首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Chaussepied 《Biochemistry》1989,28(23):9123-9128
Using a complementary sequence or antipeptide to selectively neutralize the stretch of residues 633-642 of skeletal myosin heavy chain, we recently demonstrated that this segment is an actin binding site operating in the absence as in the presence of nucleotide and that this stretch 633-642 is not part of the nucleotide binding site [Chaussepied & Morales (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471-7475]. In the present study, we determined that the covalent cross-linking of the antipeptide to the stretch 633-642 [induced by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide] does not alter the overall polypeptide conformation since no changes were observed on the far-ultraviolet CD spectra and thiol reactivity measurements. The presence of the antipeptide did not influence significantly the enhancement of tryptophan fluorescence induced by ATP.Mg2+ or ADP.Mg2+ binding to the myosin head (S1) nor did it on the ATP.Mg2+-induced tryptic proteolysis of S1 heavy chain. Moreover, fluorescence quenching studies, using acrylamide and the analogue, 1,N6-ethenoadenosine 5'-triphosphate, indicated that the nucleotide bound to antipeptide-S1 complex has an accessibility to the solute quencher close to that observed when it is bound to native S1. Additionally, neutralization of the stretch 633-642 of the S1 heavy chain by the antipeptide did not influence the stabilization of the Mg2+.ADP.sodium vanadate-S1 complex. On the other hand, experiments using antipeptide-induced protection against the cleavage of the S1 heavy chain by Arg-C protease demonstrated that the presence of Mg2+.ADP.sodium vanadate in the S1 nucleotide site did not affect the interaction of the antipeptide with the stretch of residues 633-642.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
G DasGupta  J White  P Cheung  E Reisler 《Biochemistry》1990,29(36):8503-8508
The role of the N-terminal segment of actin in myosin-induced polymerization of G-actin was studied by using peptide antibodies directed against the first seven N-terminal residues of alpha-skeletal actin. Light scattering, fluorescence, and analytical ultracentrifugation experiments showed that the Fab fragments of these antibodies inhibited the polymerization of G-actin by myosin subfragment 1 (S-1) by inhibiting the binding of these proteins to each other. Fluorescence measurements using actin labeled with pyrenyliodoacetamide revealed that Fab inhibited the initial step in the binding of S-1 to G-actin. It is deduced from these results and from other literature data that the initial contact between G-actin and S-1 involves residues 1-7 on actin and residues 633-642 on the S-1 heavy chain. This interaction appears to be of major importance for the binding of S-1 and G-actin. The presence of additional myosin contact sites on G-actin was indicated by concentration-dependent recovery of S-1 binding to G-actin without displacement of Fab. The reduced Fab inhibition of S-1 binding to polymerizing and polymerized actin is consistent with the tightening of acto-S-1 binding at these sites or the creation of new sites upon formation of F-actin.  相似文献   

3.
Using fluorescence resonance energy transfer (FRET), we measured distances from chromophores located at or near the actin-binding stretch of amino acids 633-642 of myosin subfragment 1 (S1), to five points in the acto-S1 complex. Specific labeling of this site was achieved by first attaching the desired chromophore to an "antipeptide" that by means of its charge complementarity specifically binds to this segment of S1 [Chaussepied & Morales (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471] and then cross-linking the fluorescent peptide to the protein. According to this technique, antipeptides containing three different labels, viz., N-dansylaziridine, (iodoacetamido)fluorescein, and monobromobimane, were purified and covalently bound to S1. A second chromophoric group, required for FRET measurements, was selected in such a way as to provide a good spectral overlap with the corresponding peptide chromophore. Cys-707 (SH1) and Cys-697 (SH2) on S1 were modified by using iodoacetamido and maleimido derivatives of rhodamine, 1,N6-ethenoadenosine 5'-diphosphate was trapped at the S1 active site with orthovanadate, Cys-374 on actin was modified with either N-[4-[4-(dimethylamino)phenyl]azo]phenyl]maleimide or N-[(iodoacetyl)-amino]ethyl]-5-naphthylamine-1-sulfonate, and ADP bound to F-actin was exchanged with the fluorescent etheno analogue. By use of excited-state lifetime fluorometry, the following distances from the stretch 633-642 of S1 to other points on S1 or actin have been measured: Cys-707 (S1), 50.3 A; Cys-697 (S1), 49.4 A; active site of S1, greater than or equal to 44 A; nucleotide binding site (actin), 41.1 A; and Cys-374 (actin), approximately 53 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Changes in the actin-myosin interface are thought to play an important role in microfilament-linked cellular movements. In this study, we compared the actin binding properties of the motor domain of Dictyostelium discoideum (M765) and rabbit skeletal muscle myosin subfragment-1 (S1). The Dictyostelium motor domain resembles S1(A2) (S1 carrying the A2 light chain) in its interaction with G-actin. Similar to S1(A2), none of the Dictyostelium motor domain constructs induced G-actin polymerization. The affinity of monomeric actin (G-actin) was 20-fold lower for M765 than for S1(A2) but increasing the number of positive charges in the loop 2 region of the D. discoideum motor domain (residues 613-623) resulted in equivalent affinities of G-actin for M765 and for S1. Proteolytic cleavage and cross-linking approaches were used to show that M765, like S1, interacts via the loop 2 region with filamentous actin (F-actin). For both types of myosin, F-actin prevents trypsin cleavage in the loop 2 region and F-actin segment 1-28 can be cross-linked to loop 2 residues by a carbodiimide-induced reaction. In contrast with the S1, loop residues 559-565 of D. discoideum myosin was not cross-linked to F-actin, probably due to the lower number of positive charges. These results confirm the importance of the loop 2 region of myosin for the interaction with both G-actin and F-actin, regardless of the source of myosin. The differences observed in the way in which M765 and S1 interact with actin may be linked to more general differences in the structure of the actomyosin interface of muscle and nonmuscle myosins.  相似文献   

5.
Cofilin, a key regulator of actin filament dynamics, binds to G- and F-actin and promotes actin filament turnover by stimulating depolymerization and severance of actin filaments. In this study, cytochalasin D (CytoD), a widely used inhibitor of actin dynamics, was found to act as an inhibitor of the G-actin-cofilin interaction by binding to G-actin. CytoD also inhibited the binding of cofilin to F-actin and decreased the rate of both actin polymerization and depolymerization in living cells. CytoD altered cellular F-actin organization but did not induce net actin polymerization or depolymerization. These results suggest that CytoD inhibits actin filament dynamics in cells via multiple mechanisms, including the well-known barbed-end capping mechanism and as shown in this study, the inhibition of G- and F-actin binding to cofilin.  相似文献   

6.
Muscle fibres, free of myosin, troponin and tropomyosin, containing thin filaments reconstructed from G-actin and modified by fluorescent label 1,5-IAEDANS were used for polarized microfluorimetric studies of the effect of tropomyosin (TM) from smooth muscles, and of subfragment 1 (S1) from skeletal muscles on the structural state of F-actin. TM and S1 were shown to initiate different changes in polarized fluorescence of 1,5-IAEDANS of F-actin: TM increases, whereas S1 decreases fluorescent anisotropy. It was suggested that the structural state of F-actin may differ in the C-terminal of polypeptide chain of actin.  相似文献   

7.
According to the original Holmes model of F-actin structure, the hydrophobic loop 262-274 stabilizes the actin filament by inserting into a pocket formed at the interface between two protomers on the opposing strand. Using a yeast actin triple mutant, L180C/L269C/C374A [(LC)(2)CA], we showed previously that locking the hydrophobic loop to the G-actin surface by a disulfide bridge prevents filament formation. We report here that the hydrophobic loop is mobile in F- as well as in G-actin, fluctuating between the extended and parked conformations. Copper-catalyzed, brief air oxidation of (LC)(2)CA F-actin on electron microscopy grids resulted in the severing of thin filaments and their conversion to amorphous aggregates. Disulfide, bis(methanethiosulfonate) (MTS), and dibromobimane (DBB) cross-linking reactions proceeded in solution at a faster rate with G- than with F-actin. Cross-linking of C180 to C269 by DBB (4.4 A) in either G- or F-actin resulted in shorter and less stable filaments. The cross-linking with a longer MTS-6 reagent (9.6 A) did not impair actin polymerization or filament structure. Myosin subfragment 1 (S1) and tropomyosin inhibited the disulfide cross-linking of phalloidin-stabilized F-actin. Electron paramagnetic resonance measurements with nitroxide spin-labeled actin revealed strong spin-spin coupling and a similar mean interspin distance ( approximately 10 A) in G- and in F-actin, with a broader distance distribution in G-actin. These results show loop 262-274 fluctuations in G- and F-actin and correlate loop dynamics with actin filament formation and stability.  相似文献   

8.
Previously, we have shown that the V-ATPase holoenzyme as well as the V1 complex isolated from the midgut of the tobacco hornworm (Manduca sexta) exhibits the ability of binding to actin filaments via the V1 subunits B and C (Vitavska, O., Wieczorek, H., and Merzendorfer,H. (2003) J. Biol. Chem. 278, 18499-18505). Since the recombinant subunit C not only enhances actin binding of the V1 complex but also can bind separately to F-actin, we analyzed the interaction of recombinant subunit C with actin. We demonstrate that it binds not only to F-actin but also to monomeric G-actin. With dissociation constants of approximately 50 nm, the interaction exhibits a high affinity, and no difference could be observed between binding to ATP-G-actin or ADP-G-actin, respectively. Unlike other proteins such as members of the ADF/cofilin family, which also bind to G- as well as to F-actin, subunit C does not destabilize actin filaments. On the contrary, under conditions where the disassembly of F-actin into G-actin usually occurred, subunit C stabilized F-actin. In addition, it increased the initial rate of actin polymerization in a concentration-dependent manner and was shown to cross-link actin filaments to bundles of varying thickness. Apparently bundling is enabled by the existence of at least two actin-binding sites present in the N- and in the C-terminal halves of subunits C, respectively. Since subunit C has the possibility to dimerize or even to oligomerize, spacing between actin filaments could be variable in size.  相似文献   

9.
《The Journal of cell biology》1984,98(6):1919-1925
Physarum profilin reduces the rates of nucleation and elongation of F- actin and also reduces the extent of polymerization of actin at the steady state in a concentration-dependent fashion. The apparent critical concentration for polymerization of actin is increased by the addition of profilin. These results can be explained by the idea that Physarum profilin forms a 1:1 complex with G-actin and decreases the concentration of actin available for polymerization. The dissociation constant for binding of profilin to G-actin is estimated from the kinetics of polymerization of G-actin and elongation of F-actin nuclei and from the increase of apparent critical concentration in the presence of profilin. The dissociation constants for binding of Physarum profilin to Physarum and muscle actins under physiological ionic conditions are in the ranges of 1.4-3.7 microM and 11.3-28.5 microM, respectively. When profilin is added to an F-actin solution, profilin binds to G-actin which co-exists with F-actin, and then G- actin is dissociated from F-actin to compensate for the decrease of the concentration of free G-actin and to keep it constant at the critical concentration. At the steady state, free G-actin of the critical concentration is in equilibrium not only with F-actin but also with profilin-G-actin complex. The stoichiometry of 1:1 for the formation of complex between profilin and G-actin is directly shown by means of chemical cross-linking.  相似文献   

10.
The biological functions of the myosin light chain 1 (LC1) have not been clearly elucidated yet. In this work we cloned and expressed N- and C- terminal fragments of human ventricular LC1 (HVLC1) containing amino acid residues 1-98 and 99-195 and two parts, NN and NC of N fragment in GST-fusion forms, respectively. Using GST pull-down assay, the direct binding experiments of LC1 with rat cardiac G-actin, F-actin and thin filaments, as well as rat cardiac myosin heavy chain (RCMHC) have been performed. Furthermore, the recombinant complexes of rat myosin S1 with N- and C-fragments, as well as the whole molecular of HVLC1 were generated. The results suggested that both binding sites of HVLC1 for actin and myosin heavy chain are positioned in its N-terminal fragment, which may contain several actin-binding sites in tandem. The polymerization of G-actin, the tropomyosin and troponin molecules located in the thin filaments do not hinder the binding of N-terminal fragment of HVLC1 with actin and thin filaments in vitro. The recombinant complex of rat cardiac myosin S1 (RCMS1) with N fragment of HVLC1 greatly decreased actin-activated Mg(2+)-ATPase activity for lack of C fragment. We conclude that the N-fragment is the binding domain of human ventricular LC1, whereas the C-fragment serves as a functional domain, which may be more involved in the modulation of the actin-activated ATPase activity of myosin.  相似文献   

11.
E Kim  E Reisler 《Biophysical journal》1996,71(4):1914-1919
The recently reported structural connectivity in F-actin between the DNase I binding loop on actin (residues 38-52) and the C-terminus region was investigated by fluorescence and proteolytic digestion methods. The binding of copper to Cys-374 on F- but not G-actin quenched the fluorescence of dansyl ethylenediamine (DED) attached to Gin-41 by more than 50%. The blocking of copper binding to DED-actin by N-ethylmaleimide labeling of Cys-374 on actin abolished the fluorescence quenching. The quenching of DED-actin fluorescence was restored in copolymers (1:9) of N-ethylmaleimide-DED-actin with unlabeled actin. The quenching of DED-actin fluorescence by copper was also abolished in copolymers (1:4) of DED-actin and N-ethylmaleimide-actin. These results show intermolecular coupling between loop 38-52 and the C-terminus in F-actin. Consistent with this, the rate of subtilisin cleavage of actin at loop 38-52 was increased by the bound copper by more than 10-fold in F-actin but not in G-actin. Neither acto-myosin subfragment-1 (S1) ATPase activity nor the tryptic digestion of G-actin and F-actin at the Lys-61 and Lys-69 sites were affected by the bound copper. These observations suggest that copper binding to Cys-374 does not induce extensive changes in actin structure and that the perturbation of loop 38-52 environment results from changes in the intermolecular contacts in F-actin.  相似文献   

12.
N Bettache  R Bertrand  R Kassab 《Biochemistry》1990,29(38):9085-9091
We have investigated various structural and interaction properties of maleimidobenzoyl-G-actin (MBS-actin), a new, internally cross-linked G-actin derivative that does not exhibit, at moderate protein concentration, the salt--and myosin subfragment 1 (S-1)-induced polymerizations of G-actin and reacts reversibly and covalently in solution with S-1 at or near the F-actin binding region of the heavy chain (Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032). The far-ultraviolet CD spectrum and alpha-helix content of the MBS-actin were identical with those displayed by native G-actin. 45Ca2+ measurements showed the same content of tightly bound Ca2+ in MBS-actin as in G-actin and the EDTA treatment of the modified protein promoted the same red shift of the intrinsic fluorescence spectrum as observed with native G-actin. Incubation of concentrated MBS-actin solutions with 100 mM KCl + 5 mM MgCl2 led to the polymerization of the actin derivative when the critical monomer concentration reached 1.6 mg/mL, at 25 degrees C, pH 8.0. The MBS-F-actin formed activated the Mg2(+)-ATPase of S-1 to the same extent as native F-actin. The MBS-G-actin exhibited a DNase I inhibitor activity very close to that found with native G-actin and was not to be at all affected by its specific covalent conjugation to S-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of crosslinking of monomeric and polymeric actin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), disuccinimidyl suberate (DSS) and glutaraldehyde on the interaction with heavy meromyosin (HMM) in solution and on the sliding movement on glass-attached HMM were examined. The Vmax values of actin-activated HMM ATPase decreased in the following order: intact actin = EDC F-actin greater than DSS actin greater than glutaraldehyde F-actin = glutaraldehyde G-actin greater than EDC G-actin. The affinity of actin for HMM in the presence of ATP decreased in the following order: DSS actin greater than glutaraldehyde F-actin = glutaraldehyde G-actin greater than intact actin greater than EDC F-actin greater than EDC G-actin. However, sliding movement was inhibited only in the case of glutaraldehyde-crosslinked F and G-actin and EDC-crosslinked G-actin. Interestingly, after copolymerization of "non-motile" glutaraldehyde or EDC-crosslinked monomers with "motile" monomers of intact actin sliding of the copolymers was observed and its rate was independent of the type of crosslinked monomer, i.e. of the manner of their interaction with HMM. These data strongly indicate that inhibition of the sliding of actin by crosslinking cannot be explained entirely by changes in the Vmax value or affinity for myosin heads. We conclude that movement is generated by interaction of myosin with segments of F-actin containing a number of intact monomers, and the mechanism of inhibition involves an effect of the crosslinkers on the structure of F-actin itself.  相似文献   

14.
A synthetic peptide corresponding to a sequence 632-642 (S632-642) on the myosin subfragment 1 (S-1) heavy chain and spanning the 50/20 kDa junction of S-1 binds to actin in the presence and absence of S-1. The binding of 1.0 mole of peptide per actin causes almost complete inhibition of actomyosin ATPase activity and only partial inhibition of S-1 binding to actin. The binding of S632-642 to the N-terminal segment of actin is supported by competitive carbodiimide cross-linking of S-1 and S632-642 to actin and the catalytic properties of cross-linked acto-S-1 and actin-peptide complexes. These results show that the sequence 632-642 on S-1 is an autonomous binding site for actin and confirm the catalytic importance of its interactions with the N-terminal segment of actin.  相似文献   

15.
We examined ultrastructural changes in developing chicken intestinal microvilli and correlated these with changes in the G- to F-actin ratio and the amount of actin per milligram cell protein. Three discrete morphological and temporal changes occur during late microvillus morphogenesis: an increase in microvillus number associated with microvilli becoming hexagonally packed on the cell surface; an increase in core actin filament number; and an increase in the length of microvilli. Dramatic rises in the amount of cell actin occur at the time of the first two morphological changes. Changes in the G- to F-actin ratio suggest that increases in the level of monomeric actin drive the elongation phase of microvillus growth since immediately prior to growth the G- to F-actin ratio shifts from its embryonic and adult 3:7 ratio to a 1:1. Our results also indicate, but do not prove, that an increase in the amount of G-actin precedes the rise in level of F-actin and growth of microvilli by 1 day, implying that an increase in the content of G-actin stimulates actin polymerization. Our findings also suggest that the G- to F-actin ratio and their absolute amounts, perhaps in combination with cytoskeletal protein turnover and/or the pool size of actin binding proteins, plays a role in restricting the mature constant length of microvilli.  相似文献   

16.
A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin.  相似文献   

17.
This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo (1)H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by ~5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.  相似文献   

18.
The reactivity and function of thiol groups in trout actin   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Considerable differences were found between the rates and degrees of modification of native trout actin with iodo[2-(14)C]acetate and iodo[1-(14)C]acetamide. 2. With iodoacetate, G- and F-actin were both labelled in the N-terminal peptide only. This modification had little effect on the ability of the actin to polymerize. 3. Iodoacetamide labelled three cysteine residues in both G- and F-actin. The modified cysteine residues were identified from the position of the corresponding tryptic peptides on peptide ;maps'. 4. The modification had little effect on the ability of G-actin to polymerize, to bind ATP or to bind Ca(2+), or on the ability of F-actin to depolymerize. 5. It is concluded that the three cysteine residues present on the ;surface' of the native trout actin molecule have no direct role in the polymerization processes, the binding of ATP, or the binding of Ca(2+).  相似文献   

19.
B Pope  M Way  A G Weeds 《FEBS letters》1991,280(1):70-74
Gelsolin binds two monomers in the nucleating complex with G-actin in calcium and caps actin filaments. However, 3 actin-binding domains have been identified within its 6 repeating sequence segments corresponding to S1 S2-3 and S4-6. S1 and S4-6 bind only G-actin whereas S2-3 binds specifically to F-actin. Two of the three domains (S2-3 and S4-6) are required for nucleation and a different pair (S1 and S2-3) for severing. Here we show for the first time that the domains unique to nucleation (S4-6) or severing (S1) compete for the same region on subdomain 1 of G-actin. We further show that S2-3 binds actin monomers weakly in G-buffer conditions and that this interaction persists when S1 or S4-6 are also bound. Thus gelsolin associates with two distinct regions on actin. Since S2-3 does not bind monomeric actin in F-buffer, we suggest that its high affinity 1:1 stoichiometry for filament subunits reflects interaction with two adjacent subunits.  相似文献   

20.
Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP’s main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP’s flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP’s effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP’s ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP’s network stiffening activity may be tuned by the local concentration of monomeric actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号