首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
色素细胞是皮肤图案形成的基础,为了解鳜(Siniperca chuatsi)皮肤图案区域色素细胞的种类、分布及排列特征,采用光学显微镜与电子显微镜对鳜皮肤中图案区域、非图案区域及交界处皮肤的色素细胞进行显微及超显微结构观察。结果显示,鳜皮肤中含有黑色素细胞、黄色素细胞、红色素细胞及虹彩细胞,主要分布于表皮层和色素层。头部过眼条纹、躯干纵带、躯干斑块等图案区域皮肤表皮层与色素层均含有黑色素细胞,非图案区域仅表皮层含有少量黑色素细胞。躯干图案区域(纵带、斑块)皮肤色素层色素细胞分布层次明显,由外到内依次为黄色素细胞、红色素细胞、黑色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较长,整齐水平排列;躯干非图案区域皮肤色素层由外到内依次为黄色素细胞、红色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较短,无规则排列。头部过眼条纹色素层含有4种色素细胞,色素细胞数量较少,且无规则排列,其中,黑色素细胞内黑色素颗粒较大。交界处皮肤色素层黑色素细胞数量向非图案区域一侧逐渐减少,虹彩细胞数量逐渐增加。结果表明,鳜图案区域与非图案区域、不同图案区域的色素细胞分布与排列各不相同,本研究结果为鳜色素细胞图案化形成机制提供了基础资料。  相似文献   

2.
Colour patterns are a prominent feature of many animals and are of high evolutionary relevance. In zebrafish, the adult pigment pattern comprises alternating stripes of two pigment cell types, melanophores and xanthophores. How the stripes are defined and a straight boundary is formed remains elusive. We find that mutants lacking one pigment cell type lack a striped pattern. Instead, cells of one type form characteristic patterns by homotypic interactions. Using mosaic analysis, we show that juxtaposition of melanophores and xanthophores suffices to restore stripe formation locally. Based on this, we have analysed the pigment pattern of two adult specific mutants: leopard and obelix. We demonstrate that obelix is required in melanophores to promote their aggregation and controls boundary integrity. By contrast, leopard regulates homotypic interaction within both melanophores and xanthophores, and interaction between the two, thus controlling boundary shape. These findings support a view in which cell-cell interactions among pigment cells are the major driving force for adult pigment pattern formation.  相似文献   

3.
Summary The change in distribution of melanophores from stage 28+ (uniform melanophore pattern) to stage 34 (banded melanophore pattern) and the participation of xanthophores in these changes has been investigated inTriturus alpestris embryos by studying the social behaviour of single cells. While melanophores are clearly visible from outside the embryo at stage 28+, xanthophores cannot be recognized from the outside until after stage 34. In ultrathin sections of stage 34 embryos, xanthophores are observed alternating with melanophores in a zonal distribution (Epperlein 1982). Using detached pieces of dorsolateral trunk skin, which retain their chromatophores after detachment, the entire distribution of melanophores and xanthophores can be visualized in a scanning electron microscope (SEM). In ambiguous cases (early stages), cells were reprocessed for transmission electron microscopy (TEM) and the presence of the characteristic pigment organelles was assessed. In addition, xanthophores were specifically identified by pteridine fluorescence with dilute ammonia. Pteridines were also identified chromatographically in skin homogenates. The combination of these methods allowed precise identification and quantitative determination of melanophores and xanthophores. Both cell types were present as codistributed, biochemically differentiated cells at stage 28+. Changes in the pattern up to stage 34 were due to the rearrangement at the epidermal-mesodermal interface of a relatively fixed number of melanophores which became preferentially localised at the dorsal somite edge and at the lateral plate mesoderm, and to the distribution of an increasing number of xanthophores to subepidermal locations in the dorsal fin and between the melanophore bands. Concomitant was an increase in the thickness of the epidermal basement membrane and a change in shape of chromatophores from elongate via stellate to rosette shaped, which may be correlated with a shift from migratory to sessile phases.  相似文献   

4.
As part of an ongoing comparative study of pigment patterns and their formation in embryos and larvae of ambystomatid salamanders, Ambystoma maculatum from two differnt populations, one in the northern (New York) and one in the central (Tennessee) United States, were investigated. Scanning electron microscopy was used to study early neural crest development. Light microscopy in combination with markers for the two pigment cell types (xanthophores and melanophores) made it possible to follow pigment cell migration before the pigment cells were fully differentiated. A bilateral pigment pattern consisting of two horizontal melanophore stripes surrounding an interstripe area populated by xanthophores formed in the larvae. In both populations, some variation was present in the form of a continuum ranging from clear horizontal stripes to extreme cases with a random pattern. Unlike the other ambystomatids that have been investigated, the neural crest cells in A. maculatum do not form aggregates and no vertical bars are formed. Instead, both the pattern and its formation are very similar to what has been reported for salamandrids. If pattern formation mechanisms can act as developmental constraints we would expect the A. maculatum pattern to be the primitive condition in the Ambystomatidae, using the Salamandridae as the outgroup. There is no strong support for this when aggregate formation is used as a character and mapped onto phylogenies for the group. The aggregate formation mechanism, and the pigment pattern that it leads to, have most likely been secondarily lost in A. maculatum. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Irides from adult Ringed Turtle Doves (Streptopelia risoria) were examined using both light and electron microscopy. The anterior surface of the iris stroma contained numerous large venous sinuses overlying bright yellow pigment cells which we classified as "reflecting xanthophores." The pigment cells were filled with irregularly arranged yellow reflecting crystals and occasional pterinosome-like structures. The irides were extracted in NaOH and the extracted pigments analyzed using paper chromatography and spectrophotometry. A unique bright orange fluorescent band was found in the iris extract, but the chemical nature of the band was not determined. Although guanine was expected to be a major component of the reflecting "platelets," based on previous work with other Columbiformes, it could not be demonstrated chromatographically or spectrophotometrically.  相似文献   

6.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

7.
Ectothermic vertebrates exhibit a diverse array of adult pigment patterns. A common element of these patterns is alternating dark and light stripes each comprising different classes of neural crest-derived pigment cells. In the zebrafish, Danio rerio, alternating horizontal stripes of black melanophores and yellow xanthophores are a prominent feature of the adult pigment pattern. In fms mutant zebrafish, however, xanthophores fail to develop and melanophore stripes are severely disrupted. fms encodes a type III receptor tyrosine kinase expressed by xanthophores and their precursors and is the closest known homologue of kit, which has long been studied for roles in pigment pattern development in amniotes. In this study we assess the cellular and temporal requirements for Fms activity in promoting adult pigment pattern development. By transplanting cells between fms mutants and either wild-type or nacre mutant zebrafish, we show that fms acts autonomously to the xanthophore lineage in promoting the striped arrangement of adult melanophores. To identify critical periods for fms activity, we isolated temperature sensitive alleles of fms and performed reciprocal temperature shift experiments at a range of stages from embryo to adult. These analyses demonstrate that Fms is essential for maintaining cells of the xanthophore lineage as well as maintaining the organization of melanophore stripes throughout development. Finally, we show that restoring Fms activity even at late larval stages allows essentially complete recovery of xanthophores and the development of a normal melanophore stripe pattern. Our findings suggest that fms is not required for establishing a population of precursor cells during embryogenesis but is required for recruiting pigment cell precursors to xanthophore fates, with concomitant effects on melanophore organization.  相似文献   

8.
Little is known about cell-cell communication in pigment cells, whereas a number of signalling molecules have been implicated to control their migration, differentiation, and proliferation. We set out to investigate the expression of cell adhesion molecules (CAMs) in the three different types of pigment cells in poikilotherms, Oryzias latipes and Xenopus laevis. In the present experiments, the expression of N-CAM and N-cadherin in the pigment cells in vitro was examined by immunocytochemistry. Melanophores and xanthophores were isolated and cultured from scales or skins, while iridophores were harvested from skins or peritoneum. The results showed that N-CAM and N-cadherin were specifically expressed in xanthophores, but not in melanophores or iridophores in both O.latipes and X.laevis. N-CAM and N-cadherin basically colocalized in the restricted regions of xanthophores, although the N-cadherin-expressed region was broader than the N-CAM-expressed region in the same cell. The incidence of N-cadherin expression was higher than that of N-CAM expression. N-CAM and N-cadherin were expressed at the tip or the base of dendrites, or at the edge between dendrites in dendritic xanthophores. N-CAM and N-cadherin usually localized in small and narrow regions of xanthophores. This distribution pattern was essentially similar in xanthophores with round morphology, which exhibited spot, band, or semicircular immunoreactive regions on the peripheral edge of the cells. The difference in the distribution of pigment granules within the cells, culture period, fixatives, or immunofluorescent markers used in the experiments did not alter the immunostaining pattern.  相似文献   

9.
Summary The barred pigment pattern (Lehman 1957) of the axolotl larva is best observed from stage 41 onwards, where it already consists of alternating transverse bands of melanophores and xanthophores along the dorsal side of the trunk. The present study investigateswhen the two populations of neural crest derived chromatophores, melanophores and xanthophores become determined andhow they interact to create the barred pigment pattern. The presence of phenol oxidase (tyrosinase) in melanophores (revealed by dopa incubation) and pteridines in xanthophores (visualized by fluorescence) were used as markers for cell differentiation in order to recognize melanophores and xanthophores before they became externally visible. It was found that melanophores and xanthophores were already determined in the premigratory neural crest, at stages 30/31 and 35–36, respectively. Between stages 35–36 and 38 they were arranged in a prepattern of several distinct, mixed chromatophore groups along the dorsal trunk, morphologically correlated in the scanning electron microscope with humps on the original crest cell string. While the occurrence of xanthophores was restricted to the chromatophore groups and around them, melanophores were already uniformly distributed in the dorsolateral flank area, having migrated from trunk neural crest portions including the groups. The bar component of the pigment pattern was subsequently initiated by xanthophores, which caused melanophores in and around the chromatophore groups to fade or become invisible. The barred pattern was established by the formation of alternating clusters of like cells, melanophores and xanthophores.  相似文献   

10.
The pigmentation pattern of ventral skin of the frog Rana esculenta consists mainly of melanophores and iridophores, rather than the three pigment cells (xanthophores, iridophores, and melanophores) which form typical dermal chromatophore units in dorsal skin. The present study deals with the precise localization and identification of the types of pigment cells in relation to their position in the dermal tracts of uncultured or cultured frog skins. Iridophores were observed by dark-field microscopy; both melanophores and iridophores were observed by transmission electron microscopy. In uncultured skins, three levels were distinguished in the dermal tracts connecting the subcutaneous tissue to the upper dermis. Melanophores and iridophores were localized in the upper openings of the tracts directed towards the superficial dermis (level 1). The tracts themselves formed level 2 and contained melanophores and a few iridophores. The inner openings of the tracts made up level 3 in which mainly iridophores were present. These latter openings faced the subcutaneous tissue In cultured skins, such pigment-cell distribution remained unchanged, except at level 2 of the tracts, where pigment cells were statistically more numerous; among these, mosaic pigment cells were sometimes observed.  相似文献   

11.
Many mutants that disrupt zebrafish embryonic pigment pattern have been isolated, and subsequent cloning of the mutated genes causing these phenotypes has contributed to our understanding of pigment cell development. However, few mutants have been identified that specifically affect development of the adult pigment pattern. Through a mutant screen for adult pigment pattern phenotypes, we identified pyewacket (pye), a novel zebrafish mutant in which development of the adult caudal fin pigment pattern is aberrant. Specifically, pye mutants have fin melanocyte pigment pattern defects and fewer xanthophores than wild-type fins. We mapped pye to an interval where a single gene, the zebrafish ortholog of the human gene DHRSX, is present. pye will be an informative mutant for understanding how xanthophores and melanocytes interact to form the pigment pattern of the adult zebrafish fin.  相似文献   

12.
Skin pigment pattern formation is a paradigmatic example of pattern formation. In zebrafish, the adult body stripes are generated by coordinated rearrangement of three distinct pigment cell‐types, black melanocytes, shiny iridophores and yellow xanthophores. A stem cell origin of melanocytes and iridophores has been proposed although the potency of those stem cells has remained unclear. Xanthophores, however, seemed to originate predominantly from proliferation of embryonic xanthophores. Now, data from Singh et al. shows that all three cell‐types derive from shared stem cells, and that these cells generate peripheral neural cell‐types too. Furthermore, clonal compositions are best explained by a progressive fate restriction model generating the individual cell‐types. The numbers of adult pigment stem cells associated with the dorsal root ganglia remain low, but progenitor numbers increase significantly during larval development up to metamorphosis, likely via production of partially restricted progenitors on the spinal nerves.  相似文献   

13.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

14.
The pigment pattern formation in embryos and larvae of three ambystomatid salamanders was investigated in an evolutionary context. Early neural crest development was studied with scanning electron microscopy. Pigment cell migration and pattern formation were investigated at the light microscopy level with markers that labelled the two pigment cell types specifically before they were fully differentiated. In all three species, the pigment pattern formation started when xanthophores that had first formed aggregates in the crest migrated ventrally. As previously observed in other species, vertical bars always form by a mechanism involving earlier onset of migration in melanophores than in xanthophores and aggregate formation in the crest. In Ambystoma talpoideum and A. annulatum, a pattern of vertical chromatophore bars formed, which was superimposed on a pattern of horizontal stripes. In Ambystoma barbouri, the tendency to form this pattern was obscured by the high density of melanophores. It is suggested that variation among species may be due to differences in the chromatophore density and in the melanophore/xanthophore ratio. Mapping of the evolution of vertical bars onto existing phylogenies for the group was confounded by controversies about how to interpret the phylogenetic data. On the phylogeny that takes all the available evidence into account, there are two equally parsimonious mappings. Vertical bars have either evolved only once and been lost twice, or evolved twice and been lost once. This rather conservative pattern can be explained both as an effect of stabilizing selection and as a result of developmental constraints. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Developmental mechanisms underlying traits expressed in larval and adult vertebrates remain largely unknown. Pigment patterns of fishes provide an opportunity to identify genes and cell behaviors required for postembryonic morphogenesis and differentiation. In the zebrafish, Danio rerio, pigment patterns reflect the spatial arrangements of three classes of neural crest-derived pigment cells: black melanocytes, yellow xanthophores and silver iridophores. We show that the D. rerio pigment pattern mutant panther ablates xanthophores in embryos and adults and has defects in the development of the adult pattern of melanocyte stripes. We find that panther corresponds to an orthologue of the c-fms gene, which encodes a type III receptor tyrosine kinase and is the closest known homologue of the previously identified pigment pattern gene, kit. In mouse, fms is essential for the development of macrophage and osteoclast lineages and has not been implicated in neural crest or pigment cell development. In contrast, our analyses demonstrate that fms is expressed and required by D. rerio xanthophore precursors and that fms promotes the normal patterning of melanocyte death and migration during adult stripe formation. Finally, we show that fms is required for the appearance of a late developing, kit-independent subpopulation of adult melanocytes. These findings reveal an unexpected role for fms in pigment pattern development and demonstrate that parallel neural crest-derived pigment cell populations depend on the activities of two essentially paralogous genes, kit and fms.  相似文献   

16.
Pigment patterns of fishes are a tractable system for studying the genetic and cellular bases for postembryonic phenotypes. In the zebrafish Danio rerio, neural crest-derived pigment cells generate different pigment patterns during different phases of the life cycle. Whereas early larvae exhibit simple stripes of melanocytes and silver iridophores in a background of yellow xanthophores, this pigment pattern is transformed at metamorphosis into that of the adult, comprising a series of dark melanocyte and iridophore stripes, alternating with light stripes of iridophores and xanthophores. Although several genes have been identified in D. rerio that contribute to the development of both early larval and adult pigment patterns, comparatively little is known about genes that are essential for pattern formation during just one or the other life cycle phase. In this study, we identify the gene responsible for the rose mutant phenotype in D. rerio. rose mutants have wild-type early larval pigment patterns, but fail to develop normal numbers of melanocytes and iridophores during pigment pattern metamorphosis and exhibit a disrupted pattern of these cells. We show that rose corresponds to endothelin receptor b1 (ednrb1), an orthologue of amniote Ednrb genes that have long been studied for their roles in neural crest and pigment cell development. Furthermore, we demonstrate that D. rerio ednrb1 is expressed both during pigment pattern metamorphosis and during embryogenesis, and cells of melanocyte, iridophore, and xanthophore lineages all express this gene. These analyses suggest a phylogenetic conservation of roles for Ednrb signaling in the development of amniote and teleost pigment cell precursors. As murine Ednrb is essential for the development of all neural crest derived melanocytes, and D. rerio ednrb1 is required only by a subset of adult melanocytes and iridophores, these analyses also reveal variation among vertebrates in the cellular requirements for Ednrb signaling, and suggest alternative models for the cellular and genetic bases of pigment pattern metamorphosis in D. rerio.  相似文献   

17.
Skin pigment pattern formation in zebrafish requires pigment‐cell autonomous interactions between melanophores and xanthophores, yet the molecular bases for these interactions remain largely unknown. Here, we examined the dali mutant that exhibits stripes in which melanophores are intermingled abnormally with xanthophores. By in vitro cell culture, we found that melanophores of dali mutants have a defect in motility and that interactions between melanophores and xanthophores are defective as well. Positional cloning and rescue identified dali as tetraspanin 3c (tspan3c), encoding a transmembrane scaffolding protein expressed by melanophores and xanthophores. We further showed that dali mutant Tspan3c expressed in HeLa cell exhibits a defect in N‐glycosylation and is retained inappropriately in the endoplasmic reticulum. Our results are the first to identify roles for a tetraspanin superfamily protein in skin pigment pattern formation and suggest new mechanisms for the establishment and maintenance of zebrafish stripe boundaries.  相似文献   

18.
Body colors of poikilothermal vertebrates are derived from three distinct types of pigment cells, melanophores, erythro/xanthophores and irido/leucophores. It is well known that melanin in melanophores is synthesized by tyrosinase within a specific organelle termed the melanosome. Although sepiapterin reductase (SPR) is an important enzyme involved in metabolizing biopterin and sepiapterin (a conspicuous pteridine as a coloring pigment in xanthophores) the distribution of SPR has not been shown in pigment cells. An antibody raised in rabbits against rat SPR was used to demonstrate the presence of SPR in pigment cells of Oryzias latipes. This study, which used immunohistochemistry with fluorescence or peroxidase/diaminobenzidine as markers, revealed that SPR could be detected readily in xanthophores, but only faintly in melanophores. These results suggest that sepiapterin is metabolized within xanthophores. Moreover, these experiments show that a protein sharing immunological cross-reactivity with rat SPR is located in teleost O. latipes xanthophores, which is significant considering the relationship of pteridine metabolism between poikilothermal vertebrates and mammals. Further progress in investigations of the roles of pteridines in vertebrates will be promoted by using these fish which can be bred in mass rather easily in the laboratory.  相似文献   

19.
Animal skin pattern is one of the good model systems used to study the mechanism of pattern formation. Molecular genetic studies with zebrafish have shown that pigment cells play a major role in the mechanism of stripe formation. Among the variety of cellular events that may be involved in the mechanism, aggregation of melanophores has been suggested as an important factor for pattern formation. However, only a few experimental studies detected the migration ability of melanophores in vivo. Here, we tried to determine whether melanophores really have the ability to aggregate in the skin of zebrafish. Melanophores in the adult stripes are packed densely and they rarely move. However, when the neighboring pigment cells are killed, they move and regenerate the stripe pattern, suggesting that melanophores retain the migration ability. To analyze the migration, we ablated a part of the melanophores by laser to give free space to the remaining cells; we then traced the migration. Contrary to our expectation, we found that melanophores repulsed one another and dispersed from the aggregated condition in the absence of xanthophores. Apparent aggregation may be forced by the stronger repulsive effect against the xanthophores, which excludes melanophores from the yellow stripe region.  相似文献   

20.
Three types of pigment cells were isolated and cultured from larval Rana pipiens, and their attachment, maintenance, and proliferation were examined in the presence of extra-cellular matrix constituents (ECMs) in primary cell culture. The initial profile of pigment cell types present on day 2 of culture reflects the relative attachment of the cells to the dishes. Changes in the numbers of cells present after day 2 reflects the influence of factors present in the culture media on the maintenance, proliferation, or detachment of each type of pigment cell. Fetal bovine serum (FBS) promoted melanophore expression, but inhibited iridophore expression. FBS had no effect on xanthophores. In contrast, ventral skin conditioned medium (VCM), which contains melanization inhibiting factor, strongly stimulated iridophore expression, while it markedly inhibited melanophore expression. VCM had little effect on xanthophores. Of the ECMs tested, collagen type I had no effect on pigment cells. Fibronectin slightly inhibited melanophore expression, while it moderately stimulated iridophores and xanthophores. The stimulatory effect of fibronectin was not as strong as that of FBS or VCM. Laminin was also tested; however, it did not allow pigment cells to attach to the dishes, at least under the culture conditions utilized. The results of these experiments are discussed in terms of the general mechanisms of pigment pattern formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号