首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Ten herbaceous species were grown over a 4-month period under ambient (360 μmol mol–1) and elevated (610 μmol mol–1) atmospheric CO2 conditions. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae and given a phosphorus (P) supply which was not immediately available to the plants.
2. Multiple harvests were taken in order to determine whether the effect of elevated CO2 on mycorrhizal colonization and phosphorus inflow was independent of its effect on plant growth.
3. All species grew faster under elevated CO2 and carbon partitioning was altered, generally in favour of the shoots. All species responded similarly to elevated CO2.
4. Elevated CO2 did not affect the percentage of root length colonized by AM fungi, but the total amount of colonized root length was increased, because the plants were bigger.
5. Elevated CO2 increased total P content, but had little or no effect on P concentration. At a given age, P inflow was stimulated by elevated CO2, but when root length was taken into account the CO2 effect disappeared.
6. In these host species there is no evidence for a direct effect of elevated CO2 on mycorrhizal functioning, because both internal mycorrhizal colonization and P inflow are unaffected.
7. Future research should concentrate on the potential for carbon flow to the soil via the external mycelial network.  相似文献   

2.
The objective of this investigation was to examine the effect of an elevated atmospheric CO2 partial pressure ( p CO2) on the N-sink strength and performance of symbiotic N2 fixation in Trifolium repens L. cv. Milkanova. After initial growth under ambient p CO2 in a nitrogen-free nutrient solution, T. repens in the exponential growth stage was exposed to ambient and elevated p CO2 (35 and 60 Pa) and two levels of mineral N (N-free and 7·5 mol m–3 N) for 36 d in single pots filled with silica sand in growth chambers. Elevated p CO2 evoked a significant increase in biomass production from day 12 after the start of CO2 enrichment. For plants supplied with 7·5 mol m–3 N, the relative contribution of symbiotically fixed N (%Nsym) as opposed to N assimilated from mineral sources (15N-isotope-dilution method), dropped to 40%. However, in the presence of this high level of mineral N, %Nsym was unaffected by atmospheric p CO2 over the entire experimental period. In plants fully dependent on N2 fixation, the increase in N yield reflects a stimulation of symbiotic N2 fixation that was the result of the formation of more nodules rather than of higher specific N2 fixation. These results are discussed with regard to physiological processes governing symbiotic N2 fixation and to the response of symbiotic N2 fixation to elevated p CO2 in field-grown T. repens .  相似文献   

3.
Plantago lanceolata L. and Trifolium repens L. were grown for 16 wk in ambient (360 μmol mol−1) and elevated (610 μmol mol−1) atmospheric CO2. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe and given a phosphorus supply in the form of bonemeal, which would not be immediately available to the plants. Seven sequential harvests were taken to determine whether the effect of elevated CO2 on mycorrhizal colonization was independent of the effect of CO2 on plant growth. Plant growth analysis showed that both species grew faster in elevated CO2 and that P. lanceolata had increased carbon allocation towards the roots. Elevated CO2 did not affect the percentage of root length colonized (RLC); although total colonized root length was greater, when plant size was taken into account this effect disappeared. This finding was also true for root length colonized by arbuscules. No CO2 effect was found on hyphal density (colonization intensity) in roots. The P content of plants was increased at elevated CO2, although both shoot and root tissue P concentration were unchanged. This was again as a result of bigger plants at elevated CO2. Phosphorus inflow was unaffected by CO2 concentrations. It is concluded that there is no direct permanent effect of elevated CO2 on mycorrhizal functioning, as internal mycorrhizal development and the mycorrhizal P uptake mechanism are unaffected. The importance of sequential harvests in experiments is discussed. The direction for future research is highlighted, especially in relation to C storage in the soil.  相似文献   

4.
Abstract. The objective of this study was to investigate the effects of water stress in sweet potato ( Ipomoea batatas L. [Lam] 'Georgia Jet') on biomass production and plant-water relationships in an enriched CO2 atmosphere. Plants were grown in pots containing sandy loam soil (Typic Paleudult) at two concentrations of elevated CO2 and two water regimes in open-top field chambers. During the first 12 d of water stress, leaf xylem potentials were higher in plants grown in a CO2 concentration of 438 and 666 μmol mol−1 than in plants grown at 364 μmol mol−1. The 364 μmol mol−1 CO2 grown plants had to be rewatered 2 d earlier than the high CO2-grown plants in response to water stress. For plants grown under water stress, the yield of storage roots and root: shoot ratio were greater at high CO2 than at 364 μmol mol−1; the increase, however, was not linear with increasing CO2 concentrations. In well-watered plants, biomass production and storage root yield increased at elevated CO2, and these were greater as compared to water-stressed plants grown at the same CO2 concentration.  相似文献   

5.
Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with the root systems of most plant species. These mutualisms regulate nutrient exchange in the plant–soil interface and might influence the way in which plants respond to increasing atmospheric CO2. In other experiments, mycorrhizal responses to elevated CO2 have been variable, so in this study we test the hypothesis that different genera of AM fungi differ in their response, and in turn alter the plant's response, to elevated CO2. Four species from three genera of AM fungi were tested. Artemisia tridentata Nutt. seedlings were inoculated with either Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, Acaulospora sp. or Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders and grown at either ambient CO2 (350 ppm) or elevated CO2 (700 ppm). Several significant inter-specific responses were detected. Elevated CO2 caused percent arbuscular and hyphal colonization to increase for the two Glomus species, but not for Acaulospora sp. or S. calospora . Vesicular colonization was not affected by elevated CO2 for any fungal species. In the extra-radical phase, the two Glomus species produced a significantly higher number of spores in response to elevated CO2, whereas Acaulospora sp. and S. calospora developed significantly higher hyphal lengths. These data show that AM fungal taxa differ in their growth allocation strategies and in their responses to elevated CO2, and that mycorrhizal diversity should not be overlooked in global change research.  相似文献   

6.
The increase in atmospheric carbon dioxide (CO2) levels is predicted to stimulate plant carbon (C) fixation, potentially influencing the size, structure and function of micro- and mesofaunal communities inhabiting the rhizosphere. To assess the effects of increased atmospheric CO2 on bacterial, fungal and nematode communities in the rhizosphere, Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown in three dune soils under controlled soil temperature and moisture conditions, while subjecting the aboveground compartment to defined atmospheric conditions differing in CO2 concentrations (350 and 700 μL L−1). Real-time polymerase chain reaction (PCR) and PCR-denaturing gradient gel electrophoresis methods were used to examine effects on the size and structure of rhizosphere communities. Multivariate analysis of community profiles showed that bacteria were most affected by elevated CO2, and fungi and nematodes to a lesser extent. The influence of elevated CO2 was plant dependent, with the mycorrhizal plant ( F. rubra ) exerting a greater influence on bacterial and fungal communities. Biomarker data indicated that arbuscular mycorrhizal fungi (AMF) may play an important role in the observed soil community responses. Effects of elevated CO2 were also soil dependent, with greater influence observed in the more organic-rich soils, which also supported higher levels of AMF colonization. These results indicate that responses of soil-borne communities to elevated CO2 are different for bacteria, fungi and nematodes and dependent on the plant type and soil nutrient availability.  相似文献   

7.
The long-term responses of trees to elevated CO2 are especially crucial (1) to mitigating the rate of atmospheric CO2 increase, (2) to determining the character of future forested natural ecosystems and their spread across the landscape, and (3) to determining the productivity of future agricultural tree crops. Therefore, a long-term CO2-enrichment experiment on sour orange trees was started in 1987, and the final results after 17 years are reported herein. Four sour orange trees ( Citrus aurantium L.) were grown from seedling stage at 300 μmol mol−1 CO2 above ambient in open-top, clear-plastic-wall chambers at Phoenix, AZ. Four control trees were similarly grown at ambient CO2. All trees were supplied ample water and nutrients comparable with a commercial orchard. After a peak 2–4 years into the experiment, there was a productivity plateau at about a 70% enhancement of annual fruit and incremental wood production over the last several years of the experiment. When summed over the duration of the experiment, there was an overall enhancement of 70% of total biomass production. Much of the enhancement came from greater numbers of fruits produced, with no change in fruit size. Thicker trunks and branches and more branches and roots were produced, but the root/shoot ratio was unaffected. Also, there was almost no change in the elemental composition of the biomass produced, perhaps in part due to the minimal responsiveness of root-symbiotic arbuscular mycorrhizal fungi to the treatment.  相似文献   

8.
1. Increasing carbon dioxide concentration (E: 680 μl CO2 litre–1 vs ambient, A: 355 μl CO2 litre–1) around late-successional Alpine sedge communities of the Swiss Central Alps (2450 m) for four growing seasons (1992–1995) had no detectable effect on symbiotic N2 fixation in Trifolium alpinum —the sole N2-fixing plant species in these communities (74 ± 30 mg N m–2 year–1, A and E plots pooled).
2. This result is based on data collected in the fourth growing season showing that elevated CO2 had no effect on Trifolium above-ground biomass (4·4 ± 1·7 g m–2, A and E plots pooled, n = 24) or N content per unit land area (124 ± 51 mg N m–2, A and E pooled), or on the percentage of N Trifolium derived from the atmosphere through symbiotic N2 fixation (%Ndfa: 61·0 ± 4·1 across A and E plots) estimated using the 15N dilution method.
3. Thus, it appears that N inputs to this ecosystem via symbiotic N2 fixation will not be dramatically affected in the foreseeable future even as atmospheric CO2 continues to rise.  相似文献   

9.
Pinus banksiana seedlings were grown for 9 months in enclosures in greenhouses at CO2 concentrations of 350 or 750 μmol mol−1 with either low (0.005 to 0. 3 W m−2) or high (0.25 to 0. 90 W m−2) ultraviolet-B (UV-B) irradiances. Total seedling dry weight decreased with high UV treatment but was unaffected by CO2 enrichment. High UV treatment also shifted biomass partitioning in favor of leaf production. Both CO2 and UV treatments decreased the dark respiration rate and light compensation point. High UV light inhibited photosynthesis at 350 but not at 750 μmol mol−1 CO2 due to a UV induced increase in ribulose-1, 5-bisphosphate carboxylase/oxygenase efficiency and ribulose-1, 5-bisphosphate regeneration. Stomatal density was increased by high UV irradiance but was unchanged by CO2 enrichment.  相似文献   

10.
Elevated atmospheric CO2 concentration ([CO2]) stimulates seed mass production in many species, but the extent of stimulation shows large variation among species. We examined (1) whether seed production is enhanced more in species with lower seed nitrogen concentrations, and (2) whether seed production is enhanced by elevated [CO2] when the plant uses more N for seed production. We grew 11 annuals in open top chambers that have different [CO2] conditions (ambient: 370 μmol mol−1, elevated: 700 μmol mol−1). Elevated [CO2] significantly increased seed production in six out of 11 species with a large interspecific variation (0.84–2.12, elevated/ambient [CO2]). Seed nitrogen concentration was not correlated with the enhancement of seed production by elevated [CO2]. The enhancement of seed production was strongly correlated with the enhancement of seed nitrogen per plant caused by increased N acquisition during the reproductive period. In particular, legume species tended to acquire more N and produced more seeds at elevated [CO2] than non-nitrogen fixing species. Elevated [CO2] little affected seed [N] in all species. We conclude that seed production is limited primarily by nitrogen availability and will be enhanced by elevated [CO2] only when the plant is able to increase nitrogen acquisition.  相似文献   

11.
In this review, we discuss the potential for mycorrhizal fungi to act as a source or sink for carbon (C) under elevated CO2 and nitrogen deposition. Mycorrhizal tissue has been estimated to comprise a significant fraction of soil organic matter and below-ground biomass in a range of systems. The current body of literature indicates that in many systems exposed to elevated CO2, mycorrhizal fungi might sequester increased amounts of C in living, dead and residual hyphal biomass in the soil. Through this process, the fungi might serve as a negative feedback on the rise in atmospheric CO2 levels caused by fossil fuel burning and deforestation. By contrast, a few preliminary studies suggest that N deposition might increase turnover rates of fungal tissue and negate CO2 effects on hyphal biomass. If these latter responses are consistent among ecosystems, C storage in hyphae might decline in habitats surrounding agricultural and urban areas. When N additions occur without CO2 enrichment, effects on mycorrhizal growth are inconsistent. We note that analyses of hyphal decomposition under elevated CO2 and N additions are extremely sparse but are critical in our understanding of the impact of global change on the cycling of mycorrhizal C. Finally, shifts in the community composition of arbuscular and ectomycorrhizal fungi with increasing CO2 or N availability are frequently documented. Since mycorrhizal groups vary in growth rate and tissue quality, these changes in species assemblages could produce unforeseeable impacts on the productivity, survivorship, or decomposition of mycorrhizal biomass.  相似文献   

12.
A recognized invasive weed, Canada thistle ( Cirsium arvense L. Scop.) was grown at ambient and pre-ambient concentrations of atmospheric carbon dioxide [CO2] (373 and 287 μmol mol−1, respectively) at three levels of supplemental nitrogen (N) (3, 6 and 14.5 m M ) from seeding until flowering [77 days after sowing (DAS)]. The primary objective of the study was to determine if N supply limited the potential photosynthetic and growth response of this species to the increase in atmospheric [CO2] which occurred during the 20th century (i.e. approximately 290 to 370 μmol mol−1 CO2). Leaf photosynthesis increased both as a function of growth [CO2] and N supply during the first 46 DAS. Although by 46 DAS photosynthetic acclimation was observed relative to a common measurement CO2 concentration, there was no interaction with N supply. Both [CO2] and N increased biomass, relative growth rates and leaf area whereas root : shoot ratio was increased by CO2 and decreased by increasing N; however, N supply did not effect the relative response to [CO2] for any measured vegetative parameter up to 77 DAS. Due to the relative stimulation of shoot biomass, total above-ground N increased at elevated [CO2] for all levels of supplemental N, but nitrogen use efficiency (NUE) did not differ as a function of [CO2]. Overall, these data suggest that any potential response to increased atmospheric [CO2] in recent decades for this noxious weedy species was probably not limited by nitrogen supply.  相似文献   

13.
To study the influence of elevated CO2 and nitrogen (N) fertilization on wood properties and energy, Populus × euramericana trees were exposed to ambient CO2 (about 370 μmol mol−1 CO2) or elevated CO2 (about 550 μmol mol−1 CO2) using Free Air CO2 Enrichment (FACE) technology in combination with two N levels. Elevated CO2 was maintained for 5 years. After three growing seasons, the plantation was coppiced, one half of each experimental plot was fertilized and secondary sprouts were harvested after two growing seasons. Fourier transform infrared (FT-IR) spectra of wood revealed significant effects of both elevated CO2 and N fertilization on wood chemistry, in particular, significant increases in lignin and decreases in N content. These results were corroborated by chemical analysis. Neither elevated CO2 nor N fertilization affected the calorific value of wood, which was 19.3 MJ kg−1. N fertilization enhanced the energy production per land area by 16–69% because of higher aboveground woody biomass production than on nonfertilized land. Estimates indicate that high yielding poplar short rotation cultivation may significantly contribute as an alternative feedstock for energy production.  相似文献   

14.
The effects of 700 μmol mol−1 CO2 and 200 nmol mol−1 ozone on photosynthesis in Pinus halepensis seedlings and on N translocation from its mycorrhizal symbiont, Paxillus involutus, were studied under nutrient-poor conditions. After 79 days of exposure, ozone reduced and elevated CO2 increased net assimilation rate. However, the effect was dependent on daily accumulated exposure. No statistically significant differences in total plant mass accumulation were observed, although ozone-treated plants tended to be smaller. Changes in atmospheric gas concentrations induced changes in allocation of resources: under elevated ozone, shoots showed high priority over roots and had significantly elevated N concentrations. As a result of different shoot N concentration and net carbon assimilation rates, photosynthetic N use efficiency was significantly increased under elevated CO2 and decreased under ozone. The differences in photosynthesis were mirrored in the growth of the fungus in symbiosis with the pine seedlings. However, exposure to CO2 and ozone both reduced the symbiosis-mediated N uptake. The results suggest an increased carbon cost of symbiosis-mediated N uptake under elevated CO2, while under ozone, plant N acquisition is preferentially shifted towards increased root uptake.  相似文献   

15.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

16.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

17.
We investigated the influence of elevated CO2 and soil N availability on the growth of arbuscular mycorrhizal and non-mycorrhizal fungi, and on the number of mycophagous soil microarthropods associated with the roots of Populus tremuloides . CO2 concentration did not significantly affect percentage infection of Populus roots by mycorrhizal or non-mycorrhizal fungi. However, the extra-radical hyphal network was altered both qualitatively and quantitatively, and there was a strong interaction between CO2 and soil N availability. Under N-poor soil conditions, elevated CO2 stimulated hyphal length by arbuscular mycorrhizal fungi, but depressed growth by non-mycorrhizal fungi. There was no CO2 effect at high N availability. High N availability stimulated growth by opportunistic saprobic/pathogenic fungi. Soil mites were not affected by any treatment, but collembolan numbers were positively correlated with the increase in non-mycorrhizal fungi. Results indicate a strong interaction between CO2 concentration and soil N availability on mycorrhizal functioning and on fungal-based soil food webs.  相似文献   

18.
Eragrostis pilosa (Linn.) P Beauv., a C4 grass native to east Africa, was grown at both ambient (350 μmol mol−1 and elevated (700 μmol mol−1) CO2 in either the presence or absence of the obligate, root hemi-parasite Striga hermonthica (Del.) Benth. Biomass of infected grasses was only 50% that of uninfected grasses at both CO2 concentrations, with stems and reproductive tissues of infected plants being most severely affected. By contrast, CO2 concentration had no effect on growth of E. pilosa , although rates of photosynthesis were enhanced by 30–40% at elevated CO2. Infection with S. hermonthica did not affect either rates of photosynthesis or leaf areas of E. pilosa , but did bring about an increase in root:shoot ratio, leaf nitrogen and phosphorus concentration and a decline in leaf starch concentration at both ambient and elevated CO2. Striga hermonthica had higher rates of photosynthesis and shoot concentrations of soluble sugars at elevated CO2, but there was no difference in biomass relative to ambient grown plants. Both infection and growth at elevated CO2 resulted in an increase in the Δ13C value of leaf tissue of E. pilosa , with the CO2 effect being greater. The proportion of host-derived carbon in parasite tissue, as determined from δ13C values, was 27% and 39% in ambient and elevated CO2 grown plants, respectively. In conclusion, infection with S. hermonthica limited growth of E. pilosa , and this limitation was not removed or alleviated by growing the association at elevated CO2.  相似文献   

19.
The responses of three species of nitrogen-fixing trees to CO2 enrichment of the atmosphere were investigated under nutrient-poor conditions. Seedlings of the legume, Robinia pseudoacacia L. and the actinorhizal species, Alnus glutinosa (L.) Gaertn. and Elaeagnus angustifolia L. were grown in an infertile forest soil in controlled-environment chambers with atmospheric CO2 concentrations of 350 μl −1 (ambient) or 700 μl −1. In R. pseudoacacia and A. glutinosa , total nitrogenase (N2 reduction) activity per plant, assayed by the acetylene reduction method, was significantly higher in elevated CO2, because the plants were larger and had more nodule mass than did plants in ambient CO2. The specific nitrogenase activity of the nodules, however, was not consistently or significantly affected by CO2 enrichment. Substantial increases in plant growth occurred with CO2 enrichment despite probable nitrogen and phosphorus deficiencies. These results support the premises that nutrient limitations will not preclude growth responses of woody plants to elevated CO2 and that stimulation of symbiotic activity by CO2 enrichment of the atmosphere could increase nutrient availability in infertile habitats.  相似文献   

20.
Seeds of cherry ( Prunus avium ) were germinated and grown for two growing seasons in ambient (∼350 μmol mol−1) or elevated (ambient+∼350 μmol mol−1) CO2 mole fractions in six open-top chambers. The seedlings were fertilized once a week, following Ingestad principles in order to supply mineral nutrients at free-access rates. In the first growing season gradual drought was imposed on rapidly growing cherry seedlings by withholding water for a 6-wk drying cycle. In the second growing season, the rapid onset of drought was imposed at the height of the growing season on the seedlings which had already experienced drought in the first growing season. Elevated [CO2] significantly increased total dry-mass production in both water regimes, but did not ameliorate the growth response to drought of the cherry seedlings subjected to two sequential drying cycles. Water loss did not differ in either well watered or droughted seedlings between elevated and ambient [CO2]; consequently whole-plant water- use efficiency (the ratio of total dry mass produced to total water consumption) was significantly increased. Similar patterns of carbon allocation between shoot and root were found in elevated and ambient [CO2] when the seedlings were the same size. Thus, elevated [CO2] did not improve drought tolerance, but it accelerated ontogenetic development irrespective of water status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号