首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Objective

The endothelial protein C-receptor (EPCR) is an endothelial transmembrane protein that binds protein C and activated protein C (APC) with equal affinity, thereby facilitating APC formation. APC has anticoagulant, antiapoptotic and antiinflammatory properties. Soluble EPCR, released by the endothelium, may bind activated neutrophils, thereby modulating cell adhesion. EPCR is therefore considered as a possible link between the anticoagulant properties of protein C and the inflammatory response of neutrophils. In the present study, we aimed to provide proof of concept for a direct binding of EPCR to the β2 –integrin Mac-1 on monocytic cells under static and physiological flow conditions.

Measurements and Main Results

Under static conditions, human monocytes bind soluble EPCR in a concentration dependent manner, as demonstrated by flow cytometry. Binding can be inhibited by specific antibodies (anti-EPCR and anti-Mac-1). Specific binding was confirmed by a static adhesion assay, where a transfected Mac-1 expressing CHO cell line (Mac-1+ cells) bound significantly more recombinant EPCR compared to Mac-1+ cells blocked by anti-Mac-1-antibody and native CHO cells. Under physiological flow conditions, monocyte binding to the endothelium could be significantly blocked by both, anti-EPCR and anti-Mac-1 antibodies in a dynamic adhesion assay at physiological flow conditions. Pre-treatment of endothelial cells with APC (drotrecogin alfa) diminished monocyte adhesion significantly in a comparable extent to anti-EPCR.

Conclusions

In the present study, we demonstrate a direct binding of Mac-1 on monocytes to the endothelial protein C receptor under static and flow conditions. This binding suggests a link between the protein C anticoagulant pathway and inflammation at the endothelium side, such as in acute vascular inflammation or septicaemia.  相似文献   

2.
We have shown that the 12/15-lipoxygenase (12/15-LO) product 12S-hydroxyeicosatetraenoic acid increases monocyte adhesion to human endothelial cells (EC) in vitro. Recent studies have implicated 12/15-LO in mediating atherosclerosis in mice. We generated transgenic mice on a C57BL/6J (B6) background that modestly overexpressed the murine 12/15-LO gene (designated LOTG). LOTG mice had 2.5-fold elevations in levels of 12S-hydroxyeicosatetraenoic acid and a 2-fold increase in expression of 12/15-LO protein in vivo. These mice developed spontaneous aortic fatty streak lesions on a chow diet. Thus, we examined effects of 12/15-LO expression on early events leading to atherosclerosis in these mice. We found that, under basal unstimulated conditions, LOTG EC bound more monocytes than B6 control EC (18 +/- 2 versus 7 +/- 1 monocytes/field, respectively; p < 0.0001). Inhibition of 12/15-LO activity in LOTG EC using a 12/15-LO ribozyme completely blocked monocyte adhesion in LOTG mice. Thus, 12/15-LO activity is required for monocyte/EC adhesion in the vessel wall. Expression of ICAM-1 in aortic endothelia of LOTG mice was increased severalfold. VCAM-1 expression was not changed. In a series of blocking studies, antibodies to alpha(4) and beta(2) integrins in WEHI monocytes blocked monocyte adhesion to both LOTG and B6 control EC. Inhibition of ICAM-1, VCAM-1, and connecting segment-1 fibronectin in EC significantly reduced adhesion of WEHI monocytes to LOTG EC. In summary, these data indicate that EC from LOTG mice are "pre-activated" to bind monocytes. Monocyte adhesion in LOTG mice is mediated through beta(2) integrin and ICAM-1 interactions as well as through VLA-4 and connecting segment-1 fibronectin/VCAM-1 interactions. Thus, 12/15-LO mediates monocyte/EC interactions in the vessel wall in atherogenesis at least in part through molecular regulation of expression of endothelial adhesion molecules.  相似文献   

3.
Leukocyte adherence is mediated by a superfamily of glycoproteins denoted LFA-1 (the lymphocyte function-associated antigen-1), Mac-1 (macrophage antigen-1) and p150,95. The relative importance of these in mediating human monocyte adherence to endothelium, and the biochemical mechanisms which modulate these events, are not understood. In this report, the role of protein kinase C (pkC) in regulating human monocyte adherence to endothelial cells has been investigated. Addition of phorbol 12,13-dibutyrate (PDBu), which specifically stimulates pkC, caused a dose-dependent increase in their adherence to monolayers of bovine aortic endothelial cells. 4 alpha-phorbol didecanoate (4 alpha-PDD), a structural analogue of PDBu which does not stimulate pkC, failed to increase monocyte adhesion. PDBu also produced a dose-dependent increase in the expression of both Mac-1 and p150,95. The pkC-stimulated adherence of monocytes to endothelium was inhibited by the presence of a monoclonal antibody to Mac-1, while monoclonal antibodies to p150,95 and LFA-1 did not influence adherence. It is concluded that monocyte adherence to endothelial cells is regulated through a pkC-dependent mechanism; moreover, this process is mediated primarily via the Mac-1 adhesion glycoprotein.  相似文献   

4.
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.  相似文献   

5.
Increased expression of endothelial adhesion molecules, high levels of the monocyte chemoattractant protein-1 (MCP-1) and enhanced VLA4 integrin/VCAM-1 and CCR-2/MCP-1 interactions are initial steps in vascular inflammation. We sought to determine whether relaxin, a potent vasodilatory and anti-fibrotic agent, mitigates these early events compromising endothelial integrity. The effect of relaxin coincubation on the TNF-α-stimulated expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin; the MCP-1 expression by human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HAoSMC); as well as on direct monocyte–endothelium cell adhesion was quantified by ELISA or adhesion assay. CCR-2 and PECAM expression on HUVEC and THP-1 monocytes was investigated by FACS analysis. Relaxin treatment suppressed significantly TNF-α-induced upregulation of VCAM-1 and PECAM, CCR-2, and MCP-1 levels and direct monocyte adhesion to HUVEC. Our findings identify relaxin as a promising inhibitory factor in early vascular inflammation. By attenuating the upregulation of VCAM-1, key adhesion molecule in early vascular inflammation, and of MCP-1, a chemokine pivotal to monocyte recruitment, relaxin decreased initial monocyte–endothelium contact. This may be of relevance for the prevention and treatment of atherosclerosis and of other pro-inflammatory states.  相似文献   

6.
During the pathogenesis of atherosclerosis, adhesion of monocytes to vascular endothelium and subsequent migration across the endothelium has been recognized as a key process in the chronic inflammatory response in atherosclerosis. As type 2 diabetes is closely associated with the pathogenesis of atherosclerosis, we investigated whether monocyte adhesion and migration were affected by insulin. We found that insulin activated Akt and induced subsequent migration in THP-1. However, glucose and insulin-like growth factor-1, which is a growth factor that is structurally similar to insulin, were not effective. Insulin-dependent migration of THP-1 was blocked by inhibition of PI3K or Akt and by silencing of Akt1. Insulin-dependent migration of bone marrow-derived monocytic cells (BDMCs) was attenuated by inhibition of PI3K and Akt. In addition, BDMCs from Akt1−/− mice showed defects in insulin-dependent migration. Stimulation of THP-1 with insulin caused adhesion with human vein endothelial cells (HUVECs) that was blocked by silencing of Akt1. However, stimulation of HUVECs did not cause adhesion with THP-1. Moreover, BDMCs from Akt1−/− mice showed defects in insulin-dependent adhesion with HUVECs. Insulin induced surface expression of Mac-1, and neutralization of Mac-1 blocked insulin-induced adhesion of THP-1 as well as BDMCs. Surface expression of Mac-1 was blocked in THP-1 with silenced Akt1, and in BDMCs isolated from mice lacking Akt1. Finally, trans-endothelial migration of THP-1 and BDMCs was blocked by Mac-1-neutralizing antibody, in THP-1 with silenced Akt1 and in BDMCs from Akt1−/− mice. These results suggest that insulin stimulates monocyte trans-endothelial migration through Akt-dependent surface expression of Mac-1, which may be part of the atherogenesis in type 2 diabetes.  相似文献   

7.
Human cytomegalovirus (HCMV) pathogenesis is dependent on the hematogenous spread of the virus to host tissue. While data suggest that infected monocytes are required for viral dissemination from the blood to the host organs, infected endothelial cells are also thought to contribute to this key step in viral pathogenesis. We show here that HCMV infection of endothelial cells increased the recruitment and transendothelial migration of monocytes. Infection of endothelial cells promoted the increased surface expression of cell adhesion molecules (intercellular cell adhesion molecule 1, vascular cell adhesion molecule 1, E-selectin, and platelet endothelial cell adhesion molecule 1), which were necessary for the recruitment of na?ve monocytes to the apical surface of the endothelium and for the migration of these monocytes through the endothelial cell layer. As a mechanism to account for the increased monocyte migration, we showed that HCMV infection of endothelial cells increased the permeability of the endothelium. The cellular changes contributing to the increased permeability and increased na?ve monocyte transendothelial migration include the disruption of actin stress fiber formation and the decreased expression of lateral junction proteins (occludin and vascular endothelial cadherin). Finally, we showed that the migrating monocytes were productively infected with the virus, documenting that the virus was transferred to the migrating monocyte during passage through the lateral junctions. Together, our results provide evidence for an active role of the infected endothelium in HCMV dissemination and pathogenesis.  相似文献   

8.
Implantation of stents into stenosed arteries helps to restore normal blood flow in ischemic organs. However, limited biocompatibility of the applied medical steel can cause acute thrombosis and long-term restenosis. Adhesion of monocytes to stent metal may participate in those acute and long-term complications of stent placement. Based on described prominent electrochemical properties of the interaction between the monocyte integrin receptor Mac-1 and its various ligands, we hypothesized, that this receptor is a central mediator of monocyte adhesion to stent metal and that semiconductor coating of medical steel reduces monocyte adhesion. Adhesion of monocytes on L-316 stainless steel was directly evaluated by light microscopy. Mac-1 could be identified as mediator of monocyte adhesion, since cell adhesion could be blocked by anti-Mac-1-antibodies, including the cross-reacting anti-GPIIb/IIIa antibody fragment abciximab. To further prove the central role of Mac-1, two CHO cell lines were generated expressing recombinant Mac-1 either as wild type, resulting in a low affinity receptor, or mutant with a GFFKR deletion of the alpha(M) subunit, resulting in a high affinity receptor. Indeed, adhesion was specific for Mac-1 and dependent on the affinity state of this integrin. Finally, we could demonstrate that Mac-1-mediated adhesion of monocytes to stents can be significantly inhibited by silicon carbide coating of the stent metal. In conclusion, the integrin Mac-1 and its affinity state could be identified as major mediators of monocyte adhesion on medical steel. As therapeutic strategies, the blockade of Mac-1 by antibodies or silicon carbide coating of steel inhibits monocyte adhesion on stents.  相似文献   

9.
Interactions between monocytes and endothelial cells play an important role in the pathogenesis of atherosclerosis, and monocyte adhesion to arterial endothelium is one of the earliest events in atherogenesis. Work presented in this study examined human monocyte adherence to primary human aortic endothelial cells following monocyte infection with Chlamydia pneumoniae, an intracellular pathogen associated with atherosclerosis by a variety of sero-epidemiological, pathological and functional studies. Infected monocytes exhibited enhanced adhesion to aortic endothelial cells in a time- and dose-dependent manner. Pre-treatment of C. pneumoniae with heat did not effect the organism's capacity to enhance monocyte adhesion, suggesting that heat-stable chlamydial antigens such as chlamydial lipopolysaccharide (cLPS) mediated monocyte adherence. Indeed, treatment of monocytes with cLPS was sufficient to increase monocyte adherence to endothelial cells, and increased adherence of infected or cLPS-treated monocytes could be inhibited by the LPS antagonist lipid X. Moreover, C. pneumoniae-induced adherence could be inhibited by incubating monocytes with a mAb specific to the human beta 2-integrin chain, suggesting that enhanced adherence resulted from increased expression of these adhesion molecules. These data show that C. pneumoniae can enhance the capacity of monocytes to adhere to primary human aortic endothelial cells. The enhanced adherence exhibited by infected monocytes may increase monocyte residence time in vascular sites with reduced wall shear stress and promote entry of infected cells into lesion-prone locations.  相似文献   

10.
The CD11/18 (LFA-1, Mac-1) molecules participate in neutrophil adhesion to cultured endothelium in vitro and are critical for effective neutrophil localization into inflamed tissues in vivo. More recently, the MEL-14 Ag, which was first defined as a lymphocyte homing receptor, has also been implicated in inflammatory neutrophil extravasation. Here we compare the regulation and function of these adhesion molecules on neutrophils during the in vivo inflammatory response. The MEL-14 Ag is expressed at high levels on bone marrow and peripheral blood neutrophils, but is lost on neutrophils isolated from the thioglycollate-inflamed peritoneal cavity. In contrast, Mac-1 is up-regulated on inflammatory neutrophils and little change is seen in the level of LFA-1 expression. In vitro activation of bone marrow neutrophils with PMA or leukotriene B4 results in a dose dependent increase in Mac-1 and decrease in MEL-14 Ag expression within 1 h after treatment, thus reflecting what is found during inflammation in vivo. Neutrophils activated in vitro or in vivo (MEL-14Low, Mac-1Hi) do not home to inflammatory sites in vivo, correlating with the loss of the MEL-14 Ag and the increased Mac-1 expression. Anti-LFA-1, anti-Mac-1, or MEL-14 antibody given i.v. suppress neutrophil accumulation within the inflamed peritoneum (38%, 30%, and 37% of medium control, respectively) without affecting the levels of circulating neutrophils. However, when FITC-labeled cells are precoated with the mAb and injected i.v., only MEL-14 inhibits extravasation into the inflamed peritoneum (25% of medium control). Finally, in ex vivo adhesion assays of neutrophil binding to high endothelial venules in inflamed-lymph node frozen sections MEL-14 inhibits greater than 90%. anti-LFA-1 20 to 30% and anti-Mac-1 less than 10% of the binding of bone marrow neutrophils to inflamed-lymph node high endothelial venules. These results confirm that both the MEL-14 antigen and Mac-1/LFA-1 are important in neutrophil localization to inflamed sites in vivo, but suggest that their roles in endothelial cell interactions are distinct.  相似文献   

11.
Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.  相似文献   

12.
Endothelial dysfunction represents one of the earliest events in vascular atherogenesis. Proinflammatory stimuli activate endothelial cells, resulting in an increased expression of adhesion molecules and chemoattractants that mediate leukocyte and monocyte adhesion, migration, and homing. High density lipoproteins (HDL) inhibit endothelial cell expression of adhesion molecules in response to proinflammatory stimuli. In the present work, we demonstrate that the modification of HDL(3) (the major and the most antiatherogenic HDL subfraction) by 15-lipoxygenase (15-LO), an enzyme overexpressed in the atherosclerotic lesions, impairs the anti-inflammatory activity of this lipoprotein. The 15-LO-modified HDL(3) failed to inhibit TNF-alpha-mediated mRNA and protein induction of adhesion molecules and MCP-1 in several models of human endothelial cells, and promoted inflammatory response by up-regulating the expression of such mediators of inflammation and by increasing monocyte adhesion to endothelial cells. Moreover, 15-LO-modified HDL(3) were unable to contrast the formation of reactive oxygen species in cells incubated with TNF-alpha, and increased the reactive oxygen species content in unstimulated cells. Activation of NF-kappaB and AP-1 was mainly involved in the expression of adhesion molecules and MCP-1 induced by 15-LO-HDL(3). Altogether, these results demonstrate that enzymatic modification induced by 15-LO impaired the protective role of HDL(3), generating a dysfunctional lipoprotein endowed with proinflammatory characteristics.  相似文献   

13.
The adherence of blood leukocytes to vascular endothelium precedes their diapedesis into the extravascular space. These processes require the expression of adherence glycoproteins on the cell surface of the leukocyte. The relative importance of these adherence molecules is so far poorly understood. However, there is evidence to suggest that a disparity exists between the surface receptor expression of these glycoproteins and leukocyte adherence to vascular endothelial cells in culture. We have investigated the importance of each of the adhesion glycoproteins CD11a, CD11b, and CD11c in mediating the adherence of human monocytes to endothelial cells in culture. We have also investigated the chronological relationship between changes in monocyte adherence to endothelial cells and the surface expression of CD11a, CD11b, and CD11c following stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP). The increase in adherence occurred within 1 minute, but declined if monocytes were preincubated with fMLP for up to 30 minutes. The surface expression of adherence molecules demonstrated a significant increase in CD11a and CD11b in the presence of fMLP after 10 min and was maintained while monocyte adherence to endothelium declined. These changes in surface receptor expression were quantitated using an immunolabeling technique. It is suggested that fMLP stimulation of monocyte adherence is unlikely to be solely dependent on increased surface receptor expression of adhesion molecules.  相似文献   

14.
The expression of the following cell adhesion molecules, their β1 and β2 integrin ligands and the cytokine tumour necrosis factor-α (TNF-α) was investigated by light and electron microscope immunohistochemistry in the liver tissue in 20 patients with colorectal and gastric cancer also presenting with liver metastases: intercellular adhesion molecule-1 (ICAM-1), vascular endothelial adhesion molecule-1 (VCAM-1), E-selectin, leucocyte function-associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1), and very late antigen-4 (VLA-4). We have found a parallel enhancement of the adhesion molecules and of TNF-α in liver sinusoids surrounding metastases. The expression of ICAM-1 was enhanced on sinusoidal cells in all zones of the acinus. VCAM-1 immune reactivity was diffuse but less intensive in the lobule. E-selectin expression was observed in sinusoidal cells attached to metastases. In tumour metastases the expression of ICAM-1, VCAM-1, and E-selectin was visible on the tumour vascular endothelium. Tumour infiltrating host cells sowing positive immunoreactivity for ICAM-1, VCAM-1, LFA-1, Mac-1, and VLA-4 were located mainly at the boundary between liver parenchyma and the metastasis. At the ultrastructural level, ICAM-1-positive immune deposits were observed on the cellular membrane and in some transport vesicles of gastric metastatic cells. Further, the expression of all adhesion molecules was confirmed to sinusoidal endothelial cells and tumour vessels. It is concluded that the enhanced expression of adhesion molecules in liver sinusoids could be a marker for the assessment of the ability of sinusoidal endothelial cells to control the recruitment of leukocytes and monocytes to the metastatic site. They could also direct the adhesion of new circulating tumour cells to sinusoidal endothelium.  相似文献   

15.
16.
Atherosclerosis is a major complication of diabetes. Up to 16 weeks of age, the db/db mouse is insulin-resistant and hyperglycemic and is a good model of Type 2 diabetes. After approximately 16 weeks of age, the mice develop pancreatic beta cell failure that can progress to a Type 1 diabetes phenotype. We have previously shown that glucose increases production of endothelial 12/15 lipoxygenase (12/15LO) products in vitro. In young 10-week-old Type 2 diabetic db/db mice, we found significant elevations in levels of urinary 12/15LO products, 12S-hydroxyeicosatetraenoic acid (12S-HETE) and 13S-hydroxyoctadecaenoic acid (13S-HODE) in vivo compared with C57BLKS/J mice. Using isolated primary aortic endothelial cells (ECs) from db/db mice and WEHI78/24 mouse monocyte cells in static adhesion assays, we found increased WEHI monocyte adhesion to db/db ECs (14 +/- 2 monocytes/field for db/db ECs versus 4 +/- 1 monocytes/field for C57BLKS/J ECs, p < 0.002). Thus, ECs from db/db mice appear to be "pre-activated" to bind monocytes. Analysis of db/db ECs revealed a 2-fold elevation in 12/15LO protein compared with C57BLKS/J EC. To determine that 12/15LO products were responsible for the increased monocyte adhesion observed with db/db ECs, we inhibited expression of murine 12/15LO using either an adenovirus expressing a ribozyme to 12/15LO (AdRZ) or with the 12/15LO inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate. Treatment of db/db ECs for 48 h with AdRZ or 4 h with 10 microm cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate significantly reduced monocyte adhesion to db/db endothelium (p < 0.009). Thus, inhibition of the murine 12/15LO in db/db mice significantly reduced monocyte/endothelial interactions. We also found that adhesion of monocytes to diabetic db/db ECs was mediated by interactions of alpha4beta1 integrin on monocytes with endothelial vascular cell adhesion molecule 1 and connecting segment 1 fibronectin and interactions of beta2 integrins with endothelial intercellular adhesion molecule 1. In summary, regulation of the 12/15LO pathway is important for mediating early vascular changes in diabetes. Modulation of the 12/15LO pathway in the vessel wall may provide therapeutic benefit for early vascular inflammatory events in diabetes.  相似文献   

17.
Transendothelial leukocyte migration is a major aspect of the innate immune response. It is essential in repair and regeneration of damaged tissues and is regulated by multiple cell adhesion molecules (CAMs) including members of the immunoglobulin (Ig) superfamily. Activated leukocyte cell adhesion molecule (ALCAM/CD166) is an Ig CAM expressed by activated monocytes and endothelial cells. Hitherto, the functional relevance of ALCAM expression by endothelial cells and activated monocytes remained unknown. In this report, we demonstrate soluble recombinant human ALCAM significantly inhibited the rate of transendothelial migration of monocyte cell lines. Direct involvement of ALCAM in transendothelial migration was evident from the robust inhibition of this process by ALCAM blocking antibodies. However, soluble recombinant ALCAM had no impact on monocyte migration or adhesion to endothelium. Localization of ALCAM specifically at cell-cell junctions in endothelial cells supported its role in transendothelial migration. This study is the first to localize ALCAM to endothelial cell junctions and demonstrate a functional relevance for co-expression of ALCAM by activated monocytes and endothelial cells.  相似文献   

18.
Human monocyte adhesion to vascular endothelium is an important transitional event in mononuclear phagocyte development. The molecular mechanism involved in monocyte adhesion to endothelial cells was studied using purified human monocytes and a panel of monoclonal antibodies (MAb). The purified human monocytes were phenotypically characterized and expressed relatively low levels of HLA class II antigens. The monocytes were labeled with Indium-111 to provide high specific activity and a sensitive measure of adhesion. Using this radionuclide adhesion assay, monocytes demonstrated consistent and reproducible adhesion to a confluent monolayer of human umbilical vein-derived endothelial cells. To identify the cell surface molecules involved in human monocyte-endothelial cell adhesion, 15 MAb to 11 monocyte surface structures were used to attempt to inhibit adhesion. MAb recognizing 10 monocyte cell surface molecules did not inhibit adhesion. In contrast, MAb recognizing the alpha and beta subunits of LFA-1 (lymphocyte function-associated) significantly inhibited monocyte adhesion to endothelial cells. Monocyte adhesion was comparably inhibited by F(ab')2 and intact MAb. Significant inhibition was observed at 5 micrograms/ml of anti-LFA-1 MAb. These results indicate that the alpha and beta subunits of the LFA-1 membrane molecule are involved in human monocyte-endothelial cell adhesions.  相似文献   

19.
P2Y2 receptor up-regulation and activation induces intimal hyperplasia and monocyte/macrophage infiltration in the collared rabbit carotid artery model of vascular injury, suggesting a potential role for P2Y2 receptors in monocyte recruitment by vascular endothelium. In this study, we addressed the hypothesis that activation of P2Y2 receptors by extracellular nucleotides modulates the expression of adhesion molecules on vascular endothelial cells that are important for monocyte recruitment. Results indicated that the equipotent P2Y2 receptor agonists UTP or ATP (1-100 microm) stimulated the expression of vascular cell adhesion molecule-1 (VCAM-1) in human coronary artery endothelial cells (HCAEC) in a time- and dose-dependent manner. P2Y2 antisense oligonucleotides inhibited VCAM-1 expression induced by UTP but not by tumor necrosis factor-alpha. Furthermore, UTP induced VCAM-1 expression in human 1321N1 astrocytoma cell transfectants expressing the recombinant P2Y2 receptor, whereas vector-transfected control cells did not respond to UTP. The effect of UTP on VCAM-1 expression in HCAEC was prevented by depletion of intracellular calcium stores with thapsigargin or by inhibition of p38 mitogen-activated protein kinase or Rho kinase, but was not affected by inhibitors of the mitogen-activated protein/extracellular signal-regulated kinase pathway (i.e. MEK1/2). Consistent with a role for VCAM-1 in the recruitment of monocytes, UTP or ATP increased the adherence of monocytic U937 cells to HCAEC, an effect that was inhibited by anti-VCAM-1 antibodies. These findings suggest a novel role for the P2Y2 receptor in the p38- and Rho kinase-dependent expression of VCAM-1 that mediates the recruitment of monocytes by vascular endothelium associated with the development of atherosclerosis.  相似文献   

20.
Yang QW  Mou L  Lv FL  Wang JZ  Wang L  Zhou HJ  Gao D 《Biorheology》2005,42(3):225-236
TLR4 plays an important role in atherosclerosis, but little is known about the precise mechanism. Herein, we investigated the role of TLR4/NF-kappaB signaling pathway in monocyte-endothelial adhesion induced by low shear stress and Ox-LDL. We found that low shear stress up-regulated TLR4 expression in endothelial cells, and that ox-LDL exerted an obvious synergistic action as revealed by RT-PCR and Western blotting analysis. Low shear stress also significantly up-regulated IL-8 expression in endothelial cells. Meanwhile, NF-kappaB activity and the adhesion force of monocytes were increased, and there was a synergetic action of ox-LDL. However, following transfection with a functional mutant of TLR4 (C3H/HeJ, TLR4 Dicd) or addition of anti-human TLR4 mAb, IL-8 expression was obviously decreased, NF-kappaB activity in cells remarkably inhibited, and the adhesion force of monocyte significantly reduced. Nevertheless, anti-human TLR2 mAb had no similar effects. These findings suggest that TLR4 may be involved in the early stages of atherosclerosis, associating ox-LDL, inflammation/infection, and low shear stress. Therefore, TLR4 is expected to be a new target for preventing and treating atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号