首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
Adenosine A2A receptors (A2ARs) are thought to interact negatively with the dopamine D2 receptor (D2R), so selective A2AR antagonists have attracted attention as novel treatments for Parkinson''s disease (PD). However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET) with [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX) in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test). In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test). In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test) but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an important role in regulation of parkinsonism in PD.  相似文献   

2.
Neurotransmitter receptor alterations in Parkinson's disease.   总被引:17,自引:0,他引:17  
Neurotransmitter receptor binding for GABA, serotonin, cholinergic muscarinic and dopamine receptors and choline acetyltransferase (ChAc) activity were measured in the frontal cortex, caudate nucleus, putamen and globus pallidus from postmortem brains of 10 Parkinsonian patients and 10 controls. No changes in any of these systems were observed in the frontal cortex. In the caudaye nucleus, only the apparent dopamine receptor binding was altered with a significant 30% decrease in the Parkinsonian brain. Both cholinergic muscarinic and serotonin receptor binding were significantly altered in the putamen, the former increasing and the latter decreasing with respect to controls. In addition, ChAc activity was decreased in the putamen. In the globus pallidus, only ChAc activity was significantly changed, decreasing about 60%, with no change in neurotransmitter receptor binding. The results suggest that a progressive loss of dopaminergic receptors in the caudate nucleus may contribute to the decreased response of Parkinsonian patients to L-dopa and dopamine agonist therapy.  相似文献   

3.
The effect of various chronic dopaminergic treatments in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys on the brain gamma-aminobutyric acid type A (GABA(A)) /benzodiazepine receptor complex and GABA content was investigated in order to assess the GABAergic involvement in dopaminomimetic-induced dyskinesia. Three MPTP monkeys received for one month pulsatile administrations of the D1 dopamine (DA) receptor agonist SKF 82958 whereas three others received the same dose of SKF 82958 by continuous infusion. A long acting D2 DA receptor agonist, cabergoline, was given to another three animals. Untreated MPTP as well as naive control animals were also included. Pulsatile SKF 82958 relieved parkinsonian symptoms but was also associated with dyskinesia in two of the three animals whereas animals treated continuously with SKF 82958 remained as untreated MPTP monkeys. Chronic cabergoline administration improved motor response with no persistent dyskinesia. MPTP treatment induced a decrease of 3H-flunitrazepam binding in the medial anterior part of caudate-putamen and an increase in the internal segment of globus pallidus (GPi) which was in general unchanged by pulsatile or continuous SKF 82958 administration. Throughout the striatum, binding of 3H-flunitrazepam remained reduced in MPTP monkeys treated with cabergoline but was not significantly lower than untreated MPTP monkeys. Moreover, cabergoline treatment reversed the MPTP-induced increase in 3H-flunitrazepam binding in the GPi. GABA concentrations remained unchanged in the striatum, external segment of globus pallidus and GPi following MPTP denervation. Pulsatile but not continuous SKF 82958 administration decreased putamen GABA content whereas cabergoline treatment decreased caudate GABA. No alteration in GABA levels were observed in the GPe and GPi following the experimental treatments. These results suggest that: (1) D2-like receptor stimulation with cabergoline modulates GABA(A) receptor density in striatal subregions anatomically related to associative cortical afferent and (2) the absence of dyskinesia in dopaminomimetic-treated monkeys might be associated with the reversal of the MPTP-induced upregulation of the GABA(A)/benzodiazepine receptor complex in the Gpi.  相似文献   

4.
Heterogeneity of D2 dopamine receptors in different brain regions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen.  相似文献   

5.
The Wistar-Kyoto (WKY) rat is a stress-sensitive strain that is prone to depressive-like behavior in various experimental paradigms. While recent work has highlighted a role for dopamine (DA) in the pathology of depression, research on the WKY rat has also suggested that dysfunction of DA pathways may be an important component of the behavior in this strain. Previous work has demonstrated differential patterns of DA transporter sites, DA D2 and D3 receptors in WKY rats compared to control strains. To further this work, the present study utilized autoradiographic analysis of [3H]-SCH23390 binding to DA D1 receptors in various brain regions of na?ve male WKY and Wistar (WIS) rats. The results revealed a significant strain difference, with WKY rats demonstrating lower D1 binding in the caudate putamen and regions of the nucleus accumbens (p<0.05). An opposite pattern was found in the substantia nigra pars reticulata where D1 binding was higher in WKY rats compared to WIS rats (p<0.05). Because the D1 receptor represents a critical site where DA acts to modify behavior related to depression, the altered expression of this receptor in the WKY rat found in the present study may be reflective of the depressive susceptibility noted in this strain.  相似文献   

6.
Abstract : Studies in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys and in parkinsonian patients show elevated preproenkephalin (PPE) mRNA levels, unaltered by chronic l -DOPA therapy, whereas preprotachykinin (PPT) mRNA levels are decreased by the lesion and corrected by l -DOPA. The relative contributions of the dopamine D1 and D2 receptors for PPE mRNA regulation were investigated in the present study and compared with those for PPT mRNA. In situ hybridization was used to measure peptide mRNA levels in the striatum of MPTP cynomolgus monkeys after chronic 1-month treatment with the D1 agonist SKF-82958, administered subcutaneously in pulsatile or continuous mode, compared with the long-acting D2 agonist cabergoline. Normal as well as untreated MPTP animals were also studied. PPE mRNA levels were elevated in the caudate nucleus and putamen of untreated MPTP monkeys compared with control animals with a more pronounced increase in the lateral as compared with the medial part of both structures. PPT mRNA levels showed a rostrocaudal gradient, with higher values in the middle of the caudate-putamen and more so in the medial versus the lateral parts. PPT mRNA levels were decreased in the caudate and putamen of untreated MPTP monkeys compared with control animals, and this was observed in the middle and posterior parts of these brain areas. Elevated PPE and decreased PPT mRNA levels observed after MPTP exposure were corrected after treatment with cabergoline (0.25 mg/kg, every other day), a dose that had antiparkinsonian effects and did not give sustained dyskinesia. In contrast, elevated PPE mRNA levels observed in untreated MPTP monkeys were markedly increased by pulsatile administration of SKF-82958 (1 mg/kg, three times daily) in two monkeys in which the parkinsonian symptoms were improved and dyskinesias developed, whereas it remained close to control values in a third one that did not display dyskinesias despite a sustained improvement in disability ; a shorter duration of motor benefit (wearing off) over time was observed in these three animals. By contrast, pulsatile administration of SKF-82958 corrected the decreased PPT level observed in untreated MPTP monkeys. Continuous treatment with SKF-82958 (equivalent daily dose) produced no clear antiparkinsonian and dyskinetic responses and did not alter the denervation-induced elevation of PPE or decrease of PPT mRNA levels. The present data suggest an opposite contribution of the dopamine D1 receptors (stimulatory) as compared with the dopamine D2 receptors (inhibitory) on PPE mRNA, whereas a similar stimulatory contribution of D1 or D2 receptors is observed for PPT mRNA. An increase in PPE expression could be involved in the induction of dyskinesias and wearing off, whereas our data do not support this link for PPT. The antiparkinsonian response was associated with a correction of the lesion-induced decrease of PPT.  相似文献   

7.
This study examined how perinatal phencyclidine (PCP) treatment would affect dopamine D2 receptor and dopamine transporter (DAT) binding at different stages after treatment cessation. Female rat pups received injections of PCP (10 mg/kg, s.c.) or saline on postnatal day (PN)7, 9 and 11. D2 receptor and transporter binding was examined at four time-points (PN12, 18, 32 and 96) following injections. PCP treatment altered D2 receptor binding throughout development, with a final end-point of 22-33% decreased binding at adulthood in the nucleus accumbens and caudate putamen (P < 0.01), accompanied by a small but significant increase in DAT binding in the caudate putamen. Tyrosine hydroxylase mRNA expression was also significantly increased by 25% (P < 0.05) in the ventral tegmental area of adult rats, suggesting that this model may produce a long-term increase in dopamine output. This study demonstrates that early insult to the brain from NMDA receptor hypofunction alters the dopaminergic system at different stages of development.  相似文献   

8.
The neuronal dopamine transporter/uptake site can be covalently labeled with the photoaffinity probe 1-(2-[bis-(4-fluorophenyl) methoxy]ethyl)-4-[2-(4-azido-3-[125I]iodophenyl)ethyl]piperazine [( 125I]FAPP) and visualized following sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Upon photolysis, [125I]FAPP specifically incorporated into a polypeptide of apparent Mr = 62,000 in membranes from both the putamen and the caudate nucleus of control, Alzheimer's, schizophrenia, and Huntington's diseased brain, and following complete deglycosylation, migrated as an Mr approximately 48,000 polypeptide. In parkinsonian postmortem putamen, however, there was no detectable photoincorporation of [125I]FAPP into the ligand binding subunit of the dopamine transporter. [125I]FAPP did specifically label the Mr 62,000 polypeptide of parkinsonian caudate, although with efficiencies of 20-50% of control. The asymmetrical loss of the dopamine transporter in Parkinson's diseased striatum was confirmed in reversible receptor binding experiments using [3H]GBR-12935 (3H-labeled 1-[2-(diphenylmethoxy) ethyl]-4-(3-phenylpropyl)piperazine). In parkinsonian putamen, mazindol competitively inhibited the binding of [3H]GBR-12935 with an estimated affinity (Ki approximately 2,000 nM) 10 times lower than in controls (Ki approximately 30 nM), while the affinity of maxindol for [3H]GBR-12935 binding in the caudate was equal to that seen with controls (Ki approximately 50 nM). The proportion of [3H]GBR-12935 binding sites recognized by mazindol with high affinity in Parkinson's diseased caudate was, however, reduced by 50-80%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The monoamine transporter of dopamine (DA), noradrenaline, and 5-hydroxytryptamine synaptic vesicles was assayed in rat and human brain homogenates by in vitro binding of [3H]dihydrotetrabenazine. [3H]Reserpine, a second ligand of the vesicular monoamine transporter, could not be used. [3H]Dihydrotetrabenazine binding in rat brain was stable after 72 h at 22 degrees C postmortem. In major human brain regions, [3H]dihydrotetrabenazine binding was specific and saturable (KD, 2.7 nM). Displacement constants by substrates or inhibitors of vesicular monoamine uptake, and regional distribution in human brain were similar to those found in rodents. The highest densities of binding sites were observed in caudate nucleus, putamen, and accumbens nucleus. In caudate nucleus and in putamen from normal human subjects, [3H]dihydrotetrabenazine binding and homovanillic acid concentration were significantly or nearly significantly correlated. A weaker correlation was found between [3H]dihydrotetrabenazine binding and DA, in association with a higher variability of DA. [3H]Dihydrotetrabenazine binding in caudate nucleus and in putamen decreased significantly with age, unlike DA and homovanillic acid concentrations. The results establish [3H]dihydrotetrabenazine as a presynaptic monoaminergic ligand of interest for studies on postmortem human brain.  相似文献   

10.
In the brain, dopamine and adenosine stimulate cyclic AMP (cAMP) production through D1 and A2a receptors, respectively. Using mutant mice deficient in the olfactory isoform of the stimulatory GTP-binding protein alpha subunit, Galpha(olf), we demonstrate here the obligatory role of this protein in the adenylyl cyclase responses to dopamine and adenosine in the caudate putamen. Responses to dopamine were also dramatically decreased in the nucleus accumbens but remained unaffected in the prefrontal cortex. Moreover, in the caudate putamen of mice heterozygous for the mutation, the amounts of Galpha(olf) were half of the normal levels, and the efficacy of dopamine- and CGS 21680 A(2) agonist-stimulated cAMP production was decreased. Together, these results identify Galpha(olf) as a critical parameter in the responses to dopamine and adenosine in the basal ganglia.  相似文献   

11.
12.
L-DOPA is the most commonly used treatment for symptomatic control in patients with Parkinson's disease. Unfortunately, most patients develop severe side-effects, such as dyskinesia, upon chronic l-DOPA treatment. The patophysiology of dyskinesia is unclear; however, involvement of serotonergic nerve fibers in converting l-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of l-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned l-DOPA na?ve, and dopamine-denervated chronically l-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local l-DOPA administration into normal and intact hemisphere of dopamine-lesioned l-DOPA na?ve animals significantly increased the potassium-evoked dopamine release. l-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted l-DOPA na?ve striatum, although these dopamine levels were several-folds lower than in the normal striatum, whereas no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local l-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared with those measured in l-DOPA na?ve dopamine-denervated striatum. To conclude, l-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, l-DOPA loading does not increase the dopamine release in dyskinetic animals as found in l-DOPA na?ve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior.  相似文献   

13.
P Seeman  H B Niznik 《FASEB journal》1990,4(10):2737-2744
The loss of midbrain dopamine in Parkinson's disease is accompanied by a matching loss in the dopamine transporter and a rise in the D1 and D2 receptor densities. This is found in the brain putamen and caudate tissues from unmedicated patients, and may account for the good early clinical response to L-dopa. Long-term L-dopa treatment reverts the receptor densities toward normal levels. Positron emission tomography (PET) data and in vitro data generally concur. In schizophrenia the density of the dopamine transporter as well as that of the D1 dopamine receptor is normal. The D2 receptor density, however, is consistently elevated in postmortem brain putamen and caudate nucleus, even in tissues from neuroleptic-free or drug-naive patients. Three sets of PET and single photon emission computed tomography (SPECT) data support the postmortem findings. Early evidence indicating abnormal D2 structure as well as a reduced link between D1 and D2 warrant a detailed study of the genes for these two receptors in schizophrenia.  相似文献   

14.
In monkeys rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), expression of the dopamine D3 receptor was decreased. However, levodopa-induced dyskinesia (LID), similar to the debilitating and pharmacoresistant involuntary movements elicited after long-term treatment with levodopa in patients with Parkinson disease (PD), was associated with overexpression of this receptor. Administration of a D3 receptor-selective partial agonist strongly attenuated levodopa-induced dyskinesia, but left unaffected the therapeutic effect of levodopa. In contrast, attenuation of dyskinesia by D3 receptor antagonists was accompanied by the reappearance of PD-like symptoms. These results indicated that the D3 receptor participated in both dyskinesia and the therapeutic action of levodopa, and that partial agonists may normalize D3 receptor function and correct side effects of levodopa therapy in patients with PD.  相似文献   

15.
This study investigated whether the second-generation translocator protein 18kDa (TSPO) radioligand, [18F]-FEPPA, could be used in neurodegenerative parkinsonian disorders as a biomarker for detecting neuroinflammation in the striatum. Neuroinflammation has been implicated as a potential mechanism for the progression of Parkinson’s disease (PD). Positron Emission Tomography (PET) radioligand targeting for TSPO allows for the quantification of neuroinflammation in vivo. Based on genotype of the rs6791 polymorphism in the TSPO gene, 16 mixed-affinity binders (MABs) (8 PD and age-matched 8 healthy controls (HCs)), 16 high-affinity binders (HABs) (8 PD and age-matched 8 HCs) and 4 low-affinity binders (LABs) (3 PD and 1 HCs) were identified. Total distribution volume (VT) values in the striatum were derived from a two-tissue compartment model with arterial plasma as an input function. There was a significant main effect of genotype on [18F]-FEPPA VT values in the caudate nucleus (p = 0.001) and putamen (p < 0.001), but no main effect of disease or disease x genotype interaction in either ROI. In the HAB group, the percentage difference between PD and HC was 16% in both caudate nucleus and putamen; in the MAB group, it was -8% and 3%, respectively. While this PET study showed no evidence of increased striatal TSPO expression in PD patients, the current findings provide some insights on the possible interactions between rs6791 polymorphism and neuroinflammation in PD.  相似文献   

16.
17.
Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [(11)C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.  相似文献   

18.
This 24-week double-blind, randomized, multicenter, placebo-controlled, parallel-group study was performed in 632 drug-na?ve patients with type 2 diabetes to assess efficacy and tolerability of vildagliptin (50 mg qd, 50 mg bid, or 100 mg qd). HbA1c decreased modestly in patients receiving placebo (Delta=-0.3+/-0.1%) and to a significantly greater extent in patients receiving vildagliptin 50 mg qd (Delta=-0.8+/-0 .1%), 50 mg bid (Delta=-0.8+/-0.1%), or 100 mg qd (Delta=-0.9+/-0.1%, p<0.01 for all groups VS. placebo) from an average baseline of 8.4%. In patients diagnosed >or=3 months before enrollment, HbA1c increased with placebo (Delta=+0.2+/-0.2%) and between-treatment differences (vildagliptin-placebo) were -0.8+/-0.2% (p<0.001), -0.7+/-0.2% (p=0.003), and -0.9+/-0.2% (p<0.001) with vildagliptin 50 mg qd, 50 mg bid, and 100 mg qd, respectively. There was no apparent dose-response in the overall population; however, in patients with high baseline HbA1c, there were greater reductions with either 100 mg dose regimen (Delta=-1.3+/-0.2% and -1.4+/-0.2%) compared to 50 mg qd (Delta=-0.8+/-0.1%). Body weight decreased modestly in all groups (by 0.3 to 1.8 kg). The incidence of adverse events was similar across all groups and 相似文献   

19.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

20.
DNA damage has been postulated as a mechanism of neuronal death in Parkinson's disease (PD). In the present study, genomic DNA was isolated from eight brain regions (frontal, temporal, and occipital cortex, hippocampus, caudate/putamen, thalamus, cerebellum, and midbrain) from five neuropathologically confirmed cases of Parkinson's disease and six control brains and analyzed for the presence of single and double strand breaks, melting temperature, EtBr intercalation, DNAse digestion pattern, and DNA conformations. The results showed that DNA from midbrain in PD accumulated significantly higher number of strand breaks than age-matched controls. Caudate nucleus/putamen, thalamus, and hippocampus also showed more DNA fragmentation compared to control brains. Circular dichroism studies showed that DNA conformation was altered with imprecise base stacking in midbrain, caudate nucleus/putamen, thalamus, and hippocampus in PD. However, DNA from frontal, temporal, and occipital cortex, and cerebellum was not affected significantly in PD group as compared to controls. This study provides a comprehensive database on stability, damage, and conformations of DNA in different regions in brains of PD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号