首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.  相似文献   

2.
The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.  相似文献   

3.
The longstanding use of Drosophila as a model for cell and developmental biology has yielded an array of tools. Together, these techniques have enabled analysis of cell and developmental biology from a variety of methodological angles. Live imaging is an emerging method for observing dynamic cell processes, such as cell division or cell motility. Having isolated mutations in uncharacterized putative cell cycle proteins it became essential to observe mitosis in situ using live imaging. Most live imaging studies in Drosophila have focused on the embryonic stages that are accessible to manipulation and observation because of their small size and optical clarity. However, in these stages the cell cycle is unusual in that it lacks one or both of the gap phases. By contrast, cells of the pupal wing of Drosophila have a typical cell cycle and undergo a period of rapid mitosis spanning about 20 hr of pupal development. It is easy to identify and isolate pupae of the appropriate stage to catch mitosis in situ. Mounting intact pupae provided the best combination of tractability and durability during imaging, allowing experiments to run for several hours with minimal impact on cell and animal viability. The method allows observation of features as small as, or smaller than, fly chromosomes. Adjustment of microscope settings and the details of mounting, allowed extension of the preparation to visualize membrane dynamics of adjacent cells and fluorescently labeled proteins such as tubulin. This method works for all tested fluorescent proteins and can capture submicron scale features over a variety of time scales. While limited to the outer 20 µm of the pupa with a conventional confocal microscope, this approach to observing protein and cellular dynamics in pupal tissues in vivo may be generally useful in the study of cell and developmental biology in these tissues.  相似文献   

4.
Somatic stem cells can divide to generate additional stem cells (expansion) or more differentiated cell types (differentiation), which is fundamental for tissue formation during embryonic development and tissue homeostasis during adulthood 1. Currently, great efforts are invested towards controlling the switch of somatic stem cells from expansion to differentiation because this is thought to be fundamental for developing novel strategies for regenerative medicine 1,2. However, a major challenge in the study and use of somatic stem cell is that their expansion has been proven very difficult to control.Here we describe a system that allows the control of neural stem/progenitor cell (altogether referred to as NSC) expansion in the mouse embryonic cortex or the adult hippocampus by manipulating the expression of the cdk4/cyclinD1 complex, a major regulator of the G1 phase of the cell cycle and somatic stem cell differentiation 3,4. Specifically, two different approaches are described by which the cdk4/cyclinD1 complex is overexpressed in NSC in vivo. By the first approach, overexpression of the cell cycle regulators is obtained by injecting plasmids encoding for cdk4/cyclinD1 in the lumen of the mouse telencephalon followed by in utero electroporation to deliver them to NSC of the lateral cortex, thus, triggering episomal expression of the transgenes 5-8. By the second approach, highly concentrated HIV-derived viruses are stereotaxically injected in the dentate gyrus of the adult mouse hippocampus, thus, triggering constitutive expression of the cell cycle regulators after integration of the viral construct in the genome of infected cells 9. Both approaches, whose basic principles were already described by other video protocols 10-14, were here optimized to i) reduce tissue damage, ii) target wide portions of very specific brain regions, iii) obtain high numbers of manipulated cells within each region, and iv) trigger high expression levels of the transgenes within each cell. Transient overexpression of the transgenes using the two approaches is obtained by different means i.e. by natural dilution of the electroporated plasmids due to cell division or tamoxifen administration in Cre-expressing NSC infected with viruses carrying cdk4/cyclinD1 flanked by loxP sites, respectively 9,15.These methods provide a very powerful platform to acutely and tissue-specifically manipulate the expression of any gene in the mouse brain. In particular, by manipulating the expression of the cdk4/cyclinD1 complex, our system allows the temporal control of NSC expansion and their switch to differentiation, thus, ultimately increasing the number of neurons generated in the mammalian brain. Our approach may be critically important for basic research and using somatic stem cells for therapy of the mammalian central nervous system while providing a better understanding of i) stem cell contribution to tissue formation during development, ii) tissue homeostasis during adulthood, iii) the role of adult neurogenesis in cognitive functions, and perhaps, iv) better using somatic stem cells in models of neurodegenerative diseases.  相似文献   

5.

Background and Aims

Penium margaritaceum is a unicellular charophycean green alga with a unique bi-directional polar expansion mechanism that occurs at the central isthmus zone prior to cell division. This entails the focused deposition of cell-wall polymers coordinated by the activities of components of the endomembrane system and cytoskeletal networks. The goal of this study was to elucidate the structural organization of the cortical cytoskeletal network during the cell cycle and identify its specific functional roles during key cell-wall developmental events: pre-division expansion and cell division.

Methods

Microtubules and actin filaments were labelled during various cell cycle phases with an anti-tubulin antibody and rhodamine phalloidin, respectively. Chemically induced disruption of the cytoskeleton was used to elucidate specific functional roles of microtubules and actin during cell expansion and division. Correlation of cytoskeletal dynamics with cell-wall development included live cell labelling with wall polymer-specific antibodies and electron microscopy.

Key Results

The cortical cytoplasm of Penium is highlighted by a band of microtubules found at the cell isthmus, i.e. the site of pre-division wall expansion. This band, along with an associated, transient band of actin filaments, probably acts to direct the deposition of new wall material and to mark the plane of the future cell division. Two additional bands of microtubules, which we identify as satellite bands, arise from the isthmus microtubular band at the onset of expansion and displace toward the poles during expansion, ultimately marking the isthmus of future daughter cells. Treatment with microtubule and actin perturbation agents reversibly stops cell division.

Conclusions

The cortical cytoplasm of Penium contains distinct bands of microtubules and actin filaments that persist through the cell cycle. One of these bands, termed the isthmus microtubule band, or IMB, marks the site of both pre-division wall expansion and the zone where a cross wall will form during cytokinesis. This suggests that prior to the evolution of land plants, a dynamic, cortical cytoskeletal array similar to a pre-prophase band had evolved in the charophytes. However, an interesting variation on the cortical band theme is present in Penium, where two satellite microtubule bands are produced at the onset of cell expansion, each of which is destined to become an IMB in the two daughter cells after cytokinesis. These unique cytoskeletal components demonstrate the close temporal control and highly coordinated cytoskeletal dynamics of cellular development in Penium.  相似文献   

6.
Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.  相似文献   

7.
Land plants have evolved a cuticle-bearing epidermis to protect themselves from environmental stress and pathogen attack. Despite its important role, little is known about the molecular mechanisms regulating shoot epidermal cell identity. In a recent study, we found that the Arabidopsis thaliana ATML1 gene is possibly a master regulator of shoot epidermal cell fate. We revealed that ATML1 has the ability to confer shoot epidermis-related traits to non-epidermal cells of the seedlings. These data are consistent with the previous loss-of-function mutant analyses, which implied a positive role of ATML1 in epidermal cell differentiation. Importantly, ectopic epidermal cells induced in ATML1-overexpressing lines provide a novel tool to assess the intrinsic properties of epidermal cells and to study epistatic interactions among genes involved in epidermal/mesophyll differentiation. Using this system, we obtained data revealing that ATML1 negatively influenced mesophyll cell fate. In addition, we provided a working model of how division planes in epidermal cells are determined.  相似文献   

8.
9.
10.
To study neuronal networks in terms of their function in behavior, we must analyze how neurons operate when each behavioral pattern is generated. Thus, simultaneous recordings of neuronal activity and behavior are essential to correlate brain activity to behavior. For such behavioral analyses, the fruit fly, Drosophila melanogaster, allows us to incorporate genetically encoded calcium indicators such as GCaMP1, to monitor neuronal activity, and to use sophisticated genetic manipulations for optogenetic or thermogenetic techniques to specifically activate identified neurons2-5. Use of a thermogenetic technique has led us to find critical neurons for feeding behavior (Flood et al., under revision). As a main part of feeding behavior, a Drosophila adult extends its proboscis for feeding6 (proboscis extension response; PER), responding to a sweet stimulus from sensory cells on its proboscis or tarsi. Combining the protocol for PER7 with a calcium imaging technique8 using GCaMP3.01, 9, I have established an experimental system, where we can monitor activity of neurons in the feeding center – the suboesophageal ganglion (SOG), simultaneously with behavioral observation of the proboscis. I have designed an apparatus ("Fly brain Live Imaging and Electrophysiology Stage": "FLIES") to accommodate a Drosophila adult, allowing its proboscis to freely move while its brain is exposed to the bath for Ca2+ imaging through a water immersion lens. The FLIES is also appropriate for many types of live experiments on fly brains such as electrophysiological recording or time lapse imaging of synaptic morphology. Because the results from live imaging can be directly correlated with the simultaneous PER behavior, this methodology can provide an excellent experimental system to study information processing of neuronal networks, and how this cellular activity is coupled to plastic processes and memory.  相似文献   

11.
Embryonic segmentation in clitellate annelids (oligochaetes and leeches) is a cell lineage-driven process. Embryos of these worms generate a posterior growth zone consisting of 5 bilateral pairs of identified segmentation stem cells (teloblasts), each of which produces a column of segmental founder cells (blast cells). Each blast cell generates a lineage-specific clone via a stereotyped sequence of cell divisions, which are typically unequal both in terms of the relative size of the sister cells and in the progeny to which they give rise. In two of the five teloblast lineages, including the ventralmost, primary neurogenic (N) lineage, the blast cells adopt two different fates, designated nf and ns, in exact alternation within the blast cell column; this is termed a grandparental stem cell lineage. To lay groundwork for investigating unequal divisions in the leech Helobdella, we have surveyed the Helobdella robusta genome for genes encoding orthologs of the Rho family GTPases, including the rho, rac and cdc42 sub-families, which are known to be involved in multiple processes involving cell polarization in other systems. We find that, in contrast to most other known systems the Helobdella genome contains two cdc42 orthologs, one of which is expressed at higher levels in the ns blast cells than in nf blast cells. We also demonstrate that the asymmetric divisions of the primary nf and ns blast cells are regulated by the polarized distribution of the activated form of the Cdc42 protein, rather than by the overall level of expression. Our results provide the first molecular insights into the mechanisms of the grandparental stem cell lineages, a novel, yet evolutionarily ancient stem cell division pattern. Our results also provide an example in which asymmetries in the distribution of Cdc42 activity, rather than in the overall levels of Cdc42 protein, are important regulating unequal divisions in animal cells.  相似文献   

12.
Drosophila melanogaster has emerged as an important model system for the study of both stem cell biology and aging. Much is known about how molecular signals from the somatic niche regulate adult stem cells in the germline, and a variety of environmental factors as well as single point mutations have been shown to affect lifespan. Relatively little is known, however, about how aging affects specific populations of cells, particularly adult stem cells that may be susceptible to aging-related damage. Here we show that male germline stem cells (GSCs) are lost from the stem cell niche during aging, but are efficiently replaced to maintain overall stem cell number. We also find that the division rate of GSCs slows significantly during aging, and that this slowing correlates with a reduction in the number of somatic hub cells that contribute to the stem cell niche. Interestingly, slowing of stem cell division rate was not observed in long-lived methuselah mutant flies. We finally investigated whether two mechanisms that are thought to be used in other adult stem cell types to minimize the effects of aging were operative in this system. First, in many adult tissues stem cells exhibit markedly fewer cell cycles relative to transit-amplifying cells, presumably protecting the stem cell pool from replication-associated damage. Second, at any given time not all stem cells actively cycle, leading to 'clonal succession' from the reserve pool of initially quiescent stem cells. We find that neither of these mechanisms is used in Drosophila male GSCs.  相似文献   

13.
Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment.  相似文献   

14.
During development, neural progenitor cells or neuroblasts generate a great intra- and inter-segmental diversity of neuronal and glial cell types in the nervous system. In thoracic segments of the embryonic central nervous system of Drosophila, the neuroblast NB6-4t undergoes an asymmetric first division to generate a neuronal and a glial sublineage, while abdominal NB6-4a divides once symmetrically to generate only 2 glial cells. We had earlier reported a critical function for the G1 cyclin, CyclinE (CycE) in regulating asymmetric cell division in NB6-4t. Here we show that (i) this function of CycE is independent of its role in cell cycle regulation and (ii) the two functions are mediated by distinct domains at the protein level. Results presented here also suggest that CycE inhibits the function of Prospero and facilitates its cortical localization, which is critical for inducing stem cell behaviour, i.e. asymmetric cell division of NB6-4t. Furthermore our data imply that CycE is required for the maintenance of stem cell identity of most other neuroblasts.  相似文献   

15.
The adult mammalian intestine has long been used as a model to study adult stem cell function and tissue renewal as the intestinal epithelium is constantly undergoing self-renewal throughout adult life. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells located in the crypt. The development of this self-renewal system is, however, poorly understood. A number of studies suggest that the formation/maturation of the adult intestine is conserved in vertebrates and depends on endogenous thyroid hormone (T3). In amphibians such as Xenopus laevis, the process takes place during metamorphosis, which is totally dependent upon T3 and resembles postembryonic development in mammals when T3 levels are also high. During metamorphosis, the larval epithelial cells in the tadpole intestine undergo apoptosis and concurrently, adult epithelial stem/progenitor cells are formed de novo, which subsequently lead to the formation of a trough-crest axis of the epithelial fold in the frog, resembling the crypt-villus axis in the adult mammalian intestine. Here we will review some recent molecular and genetic studies that support the conservation of the development of the adult intestinal stem cells in vertebrates. We will discuss the mechanisms by which T3 regulates this process via its nuclear receptors.  相似文献   

16.
Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species.  相似文献   

17.
A key question in developmental biology addresses the mechanism of asymmetric cell division. Asymmetry is crucial for generating cellular diversity required for development in multicellular organisms. As one of the potential mechanisms, chromosomally borne epigenetic difference between sister cells that changes mating/cell type has been demonstrated only in the Schizosaccharomyces pombe fission yeast. For technical reasons, it is nearly impossible to determine the existence of such a mechanism operating during embryonic development of multicellular organisms. Our work addresses whether such an epigenetic mechanism causes asymmetric cell division in the recently sequenced fission yeast, S. japonicus (with 36% GC content), which is highly diverged from the well-studied S. pombe species (with 44% GC content). We find that the genomic location and DNA sequences of the mating-type loci of S. japonicus differ vastly from those of the S. pombe species. Remarkably however, similar to S. pombe, the S. japonicus cells switch cell/mating type after undergoing two consecutive cycles of asymmetric cell divisions: only one among four “granddaughter” cells switches. The DNA-strand–specific epigenetic imprint at the mating-type locus1 initiates the recombination event, which is required for cellular differentiation. Therefore the S. pombe and S. japonicus mating systems provide the first two examples in which the intrinsic chirality of double helical structure of DNA forms the primary determinant of asymmetric cell division. Our results show that this unique strand-specific imprinting/segregation epigenetic mechanism for asymmetric cell division is evolutionary conserved. Motivated by these findings, we speculate that DNA-strand–specific epigenetic mechanisms might have evolved to dictate asymmetric cell division in diploid, higher eukaryotes as well.  相似文献   

18.
Asymmetric cell division of Drosophila neural stem cells or neuroblasts is an important process which gives rise to two different daughter cells, one of which is the stem cell itself and the other, a committed or differentiated daughter cell. During neuroblast asymmetric division, atypical Protein Kinase C (aPKC) activity is tightly regulated; aberrant levels of activity could result in tumorigenesis in third instar larval brain. We identified clueless (clu), a genetic interactor of parkin (park), as a novel regulator of aPKC activity. It preferentially binds to the aPKC/Bazooka/Partition Defective 6 complex and stabilizes aPKC levels. In clu mutants, Miranda (Mira) and Numb are mislocalized in small percentages of dividing neuroblasts. Adult mutants are short-lived with severe locomotion defects. Clu promotes tumorigenesis caused by loss of function of lethal(2) giant larvae (lgl) in the larval brain. Removal of clu in lgl mutants rescues Mira and Numb mislocalization and restores the enlarged brain size. Western blot analyses indicate that the rescue is due to the down-regulation of aPKC levels in the lgl clu double mutant. Interestingly, the phenotype of the park mutant, which causes Parkinson's Disease-like symptoms in adult flies, is reminiscent of that of clu in neuroblast asymmetric division. Our study provides the first clue for the potential missing pathological link between temporally separated neurogenesis and neurodegeneration events; the minor defects during early neurogenesis could be a susceptible factor contributing to neurodegenerative diseases at later stages of life.  相似文献   

19.
Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. ApcMin/+ mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.  相似文献   

20.
Primary neurogenesis is a dynamic and complex process during embryonic development that sets up the initial layout of the central nervous system. During this process, a portion of neural stem cells undergo differentiation and give rise to the first populations of differentiated primary neurons within the nascent central nervous system. Several vertebrate model organisms have been used to explore the mechanisms of neural cell fate specification, patterning, and differentiation. Among these is the African clawed frog, Xenopus, which provides a powerful system for investigating the molecular and cellular mechanisms responsible for primary neurogenesis due to its rapid and accessible development and ease of embryological and molecular manipulations. Here, we present a convenient and rapid method to observe the different populations of neuronal cells within Xenopus central nervous system. Using antibody staining and immunofluorescence on sections of Xenopus embryos, we are able to observe the locations of neural stem cells and differentiated primary neurons during primary neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号