Wheeler, 1981) but excluding Scaptodrosophila. The genus Drosophila so defined is monophyletic. The subgenus Sophophora (including the melanogaster, obscura, and willistoni groups) is monophyletic and the sister clade to all other Drosophila subgenera. The Hawaiian Drosophila (including Scaptomyza) is a monophyletic group, but the subgenus Drosophila is not monophyletic, because the immigrans group is more closely related to the subgenus Hirtodrosophila than to other species of the subgenus Drosophila, such as the virilis and repleta groups.  相似文献   

17.
Shre.  KK 《植物分类学报》1997,35(5):396-433
Cyananthus Wallich ex Bentham, the only genus of Campanulaceae with superior ovary, is revised to clarify infrageneric relationships and phylogeny of the genus. Evidence obtained from the comparative gross morphology, anatomy, palynology, and karyomorpho-logy recommends a new infrageneric classification of the genus, recognizing 23 species, belonging to two subgenera, four sections and four subsections. One subgenus(Subgen. Mi-cranthus), one section(Sect. Suffruticulosi) and two subsections(Subsect. Flavi and Sub-sect. Lichiangenses)are described as new taxa. New combinations at sectional (Sect. Annui) and subsectional(Subsect. Stenolobi) ranks are also proposed. The genus Cyananthus is strictly distributed in the high mountains of China(Xizang, Yunnan and Sichuan), extending to Bhutan, Nepal and India (Kumaon-Garhwal, Assam and Sikkim), with altitudinal ranges from 2500 ~ 5300 m. It is observed that 13 species are endemic to SW China and only three species are endemic to the Himalayas( two species in Ne  相似文献   

18.
Equisetum is a genus of 15 extant species that are the sole surviving representatives of the class Sphenopsida. The generally accepted taxonomy of Equisetum recognizes two subgenera: Equisetum and Hippochaete. Two recent phylogenetical studies have independently questioned the monophyly of subgenus Equisetum. Here, I use original (atpB) and published (rbcL, trnL-trnF, rps4) sequence data to investigate the phylogeny of the genus. Analyses of atpB sequences give an unusual topology, with E. bogotense branching within Hippochaete. A Bayesian analysis based on all available sequences yields a tree with increased resolution, favoring the sister relationships of E. bogotense with subgenus Hippochaete.  相似文献   

19.
Carpenter bees, genus Xylocopa Latreille, a group of bees found on all continents, are of particular interest to behavioral ecologists because of their utility for studies of the evolution of mating strategies and sociality. This paper presents phylogenetic analyses based on sequences of two mitochondrial genes cytochrome oxidase 1 and cytochrome b for 22 subgenera of Xylocopa. Maximum-parsimony and maximum-likelihood methods were used to infer phylogenetic relationships. The analyses resulted in three resolved clades of subgenera: a South American group (including the subgenera Stenoxylocopa, Megaxylocopa, and Neoxylocopa), a group including the subgenera Xylocopa s.s. and Ctenoxylocopa, and an Ethiopean group (including the subgenera Afroxylocopa, Mesotrichia, Alloxylocopa, Platynopoda, Hoploxylocopa, and Koptortosoma). The relationships between the 11 other subgenera and the resolved clades are unclear. Within the Ethiopian group we found a clear separation of the African and the Oriental taxa and apparent polyphyly of the subgenus Koptortosoma. Using an evolutionary rate for ants, we investigated whether Gondwana vicariance or more recent dispersal events could best explain the present-day distribution of subgenera. Although some taxa show divergences that approach Gondwanan breakup times, most divergences between geographic groups are too recent to support a vicariance hypothesis.  相似文献   

20.
Nectaries of 3 1 taxa belonging to 4 subgenera of the genus Fritillaria are investigated by scanning electron and light microscopy. In most of the material investigated nectary cells were smaller and narrower, and less irregular in shape than those of the neighbouring tissue of the tepals. Species belonging to subgenus Rhinopetalum clearly differ from all other species. Their nectaries are deeply impressed, and the slit-like nectary orifice is bordered by two lobes, at least in the lower part densely hairy. In F. gibbosa, E karelinii and F. ariana, the flowers are ± zygomorphic as the nectary on the upper tepal is more deeply depressed than the others, and the nectary lobes are rather broad and fringed. In E stenanthera and E bucharica, nectaries are equally impressed in all tepals and the nectary orifice is bordered by narrow, unfringed ridges. The unique structure of nectaries in all species of this subgenus supports its separation from Fritillaria into a separate genus (Rhinopetalum Fisch. ex Alexand.). In the other subgenera, the nectaries are less impressed, often ± flattish, and usually linear to lanceolate or ovate, except in subgenus Petzlium where they are ± circular. One complex in subgenus Fritillaria is markedly distinguished from the rest of the subgenus: in the F. crassifolia group, the nectaries consist of a long and linear raised ridge with a median furrow. F. crassifolia ssp. poluninii is raised to specific level, E poluninii (fix) Bakhshi Khaniki & K. Persson, stat. nov. It is concluded that data on nectary morphology support the latest classification of the genus Fritillaria into subgenera and informal groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号