首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Several mutations have been identified in the first nucleocide binding fold (NBF) of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene. We have analyzed the DNA sequences of exons 10 and 11 in five different mammalian species, marmoset, mouse, cow, pig, and sheep; the amino acid conservation studied for nine disease mutations; and two “benign” mutations. For exon 10,87% homology at the DNA level and 93.5% at the amino acid level were found for these species. For exon 11, the lowest homology (70%), as found in mouse and the highest in marmoset (93%), whereas the amino acid sequence conservation ranged from 82.5 to 100%. All codons involved in CF mutations are highly conserved throughout evolution.  相似文献   

2.
Mutations of CFTR were studied in patients with cystic fibrosis (CF) from Bashkortostan. In total, 15 mutations were observed and 51% of all mutant alleles identified. The most diagnostically significant mutations were delF508 (33.8%), 394delTT (3.52%), CFTRdele2.3(21 kb) (1.41%), R334W (1.41%), 3849+ 10 kbC-->T (1.41%), and N1303K (1.41%). Mutations G542X, 2184insA, S1196X, and W1282X were each found in less than 1% patients. Five new mutations and two neutral substitutions were revealed. These were I488M (exon 10), 1811 + 12A-->C (intron 11), T663S (exon 13), I1226R (exon 19), 4005 + 9A-->C (intron 20), 2097A-->C (A655A, exon 13), and 3996G-->C (V1288V, exon 20). Bashkortostan was shown to differ in CFTR mutation spectrum from other regions of Russia. The results will allow direct DNA diagnostics of CF in far more families. Molecular screening of probands' relatives will contribute to identification and medical genetic counseling of heterozygous carriers, which is essential for CF prevention.  相似文献   

3.
Analysis of exons 10, 11, 14a, 15, and 20 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by denaturing-gradient-gel electrophoresis (DGGE) allowed the identification of mutations causing cystic fibrosis (CF) in 25 of 109 non-delta F508 chromosomes, as well as identification of a number of polymorphisms and sequence variations. Direct sequencing of the PCR fragments which showed an altered electrophoretic behavior not attributable to known mutations has led to the characterization of four new mutations, two in exon 11, and one each in exons 15 and 20. Screening for the different mutations thus far identified in our patients by the DGGE analysis and other independent methods should allow detection of about 70% of the molecular defects causing CF in Italy. Mutations located in exons 11 and 20 account for at least 30% of the non-delta F508 mutations present in Italian CF patients.  相似文献   

4.
The major mutation in the cystic fibrosis (CF) gene is a 3-bp deletion (delta F508) in exon 10. About 50% of the CF chromosomes in Southern Europe carry this mutation, while other previously described mutations account for less than 4%. To identify other common mutations in CF patients from the Mediterranean area, we have sequenced, exon by exon, 16 chromosomes that did not show the delta F508 deletion from a selected panel of eight unrelated CF patients. We describe here one missense and one nonsense mutation, and four sequence polymorphisms. We have also found two previously reported mutations in three chromosomes. Overall, these mutations may account for about 20% of CF alleles in the Italian and Spanish populations. No other mutations were detected in 10 out of 16 CF chromosomes after analyzing about 90% of the coding region of the CF gene, and 39 out of 54 intron/exon boundaries. Therefore, about 26% of CF mutations remain to be identified. In addition we provide the intron/exon boundary sequences for exons 4 to 9. These results together with previously reported linkage data suggest that in the Mediterranean populations further mutations may lie in the promoter region, or in intron sequences not yet analyzed.  相似文献   

5.
Cystic fibrosis (CF) is one of the most common severe autosomal recessive disorders in Caucasian populations. A mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene causes this disorder. Reported here is the first analysis of CF mutations in the Maine population. We have screened 263 CF chromosomes for 16 previously reported mutations. Analysis of DNA from 124 apparently unrelated CF patients and 15 obligate carrier parents (whose partner and affected child were unavailable for study) resulted in the identification of 91% of the CF alleles and complete genotyping of 85% of the patients. The frequencies (%) of these mutations in the Maine population are ΔF508 (75% of the chromosomes), G85E (0.76), R117H (0.76), I148T (1.1), 621+1G→T (1.1), 711+1G→T (3.0), A455E (1.1), 1717-1G→A (1.1), G542X (1.9), G551D (1.9), R560T (0.76), Y1092X (0.38), W1282X (0.38), and N1303K (1.5). The exon 10 mutation, ΔI507, and the exon 11 mutation, R553X, were not observed. Surprisingly, whereas only 5% of the alleles remain unidentified in the non-French population, the unidentified proportion in the French population is 19%. CF testing for the Maine population will be further improved as the as yet unidentified CF mutations in this population are characterized. Received: 17 January 1996 / Revised: 28 February 1996  相似文献   

6.
We have performed molecular genetic analyses on 160 Brazilian patients diagnosed with cystic fibrosis (CF). Screening of mutations in 320 CF chromosomes was performed through single strand conformation polymorphism (SSCP) and heteroduplex analyses assay followed by DNA sequencing of the 27 exons and exon/intron boundaries of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The frequency of CFTR variants of T-tract length of intron 8 (IVS8 Tn) was also investigated. This analysis enabled the detection of 232/320 CF mutations (72.2%) and complete genotyping of 61% of the patients. The deltaF508 mutation was found in 48.4% of the alleles. Another fifteen mutations (previously reported) were detected: G542X, R1162X, N1303K, R334W, W1282X, G58E, L206W, R553X, 621+1G-->T, V232D, 1717-1G-->A, 2347 delG, R851L, 2789+5G-->A, and W1089X. Five novel mutations were identified, V201M (exon 6a), Y275X (exon 6b), 2686 insT (exon 14a), 3171 delC (exon 17a), and 3617 delGA (exon 19). These results contribute to the molecular characterization of CF in the Brazilian population. In addition, the identification of the novel mutation Y275X allowed prenatal diagnosis in a high-risk fetus.  相似文献   

7.
We have identified three new frameshift mutations in the CFTR gene in patients with cystic fibrosis (CF). The first one involves the deletion of an adenine nucleotide in exon 4 in an African-American patient (CF444delA), the second involves the insertion of a cytosine nucleotide in exon 13 in an Italian patient (CF2522insC), and the third results from the deletion of a thymidine nucleotide in exon 19 in a Soviet patient (CF3821delT). Each mutation is predicted to result in premature termination of the CFTR protein.  相似文献   

8.
Summary We have developed a simple rapid DNA screening test that allows us simultaneously to analyze seven CF mutations (deltaF508, R347P, S549N, G551D, R553X, R334W, 444delA) that together account for about 60% of all CF mutations in the Italian population. It consists of three steps: multiplex polymerase chain reaction (PCR) amplification of exons 4, 7, 10 and 11; restriction endonuclease digestion of the PCR products; and vertical polyacrylamide gel electrophoresis analysis. We have used our multiplex assay for analyzing 15 CF chromosomes (non delta F508) and have found 3 cases of the R553X mutation; the latter have been confirmed by amplification and digestion of exon 11.  相似文献   

9.
Summary Cystic fibrosis (CF) is an autosomal recessive disease caused by different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The frequency of the major mutation (F508) in the Hungarian population is 64%. To identify other common mutations in CF families from Hungary, 30 nonF508 CF chromosomes were analyzed for selected mutations in exon 11 (G551D, R553X, G542X), intron 4 (621+1GT), intron 10 (1717–1GA), exon 20 (W1282X), and in exon 21 (N1303K) of the CFTR gene. In 6 of the 30 non-F508 CF chromosomes the following mutations were detected: R553X, G542X, 1717–1GA, W1282X, and N1303K. After analysis of the above eight mutations, 30% of CF chromosomes are as yet undefined and further analysis is planned.  相似文献   

10.
Cystic fibrosis (CF) is caused by CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations. We ascertained five patients with a novel complex CFTR allele, with two mutations, H939R and H949L, inherited in cis in the same exon of CFTR gene, and one different mutation per patient inherited in trans in a wide population of 289 Caucasian CF subjects from South Italy. The genotype-phenotype relationship in patients bearing this complex allele was investigated. The two associated mutations were related to classical severe CF phenotypes.  相似文献   

11.
Mutations of CFTR were studied in patients with cystic fibrosis (CF) from Bashkortostan. In total, 15 mutations were observed and 51% of all mutant alleles identified. The most diagnostically significant mutations were delF508 (33.8%), 394delTT (3.52%), CFTRdele2,3(21kb) (1.41%), R334W (1.41%), 3849 + 10kbC T (1.41%), and N1303K (1.41%). Mutations G542X, 2184insA, S1196X, and W1282X were each found in less than 1% patients. Five new mutations and two neutral substitutions were revealed. These were I488M (exon 10), 1811 + 12A C (intron 11), T663S (exon 13), I1226R (exon 19), 4005 + 9A C (intron 20), 2097A C (A655A, exon 13), and 3996G C (V1288V, exon 20). Bashkortostan was shown to differ in the CFTR mutation spectrum from other regions of Russia. The results will allow direct DNA diagnostics of CF in far more families. Molecular screening of probands" relatives will contribute to identification and medical genetic counseling of heterozygous carriers, which is essential for CF prevention.  相似文献   

12.
Two frameshift mutations in the cystic fibrosis gene   总被引:3,自引:3,他引:0       下载免费PDF全文
Cystic fibrosis (CF) is a recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. We have identified in exon 7 two frameshift mutations, one caused by a two-nucleotide insertion and the other caused by a one-nucleotide deletion; these mutations--CF1154insTC and CF1213delT, respectively, are predicted to shift the reading frame of the protein and to introduce UAA(ochre) termination codons at residues 369 and 368.  相似文献   

13.
Five different mutations have been identified in the gene causing cystic fibrosis (CF) through sequencing regions encompassing exons 1-8, including the 5' untranslated leader. Two of these apparent mutations are missense mutations, one in exon 3 (Gly to Glu at position 85; G85E) and another in exon 5 (Gly to Arg at 178; G178R), both causing significant changes in the corresponding amino acids in the encoded protein--cystic fibrosis transmembrane conductance regulator (CFTR). Two others affect the highly conserved RNA splice junction flanking the 3' end of exons 4 and 5 (621 + 1G----T, 711 + 1G----T), resulting in a probable splicing defect. The last mutation is a single-basepair deletion in exon 4, causing a frameshift. These five mutations account for the 9 of 31 non-delta F508 CF chromosomes in our Canadian CF family collection and they are not found in any of the normal chromosomes. Three of the mutations, 621 + 1G----T, 711 + 1G----T, and G85E, are found in the French-Canadian population, with 621 + 1G----T being the most abundant (5/7). There are two other sequence variations in the CFTR gene; one of them (129G----C) is located 4 nucleotides upstream of the proposed translation initiation codon and, although present only on CF chromosomes, it is not clear whether it is a disease-causing mutation; the other (R75Q) is most likely a sequence variation within the coding region.  相似文献   

14.
The alternatively spliced exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene codes for the initial part of the amino-terminal nucleotide-binding fold of CFTR. A unique feature of the acceptor splice site preceding this exon is a variable length polymorphism within the polypyrimidine tract influencing the extent of exon 9 skipping in CFTR mRNA. We investigated this repeat for its relationship to CFTR mutations and intragenic markers on 200 chromosomes from German patients with cystic fibrosis (CF). Four frequent length variations were strongly associated with the four predominant haplotypes previously defined by intragenic marker dimorphisms. One of these alleles displayed absolute linkage disequilibrium to the major CF mutation F508. Other frequent CFTR mutations were linked to one particular splice site haplotype indicating that differential exon 9 skipping contributes little to the clinical heterogeneity among CF patients with an identical mutation. We also identified a novel missense mutation (V456F) and a novel nonsense mutation (Q414X) within the coding region of exon 9. The missense mutation V456F adjacent to Walker motif A was present in a pancreas-sufficient CF patient. In contrast, the pancreas-insufficient Q414X/F508 compound heterozygote suffered from a severe form of the disease, indicating that alternative splicing of exon 9 does not overcome the deleterious effect of a stop codon within this exon.  相似文献   

15.
Summary In order to facilitate the screening for the less common mutations in the cystic fibrosis (CF) gene viz., the CF transmembrane conductance regulator gene (CFTR), marker haplotypes were determined for German nonCF (N) and CF chromosomes by polymerase chain reaction analysis of four polymorphisms upstream of the CF gene (XV-2c, KM.19, MP6-D9, J44) and six intragenic polymorphisms (GATT, TUB9, M470V, T854T, TUB18, TUB20) that span the CFTR gene from exon 6 through exon 21. Novel informative sequence variants of CFTR were detected in front of exons 10 (1525-61 A or G), 19 (3601-65 C or A), and 21 (4006-200 A or G). The CF locus exhibits strong long-range marker-marker linkage disequilibrium with breakpoints of recombination between XV-2c and KM.19, and between exons 10 and 19 of CFTR. Marker alleles of GATT-TUB9 and TUB18-TUB20 were found to be in absolute linkage disequilibrium. Four major haplotypes encompass more than 90% of German N and CF chromosomes. Fifteen CFTR mutations detected on 421 out of 500 CF chromosomes were each identified on one of these four predominant 7-marker haplotypes. Whereas all analysed F508 chromosomes carried the same KM.19-D9-J44-GATT-TUB9-M470V-T854T haplotype, another frequent mutation in Germany, R553X, was identified on two different major haplotypes. Hence, a priori haplotyping cannot exclude a particular CF mutation, but in combination with population genetic data, enables mutations to be ranked by decreasing probability.  相似文献   

16.
Summary The cystic fibrosis (CF) gene was recently identified as a gene spanning 250 kilobases (kbp) and coding for a 1480 amino acid protein, cystic fibrosis transmembrane conductance regulator (CFTR). Approximately 70% of CF mutations involve a three-base-pair deletion in CFTR exon 10, resulting in the loss of a phenylalanine at position 508 in the gene product (ΔF508). In order to screen for other molecular defects, we have used a strategy based on denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified gene segments. This method, which permits rapid detection of any sequence change in a given DNA stretch, was used successfully to analyse 61 non-ΔF508 CF chromosomes from French CF patients. A study of CFTR exons 10, 11, 14a, 15 and 20 detected three mutations located in exons 14a, 15 and 20, along with several nucleotide sequence polymorphisms. These nucleotide changes were identified by direct sequencing of PCR fragments displaying altered electrophoretic behaviour, together with some of the polymorphisms and mutations previously characterized by others. The strategy presented here constitutes a valuable tool for the development of carrier testing for individuals or couples with a family history of cystic fibrosis, and will contribute to deciphering the functionally important regions of the CFTR gene.  相似文献   

17.
18.
19.
The cystic fibrosis (CF) gene has been cloned and a major mutation identified (F508). This 3-bp deletion has been found in approximately 70% of CF chromosomes. We have used the strategy of denaturing gradient gel electrophoresis followed by direct sequencing of the polymerase chain reaction products, in order to detect other mutations in exons 10, 11 and 20 of the CF transmembrane conductance regulator gene. A new mutation, F1286-S, was found in exon 20. It involves a nucleotide change of TC at nucleotide 3989 and changes a phenylalanine into serine at position 1286 of the protein.  相似文献   

20.
A 3′ splice site consensus sequence mutation in the cystic fibrosis gene   总被引:11,自引:4,他引:7  
Summary In the cystic fibrosis (CF) gene, recently cloned, a three base pair deletion (ΔF508) has been identified in a majority of CF patients. This deletion has been found in 80% of CF chromosomes in families from north west Brittany. In order to identify new mutations we have selected 43 chromosomes negative for the three base pair deletion from these families and directly sequenced exon 11 after DNA amplification by the polymerase chain reaction. We have detected a base change (G→A) at the 3′ end of the consensus sequence of intron ten (namely 1717-1). This mutation destroys a splice site in the cystic fibrosis gene which probably produces a mutant allele. This single nucleotide mutation has been reported on two other CF chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号