首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Methyl iodide (MeI), a weakly mutagenic and highly chemoselective chemicals, was tested for its abilities to induced the adaptive and SOS responses in E. coli CSH26/pMCP1000 (alkA′-lacZ′) and CSH26/psK1002 (umuC′-lacZ′). MeI induced the adaptive response effectively but gave a very weak SOS response. Its potent ability in inducing the adaptive response was also demonstrated by adaptation to both the mutagenic and killing effects of N-methyl-N-nitrosourea (MNU) in E. coli WP2 cells. Simultaneous treatment with MeI in a non-growth medium slightly increased the mutagenicity of MNU, probably as a result of depletion of the repair enzyme, O6-methylguanine-DNA methyltransferase, which is constitutively present in the cells. As MeI itself proved to be only weakly mutagenic, a small part of the adaptive response which we have observed may involve indirect methylation of the repair enzyme by methyl transfer from MeI-induced O6-methylguanine residues in DNA. But the extent of the induced adaptive response seems to be much higher than would be expected from the observed weak mutagenicity of MeI. It is therefore suggested that the mechanism of induction of the adaptive response may involve direct methylation of the O6-methylguanine-DNA methyltransferase itself.  相似文献   

3.
Expression of the enzymes galactokinase, thymidine kinase, and O6-methylguanine-DNA methyltransferase is occasionally coordinately regulated in human cell lines. We have measured the activities of these three enzymes in extracts of fibroblasts from individuals with hereditary galactokinase deficiency. These cells do not express measurable galactokinase activity. The levels of O6-methylguanine-DNA methyltransferase were in the normal range in cells from three galactokinase-deficient individuals. The activity of thymidine kinase in the affected cells was in the normal range for two of the three individuals. The reduced thymidine kinase activity in the third individual reflected the extremely poor growth of the cells in culture. Immortalization of one galactokinase-deficient cell line resulted in loss of O6-methylguanine-DNA methyltransferase activity, but the galactokinase and thymidine kinase levels remained unchanged. The data indicate that the loss of galactokinase activity in these individuals is the consequence of an alteration of gene expression which does not involve coordinate silencing with the thymidine kinase and methyltransferase loci.  相似文献   

4.
O6-Methylguanine (O6-MeG) is induced in DNA by methylating environmental carcinogens and various cytostatic drugs. It is repaired by O6-methylguanine-DNA methyltransferase (MGMT). If not repaired prior to replication, the lesion generates gene mutations and leads to cell death, sister chromatid exchanges (SCEs), chromosomal aberrations and malignant transformation. To address the question of how O6-MeG is transformed into genotoxic effects, isogenic Chinese hamster cell lines either not expressing MGMT (phenotypically Mex), expressing MGMT (Mex+) or exhibiting the tolerance phenotype (Mex, methylation resistant) were compared as to their clastogenic response. Mex cells were more sensitive than Mex+ cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced chromosomal breakage, with marked differences in sensitivity depending on recovery time. At early recovery time, when cells out of the first post-treatment mitosis were scored, aberration frequency was about 40% reduced in Mex+ as compared to Mex cells. At later stages of recovery when cells out of the second post-treatment mitosis were analyzed, the frequency of aberrations increased strongly in Mex cells whereas it dropped to nearly control level in Mex+ cells. From this we conclude that, in the first post-treatment replication cycle of Mex cells, only a minor part of aberrations (<40%) was due to O6-MeG whereas, in the second post-treatment replication cycle, the major part of aberrations (>90%) was caused by the lesion. Thus, O6-MeG is a potent clastogenic DNA damage that needs two DNA replication cycles in order to be transformed with high efficiency into aberrations. The same holds true for sister chromatid exchanges (SCEs). MNNG is highly potent in inducing SCEs in Mex cells in the second replication cycle after alkylation. Under these conditions, SCE induction is nearly completely prevented by the expression of MGMT. This is opposed to SCE induction in the first post-treatment replication cycle, where higher doses of MNNG were required to induce SCEs and no protective effect of MGMT was observed. This indicates that SCEs induced in the first replication cycle after alkylation are due to other lesions than O6-MeG. In methylation tolerant cells, which are characterized by impaired G–T mismatch binding and MSH2 expression, aberration frequency induced by MNNG was weakly reduced in the first and strongly reduced in the second post-treatment mitoses, as compared to CHO wild-type cells. The results indicate that mismatch repair of O6-MeG–T mispairs is decisively involved in O6-MeG born chromosomal instability and recombination. We also show that Mex+ and methylation tolerant cells are more resistant than Mex cells with regard to induction of apoptosis, indicating O6-MeG to be also an apoptosis-inducing lesion. The data are discussed as to the mechanism of cytotoxicity, aberration and SCE formation in cells treated with a methylating agent.  相似文献   

5.
A line of HeLa cells was shown to be particularly sensitive to N-methyl-N-nitrosourea (MNU) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), but not to variety of other cytotoxic agents. A resistant line (designated HeLa/A22), was derived by treating Hela cells repeatedly with MNU. Both the sensitive (HeLa) and resistant (Hela/A22) cells have a mer phenotype based both on their reduced rates of loss of O6-methylguanine (O6-MeG) from DNA and their low levels of the enzyme O6-methylguanine methyltransferase (MT). HeLa cells are therfore sensitive to unrepaired O6-MeG in DNA while the Hela/A22 cells are resistant to unexcised O6-MeG and thus the A22 cells have the mer rem+ phentype. MNU produced an imediate dose-dependent inhibition of DNA synthesis in cultures of both sensitive resistant cells which increased with time until about 4 h after treatment. DNA synthesis then recovered to near control rates in both sensitive and resistant cells before then exhibiting a progressive decrease after 24 h. DNA synthesis was more depressed at these late times after treatment in cultures of sensitive cells than in those of similarly-treated resistant cells. DNA synthesis remained depressed in sensitive cells but recovered 3 days after treatment in resistant cells.

Post treatment of incubation of MNU-treated HeLa cells with caffeine did not increase the toxic action of MNU. In contrast, post treatment of the resistant HeLa/A22 cells with caffeine resulted in a dramatic increase in the toxic effects of a higher equitoxic dose of MNU. The depressed rate of DNA synthesis observed in both cell lines after doses of MNU was partially reversed by post treatment with caffeine in both sensitive and resistant cells. These observations can be interpreted in terms of the effects of caffeine on DNA replication in treated cells.  相似文献   


6.
Estimates of genotoxic effects of mutagens at low and protracted doses are often based on linear extrapolation of data obtained at relatively high doses. To test the validity of such an approach, a comparison was made between the mutagenicity of N-methyl-N-nitrosourea (MNU) in T-lymphocytes of the rat following two treatment protocols, i.e. sub-chronic exposure to a low dose (15–45 repeated exposures to 1 mg/kg of MNU) or acute exposure to a single high dose (15, 30 or 45 mg/kg of MNU). Mutation induction appeared dramatically lower following sub-chronic treatment compared to treatment with a single high exposure. Furthermore, DNA sequence analysis of the coding region of the hprt gene in MNU-induced mutants showed that acute high dose treatment causes mainly GC → AT base pair changes, whereas sub-chronic treatment results in a significant contribution of AT base pair changes to mutation induction. We hypothesize that O6-methylguanine-DNA methyltransferase is saturated after acute treatments, while after sub-chronic treatment most O6-methylguanine is efficiently repaired. These data suggest (i) that risk estimations at low and protracted doses of MNU on the basis of linear extrapolation of effects measured at high dose are too high and (ii) that the protective effects of DNA repair processes are relatively strong at low sub-chronic exposure.  相似文献   

7.
We have investigated the genotoxic effects of 1-(2-hydroxyethyl)-1-nitrosourea (HENU). We have chosen this agent because of its demonstrated ability to produce N7-(2-hydroxyethyl) guanine (N7-HOEtG) and O6-(2-hydroxyethyl) 2′-deoxyguanosine (O6-HOEtdG); two of the DNA alkylation products produced by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). For these studies, we have used the Big Blue Rat-2 cell line that contains a lambda/lacI shuttle vector. Treatment of these cells with HENU produced a dose dependent increase in the levels of N7-HOEtG and O6-HOEtdG as quantified by HPLC with electrochemical detection. Treatment of Big Blue Rat-2 cells with either 0, 1 or 5 mM HENU resulted in mutation frequencies of 7.2±2.2×10−5, 45.2±2.9×10−5 and 120.3±24.4×10−5, respectively. Comparison of the mutation frequencies demonstrates that 1 and 5 mM HENU treatments have increased the mutation frequency by 6- and 16-fold, respectively. This increase in mutation frequency was statistically significant (P<0.001). Sequence analysis of HENU-induced mutations have revealed primarily G:C→A:T transitions (52%) and a significant number of A:T→T:A transversions (16%). We propose that the observed G:C→A:T transitions are produced by the DNA alkylation product O6-HOEtdG. These results suggest that the formation of O6-HOEtdG by BCNU treatment contributes to its observed mutagenic properties.  相似文献   

8.
The MutS-based mismatch repair (MMR) system has been conserved from prokaryotes to humans, and plays important roles in maintaining the high fidelity of genomic DNA. MutS protein recognizes several different types of modified base pairs, including methylated guanine-containing base pairs. Here, we looked at the relationship between recognition and the effects of methylating versus ethylating agents on mutagenesis, using a MutS-deficient strain of E. coli. We find that while methylating agents induce mutations more effectively in a MutS-deficient strain than in wild-type, this genetic background does not affect mutagenicity by ethylating agents. Thus, the role of E. coli MMR with methylation-induced mutagenesis appears to be greater than ethylation-induced mutagenesis. To further understand this difference an early step of repair was examined with these alkylating agents. A comparison of binding affinities of MutS with O6-alkylated guanine base paired with thymine, which could lead to transition mutations, versus cytosine which could not, was tested. Moreover, we compared binding of MutS to oligoduplexes containing different base pairs; namely, O6-MeG:T, O6-MeG:C, O6-EtG:T, O6-EtG:C, G:T and G:C. Dissociation constants (Kd), which reflect the strength of binding, followed the order G:T- > O6-MeG:T- > O6-EtG:T- = O6-EtG:C- ≥ O6-MeG:C- > G:C. These results suggest that a thymine base paired with O6-methyl guanine is specifically recognized by MutS and therefore should be removed more efficiently than a thymine opposite O6-ethylated guanine. Taken together, the data suggest that in E. coli, the MMR system plays a more significant role in repair of methylation-induced lesions than those caused by ethylation.  相似文献   

9.
Incubation in thymidine-containing medium resulted in increased lethality and micronucleus frequency in V79 cells treated with ethyl nitrosourea (ENU), methyl nitrosourea (MNU) and ethyl methanesulphonate (EMS) but not with methyl methanesulfonate (MMS). Thymidine had no effect in ENU treated HeLa cells. In V79 cells, the presence of thymidine during post-treatment DNA replication was necessary for the effect. It is suggested that the increase in chromosome damage was the result of an increased O6-alkylguanine-thymine mispairing in cells which are defective in the repair of O6-alkylguanine. Treatment of V79 cells with O6-ethylguanine resulted in increased production of both micronuclei and polyploid cells. These effects might be explained by spindle dysfunction caused by the alkylated guanine.  相似文献   

10.
Alkyl adducts at the O6-position of guanine constitute promutagenic DNA lesions likely to be involved in the initiation of malignant transformation. They can be removed by a cellular acceptor protein termed O6-alkylguanine-DNA alkyltransferase (AT). In rat liver this repair enzyme can be induced by a variety of hepatotoxins, partial hepatectomy and X-irradiation. This paper describes a stimulation of the hepatic AT by treatment of rats with the radiomimetic agent, bleomycin. Induction of AT is dose-dependent up to 20 mg bleomycin/kg and appears to level off with higher doses. Enhancement of O6-meG repair is detectable within 24 h after a single i.p. injection. Maximum AT induction was reached after 6 days and amounted to 350% of the control levels. The enhancement of AT activity is not associated with acute liver injury and initially coincides with an inhibition of [3H]deoxythymidine incorporation into hepatic DNA. This indicates that AT induction in rat liver is not necessarily dependent on tissue necrosis with increased cell replication. Since bleomycin does not produce DNA lesions recognized and repaired by the AT, the hypothesis is entertained that AT induction by these agents is part of a concerted reaction to radiation-type DNA damage.  相似文献   

11.
12.
Analysis of the biological effects of specific DNA alkylations by simple alkylating agents is complicated by the variety of sites involved. It is, therefore, of value to be able to incorporate into cellular DNA nucleosides alkylated in a single position, e.g., O6-methyldeoxyguanosine. Such cellular incorporation is particularly difficult to achieve because this nucleoside is rapidly demethylated by adenosine deaminase. We have attempted to achieve such incorporation into the DNA of V79 cells by using coformycin, an inhibitor of adenosine deaminase, and by forcing the cells to depend on exogenous purines by the use of medium containing aminopterin. The DNA of V79 cells exposed to O6-methyl-[8-3H]deoxyguanosine (2.4 μM, sp. act. 14 500 Ci/mole) showed an incorporation level of 4 × 10−8 nucleotides. When 1000-fold higher concentrations were employed (3–15 mM, sp. act. 1.6 Ci/mole), significant cytotoxicity and inhibition of DNA synthesis was observed. However, because it was not economically feasible to administer high specific activity O6-methyldeoxyguanosine to the cells at these concentrations, we could not determine the amount of labeled nucleoside incorporated into DNA. Examination of the frequency of 6-thioguanine-resistant cells in these treated populations showed no significant increase above the background level. Comparison of the cytotoxic effect of O6-methyldeoxyguanosine with deoxyadenosine showed that the toxicity induced by O6-methyldeoxyguanosine could have resulted from mimicry of deoxyadenosine, rather than by incorporation of the alkylated nucleoside itself.  相似文献   

13.
The carcinogenic and mutagenic N-nitroso compounds produce GC to AT and TA to GC transition mutations because they alkylate O6 of guanine and O4 of thymine. It has been generally assumed that these mutations occur because O6-alkylguanine forms a stable mispair with thymine and O4-alkylthymine forms a mispair with guanine. Recent studies have shown that this view is mistaken and that the alkylG·T and alkylT·G mispairs are not more stable than their alkylG·C or alkylT·A counterparts. Two possible explanations based on recent structural studies are put forward to account for the miscoding. The first possibility is that the DNA polymerase might mistake O6-alkylguanine for adenine, and O4-alkylthymine for cytosine, because of the physical similarity of these bases. O6-Methylguanine and adenine are similarly lipophilic and X-ray crystallography of the nucleosides has shown a close similarity in bond angles and lengths between O6-methylguanine and adenine, and between O4-methylthymine and cytosine. The second possible explanation is that the important factor in the miscoding is that the alkylG·T and alkylT·G mispairs retain the Watson-Crick alignment with N1 of the purine juxtaposed to N3 of the pyrimidine while the alkylG·C and alkylT·A pairs adopt a wobble conformation. 31P NMR of DNA duplexes show that the phosphodiester links both 3′ and 5′ to the C have to be distorted to accomodate the O6-ethylguanine:C pair, whereas there is less distortion of the phosphodiesters 3′ and 5′ to the T in an ethylG·T pair. Recent kinetic measurements show that the essential aspect of base selection in DNA synthesis is the ease of formation of the phosphodiester links on both the 3′ and 5′ side of the incoming base. The Watson-Crick alignment of the alkylG·T and alkylT·G mispairs may facilitate formation of these phosphodiester links, and this alignment rather than the strength of the base pairs and the extent of hydrogen bonding between them may be the crucial factor in the miscoding. If either hypothesis is correct it suggests that previously too much emphasis has been placed on the stability of the normal pairs in the replication of DNA.  相似文献   

14.
Alkylation damage, DNA repair and mutagenesis in human cells   总被引:5,自引:0,他引:5  
17 human cell lines that differ significantly in level of O6-alkylguanine-DNA alkyltransferase (AGT) activity were identified by comparing their sensitivity to the cytotoxic effect of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and determining the level of AGT activity in cell extracts from the various lines by measuring the decrease in radiolabeled O6-methylguanine from DNA, using high-performance liquid chromatography. 9 lines exhibited high levels of AGT activity, 2 showed an intermediate level (25–50% of the mean of those with the higher levels), and 6 exhibited very low or virtually undetectable levels of AGT. Included were several lines that are very deficient in capacity for nucleotide excision repair. When representatives from the 3 categories of cell lines defined by the level of AGT activity were compared for sensitivity to the cytotoxic and mutagenic effect of MNNG, they showed an inverse correlation between the degree of cell killing and frequency of mutants induced and the level of AGT activity. The cells' capacity for nucleotide excision repair did not affect these results. Exposure of cells with a high level of AGT activity to O6-methylguanine in the medium reduced the AGT activity 60–80%. These pre-treated cells exhibited a significantly higher frequency of MNNG-induced mutants than did cells that were not pre-treated, suggesting that the O6-methylguanine lesion in DNA is responsible for a significant proportion of the mutations induced. Cell strains containing substrates for assaying intrachromosomal homologous recombination were constructed using parental cell lines from each of the 3 categories of AGT activity. These strains showed an inverse correlation between the level of AGT activity and the frequency of MNNG-induced recombination. When various cell lines representing the 3 categories of AGT activity were compared for sensitivity to ethylnitrosourea, the results were consistent with AGT and nucleotide excision repair playing a role in preventing cell killing and mutation induction by this agent.  相似文献   

15.
In this study we investigated the expression of primate galactokinase in somatic cell hybrids between a thymidine kinase-deficient mouse cell line and two different primate cell lines, one of which was derived from African green monkey kidney cells and the other from chimpanzee fibroblasts. All the African green monkey-mouse hybrid clones, selected in HAT medium, expressed monkey galactokinase activity and contained a monkey chromosome similar to a human E-group chromosome. When these clones were backselected in medium containing 5-bromodeoxyuridine, both this chromosome and the monkey galactokinase activity were lost. All the hybrid clones between mouse and chimpanzee cells, which were selected in HAT medium, contained the chimpanzee chromosome 17 and expressed chimpanzee galactokinase activity. These results indicate that the linkage relationship between galactokinase and thymidine kinase has been maintained in 3 divergent primate species--man, chimpanzee, and Old World monkey.  相似文献   

16.
Styrene oxide was reacted with deoxynucleosides and DNA in aqueous buffer at pH 7.4. The products were purified by HPLC, characterized by UV spectroscopy and by chemical ionization mass spectrometry. The main products identified were 7-alkyl-, N2-alkyl- and O6-alkyldeoxyguanosine, 1-alkyl-, and N6-alkyldeoxyadenosine, N4-alkyl-, 3-alkyl- and O2-alkyldeoxycytidine and 3-alkylthymidine. The relative yields of alkylated deoxynucleosides were dG>dC>dA>T. In the reactions of styrene oxide with DNA the dominant product isolated was 7-alkylguanine but N2-alkylguanine was also detected.  相似文献   

17.
Human peripheral blood lymphocytes (PBLs) can have a range of O6-methylguanine-DNA methyltransferase (MGMT) activities. PBLs from some individuals may have almost no MGMT activity. Such individuals have most often been subject to malignancy or to immunodeficiency disease. Long-term lymphoblastoid lines (LCLs) prepared from PBLs of normal subjects by Epstein-Barr virus (EBV) transformation have MGMT activities which are in general somewhat higher than the PBLs from which they derive. Such cultures are therefore generally MGMT-positive. Only in rare cases, and generally from patients with low MGMT activity, are freshly obtained lines with very low activity obtained. There is however a 4-fold range of MGMT activity over which multiple lines derived from the same PBL sample can be found. Long-term cultivation can lead to LCLs with low activity as well as to lines of high activity. On rare occasions an MGMT-positive line may, within a few divisions, give a negative line. Some (but not all) MGMT-negative (or very low) lines have been known to gain (some) activity. Chinese hamster ovary (CHO) cell lines are in general very low in MGMT activity. Lines of higher activity can be selected by treatment with mutagenic crosslinking alkylating agents. Chinese hamster lines with high MGMT activity can be obtained by transfection with human DNA from MGMT-positive cells. Lines with significant activity can also be obtained by transfection of CHO cells with human DNA from MGMT-negative (or very low) cells. Resistance to MNNG treatment can be acquired without the acquisition of significant MGMT activity. Crosses of lines of high and low MGMT activity give equivocal results. Hybrids of low × low activity have no activity. Crosses of positive × positive strains give varied results. It has not been possible to identify MGMT-positive hybrids as including one particular chromosome by this type of experiment. There is no evidence for a general adaptive effect on MGMT synthesis greater than the variation within the cell cycle.  相似文献   

18.
The pro-mutagenicity of chemically-induced methylation of DNA at the O6 position of dexoyguanosine was studied in cultured adult rat liver epithelial cells. To modify the level of O6-methyldeoxyguanosine (O6-medGuo) resulting from exposure to an alkylating agent, partial depletion of the O6-alkylguanine-DNA alkyltransferase (AGT) repair system was produced by pretreatment of ARL 18 cells with a non-toxic dose of exogenous O6-methylguanine (O6-meG). Exposure of cells to 0.6 mM O6-meG for 4 h depleted AGT activity by about 40%. Intact and pretreated cells were exposed to a range of doses of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus was quantified by measurement of 6-thioguanine-resistant mutants. The mutagenicity of MNNG was dose dependent and was greater in O6-meG pretreated cultures than in intact cultures. Immunoslot blot measurement of O6-medGuo employing a mouse monoclonal antibody demonstrated that MNNG produced O[su6-medGuo and that the intact liver cells were efficient in eliminating this lesion from their DNA. Since depletion of AGT would be expected to affect the rate of elimination of only O6-medGuo, it is concluded that this lesion is highly pro-mutagenic.  相似文献   

19.
Regulation of human thymidine kinase during the cell cycle   总被引:42,自引:0,他引:42  
  相似文献   

20.
Cells of a person homozygous for galactokinase deficiency and of her heterozygous parents were found to be deficient in the enzyme thymidine kinase. The decrease in thymidine-kinase activity may be the result of a qualitative alteration in the enzyme molecule. This is reflected in the apparent alteration in the sensitivity of the enzyme to trifluorothymidine. It is suggested that this relationship between the galactokinase and thymidine kinase is not fortuitous but a reflection of their interdependence as found previously in the Chinese hamster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号