首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two tobacco (Nicotiana tabacum L.) cultivars differing in drought tolerance were used to study the effects of foliar-applied glycinebetaine (GB, 80 mM) under well-watered and water-deficit conditions. The latter affected shoot biomass and height, with a more significant decrease observed in drought-sensitive cultivar than in drought-resistant cultivar. Foliar-applied GB was absorbed, accumulated by tobacco leaves and improved growth of plants subjected to water deficit. GB-treated plants maintained leaf water status apparently due to the improved osmotic adjustment. GB application enhanced the photosynthesis in water-deficit experiencing plants, mostly due to a greater stomatal conductance and carboxylation efficiency of CO2 assimilation. photosystem II (PSII) activity in GB-treated plants was higher, as suggested by higher actual efficiency of PSII (ΦPSII). GB increased anti-oxidative enzyme activities under water deficit. All these effects resulted in an improved shoot biomass and height. Therefore, foliar GB application at the rapid growth stage favors plant growth in drought-stressed plants, mainly by improving water status and increasing PSII activity. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 534–541. The text was submitted by the authors in English.  相似文献   

2.
Curcuminoids are pharmaceutically important compounds isolated from the herb Curcuma longa. Two additional type III polyketide synthases, named CURS2 and CURS3, that are capable of curcuminoid synthesis were identified and characterized. In vitro analysis revealed that CURS2 preferred feruloyl-CoA as a starter substrate and CURS3 preferred both feruloyl-CoA and p-coumaroyl-CoA. These results suggested that CURS2 synthesizes curcumin or demethoxycurcumin and CURS3 synthesizes curcumin, bisdemethoxycurcumin and demethoxycurcumin. The availability of the substrates and the expression levels of the three different enzymes capable of curcuminoid synthesis with different substrate specificities might influence the composition of curcuminoids in the turmeric and in different cultivars.  相似文献   

3.
Proline accumulates in a variety of plant species in response to stresses such as drought, salinity and extreme temperatures. Although its role in plant osmotolerance remains controversial, proline is thought to contribute to osmotic adjustment, detoxification of reactive oxygen species and protection of membrane integrity. In the present study, we evaluated the effects of stress-inducible proline production on osmotic adjustment, chlorophyll fluorescence and oxidative stress protection in transgenic sugarcane transformed with a heterologous P5CS gene. In well-watered conditions, free proline, malondialdehyde (MDA) levels, Fv/Fm ratios and chlorophyll contents (Chls) in transgenic sugarcane were not statistically different from non-transformed control plants. After 9 days without irrigation, proline content in transgenic events was on the average 2.5-fold higher than in controls. However, no osmotic adjustment was observed in plants overproducing proline during the water-deficit period. The photochemical efficiency of PSII observed was higher (65%) in the transgenic events at the end of the water-deficit experiment. The effects of proline on lipid peroxidation as MDA levels and on the decline of Chl in paraquat-treated leaf discs along the drought period suggest that proline protected the plants against the oxidative stress caused by the water deficit. The overall capacity of transgenic plants to tolerate water-deficit stress could be assessed by the significantly higher biomass yields 12 days after withholding water. These results suggest that stress-inducible proline accumulation in transgenic sugarcane plants under water-deficit stress acts as a component of antioxidative defense system rather than as an osmotic adjustment mediator.  相似文献   

4.

Three prevalent aliphatic polyamines (PAs) include putrescine, spermidine, and spermine; they are low-molecular-mass polycations involved in many physiological processes in plants, especially, under stressful conditions. In this experiment, three bean (Phaseolus vulgaris L.) genotypes were subjected to well-watered conditions and two moderate and severe water-stressed conditions with and without spermidine foliar application. Water stress reduced leaf relative water content (RWC), chlorophyll contents, stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate, maximal quantum yield of PSII (Fv/Fm), net photosynthetic rate (PN), and finally grain yield of bean plants. However, spermidine application elevated RWC, gs, Ci, Fv/Fm, and PN, which caused an increase in the grain yield and harvest index of bean plants under water stress. Overall, exogenous spermidine could be utilized to alleviate water stress through protection of photosynthetic pigments, increase of proline and carotenoid contents, and reduction of malondialdehyde content.

  相似文献   

5.
Gas exchange and chlorophyll fluorescence techniques were used to evaluate the acclimation capacity of the schlerophyll shrub Heteromeles arbutifolia M. Roem. to the multiple co-occurring summer stresses of the California chaparral. We examined the influence of water, heat and high light stresses on the carbon gain and survival of sun and shade seedlings via a factorial experiment involving a slow drying cycle applied to plants grown outdoors during the summer. The photochemical efficiency of PSII exhibited a diurnal, transient decrease (δF/Fm′) and a chronic decrease or photoinhibition (Fv/Fm) in plants exposed to full sunlight. Water stress enhanced both transient decreases of δF/Fm’and photoinhibition. Effects of decreased δF/Fm’and Fv/Fm on carbon gain were observed only in well-watered plants since in water-stressed plants they were overidden by stomatal closure. Reductions in photochemical efficiency and stomatal conductance were observed in all plants exposed to full sunlight, even in those that were well-watered. This suggested that H. arbutifolia sacrificed carbon gain for water conservation and photoprotection (both structurally via shoot architecture and physiologically via down-regulation) and that this response was triggered by a hot and dry atmosphere together with high PFD, before severe water, heat or high PFD stresses occur. We found fast adaptive adjustments of the thermal stability of PSII (diurnal changes) and a superimposed long-term acclimation (days to weeks) to high leaf temperatures. Water stress enhanced resistance of PSII to high temperatures both in the dark and over a wide range of PFD. Low PFD protected photochemical activity against inactivation by heat while high PFD exacerbated damage of PSII by heat. The greater interception of radiation by horizontally restrained leaves relative to the steep leaves of sun-acclimated plants caused photoinhibition and increased leaf temperature. When transpirational cooling was decreased by water stress, leaf temperature surpassed the limits of chloroplast thermostability. The remarkable acclimation of water-stressed plants to high leaf temperatures proved insufficient for the semi-natural environmental conditions of the experiment. Summer stresses characteristic of Mediterranean-type climates (high leaf temperatures in particular) are a potential limiting factor for seedling survival in H. arbutifolia, especially for shade seedlings lacking the crucial structural photoprotection provided by steep leaf angles.  相似文献   

6.
The effects of dehydration and subsequent rehydration on photosynthetic parameters and carbon reserves were investigated in the resurrection plant Reaumuria soongorica. Dehydration was imposed by withholding water and covering plants with a PVC sheet when it rained, over a period of 53 days, by which time all leaves had been shed. Thereafter, plants were watered at 7-day intervals. The diurnal course of the net photosynthetic rate (Pn) was bimodal under well-watered conditions. After a period of withholding water, the second peak disappeared, and Pn, instantaneous water use efficiency (WUE), stomatal conductance (gs) and intercellular CO2 concentration (Ci) decreased, but sugar, starch and non-structural carbohydrate (NSC) reserves increased. It was concluded that under the conditions of high temperature and dehydration, the reduction of Pn should be mainly attributed to gs. On rehydration Pn, gs, Ci and WUE increased slightly in the stem. Accompanying new leaf production, carbon reserves in the stem decreased. This indicated that carbon reserves in the stem have two important ecological roles, survival during dormant periods and support of vegetative regrowth following rehydration.  相似文献   

7.
A pot experiment was conducted to study the effects of root pruning at the stem elongation stage on the growth and water use efficiency (WUE) of winter wheat (Triticum aestivum). The results showed that stomatal conductance (g) and transpiration (E) of wheat were very sensitive to root pruning. After root pruning, they declined rapidly and but returned to pre-pruning values 15 days after treatment. Under well-watered conditions, there was no significant difference in leaf water potential (ψleaf) between root pruned and control plants after root pruning. Under moderate drought stress, ψleaf of root pruned plants declined significantly compared to the control 3 days after root pruning. After 15 days, ψleaf of root pruned plants was similar to the controls. Under different soil moisture levels, net assimilation rate (A) of root pruned plants was lower than controls 3–7 days after root pruning, but was similar to the controls 15 days after pruning. At anthesis (50 days after root pruning), root pruned plants showed significantly higher A compared with the control. Leaf area per tiller and tiller number of root pruning plants was significant lower than the control at booting stage, which showed that root pruning restrained the growth of plants in the early growing stage, but leaf area per stem, of root pruned plants, was similar to the control at anthesis. Under both soil moisture levels, there was no significant difference in grain yield between root pruned and the control plants in the monoculture. In mixture with the control plants, the root pruned plants was less productive and had a lower relative yield (0.92 and 0.78, respectively) compared with the control (1.13 and 1.19, respectively), which suggested that the pruned plants lost some of its competing ability and showed a lower ability to acquire and use the same resources in the mixture compared with the control plant. Over the whole growing cycle, root pruning reduced water consumption (by 10% under well-watered conditions and 16% under moderate drought stress) of wheat significantly compared to the control (< 0.05), and but there was no significant difference in grain yield between root pruned and control plants. Therefore root pruned wheat had a higher WUE with respect to grain yield compared with the controls. In conclusion, lowering water consumption by root pruning in the early growing stage is an effective way to improve water use efficiency in arid and semi arid areas.  相似文献   

8.
Lu  C; Zhang  J 《Journal of experimental botany》1999,50(336):1199-1206
Modulated chlorophyll fluorescence, rapid fluorescence induction kinetics and the polyphasic fluorescence transients (OJIP) were used to evaluate PSII photochemistry in wheat plants exposed to water stress and/or heat stress (25-45C). Water stress showed no effects on the maximal quantum yield of PSII photochemistry (Fv/Fm), the rapid fluorescence induction kinetics, and the polyphasic fluorescence transients in dark-adapted leaves, indicating that water stress had no effects on the primary photochemistry of PSII. However, in light-adapted leaves, water stress reduced the efficiency of excitation energycapture by open PSII reaction centres (F'v/F'm) and the quantum yield of PSII electron transport (PSII), increased the non-photochemical quenching (qN) and showed no effects on the photochemical quenching (qP). This suggests that water stress modified the PSII photochemistry in the light-adapted leaves and such modifications may be a mechanism to down-regulate the photosynthetic electron transport to match a decreased CO2 assimilation. In addition, water stress also modified the responses of PSII to heat stress. When temperature was above 35C, thermostability of PSII was strongly enhanced in water-stressed leaves, which was reflected in a less decrease in Fv/Fm, qP, F'v/F'm, and PSII in water-stressed leaves than in well-watered leaves. There were no significant variations in the above fluorescence parameters between moderately and severely water-stressed plants, indicating that the moderate water-stressed plants, indicating that the moderate water stress treatment caused the same effects on thermostability of PSII as the severe treatment. It was found that increased thermostability of PSII may be associated with an improvement of resistance of the O2-evolving complex and the reaction centres in water-stressed plants to high temperature.Key words: Chlorophyll fluorescence, heat stress, photosystem II photochemistry, water stress, wheat (Tritium aestivum L.).   相似文献   

9.
Plants of C. canephora grown in pots under low nitrogen (LN) or high nitrogen (HN) applications were submitted to either cyclic water stress or daily irrigation. Water deficit led to marked decreases in net carbon assimilation rate (A) and, to a lesser extent, in stomatal conductance (gs), regardless of the N treatments. In well-watered plants, A appreciably increased in HN plants relative to LN plants without significant changes in gs. As a whole, changes in internal CO2 concentration predominantly reflected changes in A rather than in gs. Under irrigated conditions, A, but not gs, correlated with leaf N concentration in a curvilinear way. Photosynthetic nitrogen-use efficiency was considerably low, and decreased with increasing leaf N concentration. Limited N, but not water, slightly decreased the maximum photochemical efficiency of photosystem II (PSII). Under continuous irrigation, LN plants had a smaller quantum yield of electron transport (PSII) through slight decreases of photochemical quenching (qp) and capture efficiency of excitation energy by open PSII reaction centres, and increases in Stern-Volmer non-photochemical quenching. Under water-stressed conditions, changes in PSII photochemistry were apparent only in HN plants, with a 25 % decrease in PSII, due mainly to variations in qp. Biochemical constraints, rather than stomatal or photochemical limitations, provoked the decreases in A under limited supply of either N or water.  相似文献   

10.
World areas subject to drought are expected to increase under conditions of climate change. The purpose of this study is to clarify the response of grass species that can grow and produce under water stress. Therefore leaf photosynthesis, chlorophyll fluorescence and pigment content response to water stress were studied in two varieties of the C4 grass Eragrostis curvula. Two-year-old plants of cv Ermelo and Consol were grown in plastic pots. Drought stress was imposed by withholding irrigation for 15 days and then rewatering for 5 days. During drought relative water content (RWC) decreased 65% in cv Ermelo, while lower reductions of RWC were observed in cv Consol. During the experiment in cv Ermelo increasing drought stress severity caused large decreases in photosynthetic rates, maximal PSII photochemical efficiency (FV/FM) and leaf pigment content. Cv Consol showed small variations in these parameters. Compared to cv Consol, after 15 days of drought, effective PSII quantum yield (ΦII) was significantly lower in cv Ermelo. Reductions of ΦII were related to significant reductions of open PSII energy capture efficiency (FV/FM). Photosynthetic response to increasing PPFD levels and to internal CO2 concentration (Ci) were reduced by drought in cv Ermelo. Compared to well-watered control plants and to cv Consol, drought stressed plants of cv Ermelo showed also reductions of the initial slope of photosynthetic response to Ci and in the photosynthetic rate measured at saturating Ci. Moreover stomatal conductance (g) of both cvs decreased during drought. However, g was lower in drought stressed plants of cv Consol than in cv Ermelo. Water stress caused large reductions in leaf chlorophyll and carotenoid content in cv Ermelo, and small reductions in cv Consol. In drought-sensitive cv Ermelo water stress reduced the capabilities to down regulate PSII functionality through thermal energy dissipation. Results suggest that drought resistance of cv Consol, can be attributed to a higher water use efficiency.  相似文献   

11.
Effects of water-deficit stress and paclobutrazol (PBZ) on the physiological and biochemical changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink (Zingiberaceae) were investigated. One hundred rhizomes were grown for 30–35 days and then divided into the following 4 treatments: (1) well-watered, (2) not watered, (3) well-watered and treated with 1500 ppm PBZ being applied once to the soil, and (4) not watered but treated with 1500 ppm PBZ. After 50 days of growth, watering was withheld for 30 days. After water stress was initiated, plant height, plant fresh weight, soil water content, relative water content (RWC), electrolyte leakage (EL), proline content, vitamin C and E content, as well as the activities of catalase (CAT) and superoxide dismutase (SOD) in the leaves were determined every 10 days. The results showed that water-deficit stress decreased plant height and plant fresh weight, whereas this stress and PBZ did not result in a decrease in these parameters. Water stress reduced RWC, but induced EL and proline content in the leaves. However, the leaves showed opposite results when PBZ was added to the treatments. Some antioxidants such as vitamin C, vitamin E, and the activities of CAT and SOD were induced in the leaves by PBZ. Moreover, the content of vitamin C, vitamin E and CAT activity were higher in relation to water-deficit stress and PBZ treatments. This indicates that PBZ induced a number of some physiological and biochemical adaptations (maintaining growth and RWC, decreasing EL and proline content, increasing the vitamin C and vitamin E levels, and CAT and SOD activities) that enable the Curcuma plant to tolerate drought.  相似文献   

12.
In order to investigate the biosynthesis of curcuminoid in rhizomes of turmeric (Curcuma longa), we established an in vitro culture system of turmeric plants for feeding (13)C-labeled precursors. Analyses of labeled desmethoxycurcumin (DMC), an unsymmetrical curcuminoid, by (13)C-NMR, revealed that one molecule of acetic acid or malonic acid and two molecules of phenylalanine or phenylpropanoids, but not tyrosine, were incorporated into DMC. The incorporation efficiencies of the same precursors into DMC and curcumin were similar, and were in the order malonic acid > acetic acid, and cinnamic acid > p-coumaric acid > ferulic acid. These results suggest the possibility that the pathway to curcuminoids utilized two cinnamoyl CoAs and one malonyl CoA, and that hydroxy- and methoxy-functional groups on the aromatic rings were introduced after the formation of the curcuminoid skeleton.  相似文献   

13.
The effects of drought on membrane lipids and leaf pigments and the ability of andiroba (Carapa guianensis Aubl.) plants to attenuate oxidative damage through antioxidant enzymes or adjusting carotenoids and glycinebetaine (GB) were examined. Assessments were performed when pre-dawn leaf water potential (Ψpd) of water-stressed plants reached −1.35 and −3.21 MPa (15 and 27 days after withholding irrigation) and 12 h after resuming watering (short-term rewetting, day 28). Oxidative damages to lipids were evident on day 15, in which drought caused an increase of 47% in malondialdehyde (MDA) content. On day 27, MDA content did not differ between treatments. The activity of superoxide dismutase remained unchanged over experimental period, while significant increases in the ascorbate peroxidase (APX, 110%) and catalase (CAT, 50%) activities were observed only on day 27. GB content was 62% (day 15) and 112% (day 27) higher in water-stressed plants than in control. Regardless of Ψpd, both chlorophyll (Chl) a, Chl b and total carotenoids remained unchanged between well-watered and water-stressed plants, indicating that drought did not result in degradation of leaflet pigments. On day 28, Ψpd of water-stressed plants increased near to control plants and both activities of APX and CAT did not differ between treatments. Altogether, adjustments in APX and CAT activity and in the GB content were efficient strategies to prevent expressive oxidative damages in water-stressed andiroba plants.  相似文献   

14.
Global production of rice (Oryza sativa) grain is limited by water availability and the low ‘leaf-level’ photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productive and drought tolerant cultivars. We investigated the underlying physiological, isotopic and morphological responses to water-deficit in seven common varieties of O. sativa, subjected to prolonged drought of varying intensities, for phenotyping purposes in open field conditions. Significant variation was observed in leaf-level photosynthesis rates (A) under both water treatments. Yield and A were influenced by the conductance of the mesophyll layer to CO2 (g m) and not by stomatal conductance (g s). Mesophyll conductance declined during drought to differing extents among the cultivars; those varieties that maintained g m during water-deficit sustained A and yield to a greater extent. However, the variety with the highest g m and yield under well-watered conditions (IR55419-04) was distinct from the most effective cultivar under drought (Vandana). Mesophyll conductance most effectively characterises the photosynthetic capacity and yield of O. sativa cultivars under both well-watered and water-deficit conditions; however, the desired attributes of high g m during optimal growth conditions and the capacity for g m to remain constant during water-deficit may be mutually exclusive. Nonetheless, future genetic and physiological studies aimed at enhancing O. sativa yield and drought stress tolerance should investigate the biochemistry and morphology of the interface between the sub-stomatal pore and mesophyll layer.  相似文献   

15.
Tropical plants are sensitive to chilling temperatures above zero but it is still unclear whether photosystem I (PSI) or photosystem II (PSII) of tropical plants is mainly affected by chilling temperatures. In this study, the effect of 4°C associated with various light densities on PSII and PSI was studied in the potted seedlings of four tropical evergreen tree species grown in an open field, Khaya ivorensis, Pometia tomentosa, Dalbergia odorifera, and Erythrophleum guineense. After 8 h chilling exposure at the different photosynthetic flux densities of 20, 50, 100, 150 μmol m−2 s−1, the maximum quantum yield of PSII (F v /F m) in all of the four species decreased little, while the quantity of efficient PSI complex (P m) remained stable in all species except E. guineense. However, after chilling exposure under 250 μmol m−2 s−1 for 24 h, F v /F m was severely photoinhibited in all species whereas P m was relative stable in all plants except E. guineense. At the chilling temperature of 4°C, electron transport from PSII to PSI was blocked because of excessive reduction of primary electron acceptor of PSII. F v /F m in these species except E. guineense recovered to ~90% after 8 h recovery in low light, suggesting the dependence of the recovery of PSII on moderate PSI and/or PSII activity. These results suggest that PSII is more sensitive to chilling temperature under the moderate light than PSI in tropical trees, and the photoinhibition of PSII and closure of PSII reaction centers can serve to protect PSI.  相似文献   

16.
The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V cmax and J max were increased by inoculation and decreased by water shortage in all species. F v/F m was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants.  相似文献   

17.
Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400 h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD = −3.1 MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5 °C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20–30 days Tmax ≥ 35 °C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r2 from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars.  相似文献   

18.
19.
Effect of Water Stress on Photosynthesis and Growth in Two Teak Phenotypes   总被引:2,自引:0,他引:2  
Two teak (Tectona grandis L.f.) phenotypes differing in their leaf length/breadth ratios were subjected to water stress by withholding water supply for three weeks. Growth rates of whole plants, developing leaves (1st and 2nd from shoot apices), and 2nd and 3rd internodes were higher in broad leaved (BL) phenotype than in narrow leaved (NL) phenotype before and after imposing water stress treatment. However, the effect of water stress on these parameters was higher in the BL phenotype than in the NL one. Diurnal course of net photosynthetic rate (P N) of 3rd or 4th leaves from shoot apices measured under well-watered conditions was higher for the NL than BL phenotype. P N, stomatal conductance (g s), and transpiration rate (E) in both phenotypes were negatively affected by water stress and their decline under water stress was significantly higher in the BL than NL plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The present study was carried out to test the hypothesis thatelevated atmospheric CO2 (Ca) will alleviate over‐excitationof the C4 photosynthetic apparatus and decrease non‐photochemicalquenching (NPQ) during periods of limited water availability. Chlorophyll a fluorescencewas monitored in Sorghum bicolor plants grown under a free‐aircarbon‐dioxide enrichment (FACE) by water‐stress (Dry) experiment.Under Dry conditions elevated Ca increased the quantum yield ofphotosystem II (φPSII) throughout the day throughincreases in both photochemical quenching coefficient (qp)and the efficiency with which absorbed quanta are transferred toopen PSII reaction centres (Fv′/Fm′).However, in the well‐watered plants (Wets) FACE enhanced φPSIIonly at midday and was entirely attributed to changes in Fv′/Fm. Underfield conditions, decreases in φPSII under Dry treatmentsand ambient Ca corresponded to increases in NPQ but the de‐epoxidation stateof the xanthophyll pool (DPS) showed no effects. Water‐stress didnot lead to long‐term damage to the photosynthetic apparatus asindicated by φPSII and carbon assimilation measuredafter removal of stress conditions. We conclude that elevated Caenhances photochemical light energy usage in C4 photosynthesisduring drought and/or midday conditions. Additionally,NPQ protects against photo‐inhibition and photodamage. However,NPQ and the xanthophyll cycle were affected differently by elevatedCa and water‐stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号