首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study was focused on the optimization of a new fermentation process for continuous gluconic acid production by the isolated yeast-like strain Aureobasidium pullulans DSM 7085 (isolate 70). Operational fermentation parameters were optimized in chemostat cultures, using a defined glucose medium. Different optima were found for growth and gluconic acid production for each set of operation parameters. Highest productivity was recorded at pH values between 6.5 and 7.0 and temperatures between 29 and 31 degrees C. A gluconic acid concentration higher than 230 g/L was continuously produced at residence times of 12 h. A steady state extracellular gluconic acid concentration of 234 g/L was measured at pH 6.5. 122% air saturation yielded the highest volumetric productivity and product concentration. The biomass-specific productivity increased steadily upon raising air saturation. An intracellular gluconic acid concentration of about 159 g/L (0.83 mol) was determined at 31 degrees C. This is to be compared with an extracellular concentration of 223 g/L (1.16 mol), which indicates the possible existence of an active transport system for gluconic acid secretion, or the presence of extracellular glucose oxidizing enzymes. The new process provides significant advantages over the traditional discontinuous fungi operations. The process control becomes easier, thus offering stable product quality and quantity.  相似文献   

2.
Summary The central aspect of this work was to investigate the influence of nitrogen feed rate at constant C/N ratio on continuous citric acid fermentation by Candida oleophila ATCC 20177. Medium ammonia nitrogen and glucose concentrations influenced growth and production. Space-time yield (STY) meaning volumetric productivity, biomass specific productivity (BSP), product concentration, product selectivity and citrate/isocitrate ratio increased with increasing residence time (RT). BSP increased in an exponential mode lowering nitrogen feed rates. Highest BSP for citric acid of 0.13 g/(g h) was achieved at lowest NH4Cl concentration of 1.5 g/l and highest STY (1.2 g/l h) with 3 g NH4Cl/l at a RT of 25 h. Citric acid 74.2 g/l were produced at 58 h RT and 6 g NH4Cl/l. Glucose uptake rate seems to be strictly controlled by growth rate of the yeast cells. Optimum nitrogen concentration and adapted C/N ratio are essential for successful continuous citric acid fermentation. The biomass-specific nitrogen feed rate is the most important factor influencing continuous citric acid production by yeasts. Numerous chemostat experiments showed the feasibility of continuous citrate production by yeasts.  相似文献   

3.
A method is introduced which makes a continuous oxidation of glucose to glucose acid possible. This method is based on the auxiliary-substrate concept and co-metabolism, respectively. Micro-organisms (e.g. Acinetobacter calcoaceticus), which cannot assimilate glucose, but merely oxidize it, are grown continuously on a heterotrophic substrate (e.g. acetate). While growing they simultaneously synthesize gluconic acid. The productivity of the gluconic acid synthesis with a given strain depends on the dilution rate and the mixing proportion. Since growth and product synthesis are closely connected and growth yield is very much higher due to an auxiliary substrate effect in the presence of glucose than on the heterotrophic substrate alone, this method is suitable for SCP production as well. The productivity of gluconic acid production is controlled at a certain dilution rate by the mixing proportion of the growth substrate and glucose.  相似文献   

4.
In this work, carob pulp syrup was used as carbon source in C. cohnii fermentations for docosahexaenoic acid production. In preliminary experiments different carob pulp dilutions supplemented with sea salt were tested. The highest biomass productivity (4 mg/lh) and specific growth rate (0.04/h) were observed at the highest carob pulp dilution (1:10.5 (v/v), corresponding to 8.8 g/l glucose). Ammonium chloride and yeast extract were tested as nitrogen sources using different carob pulp syrup dilutions, supplemented with sea salt as growth medium. The best results were observed for yeast extract as nitrogen source. A C. cohnii fed-batch fermentation was carried out using diluted carob pulp syrup (1:10.5 v/v) supplemented with yeast extract and sea salt. The biomass productivity was 420 mg/lh, and the specific growth rate 0.05/h. Under these conditions the DHA concentration and DHA production volumetric rate attained 1.9 g/l and 18.5 mg/lh respectively after 100.4 h. The easy, clean and safe handling of carob pulp syrup makes this feedstock a promising carbon source for large-scale DHA production from C. cohnii. In this way, this carob industry by-product could be usefully disposed of through microbial production of a high value fermentation product.  相似文献   

5.
Summary Pichia stipitis NRRL Y-7124 yeast cells were for the first time immobilized both in agar gel beads and on fine nylon net for ethanol fermentation on D-xylose, in order to investigate the possibility of using the biocatalyst for improved utilization of the biomass pentose fraction. With free cells the initial xylose level affected little ethanol production, with a maximum of 22 g/l ethanol obtained in 5 days on 5% and of 40 g/l in 8 days on 10% xylose, and an average volumetric productivity of about 0.22 g/lh. The maximum ethanol concentration of 19.5% on 5% xylose with the nylon net attached cells in a continuous packed-bed column reactor was obtained with 35 h residence time. The volumetric productivities of 0.56 g/lh at 19.5 g/l ethanol and 1.0 g/lh at 15.0 g/l ethanol were markedly higher than those obtained with free cells. The stability of the immobilized biocatalyst was excellent. The same reactor could be used for at least 80 days without significant activity loss.  相似文献   

6.
The application of a new developed process for the continuous production of gluconic acid using a cascade of two bioreactors in a continuous process is shown reaching the highest concentration of gluconic acid described in the literature for continuous culture fermentation. Very high gluconic acid concentrations of 272-308 g/l have been achieved under continuous cultivation of free-growing cells of Aureobasidium pullulans in the first bioreactor at residence times (RT) between 19.5 and 24 h with formation rates for the generic product between 12.7 and 13.9 g/(l h). Gluconic acid, 350-370 g/l, was continuously reached in the second bioreactor at a total RT of 30.8-37 h with R (j) of 9.2-12 g/(l h). The highest specific gluconic acid production (m (p)) of 3.6 g/(g h) was found in the first bioreactor at the lowest RT of 19.5 h. The highest selectivity of 93.6% was determined in the first bioreactor as well. Complete glucose consumption was obtained at 37 h total residence time in the second bioreactor. Gluconic acid, 433 g/l, was continuously produced in the second bioreactor at a total RT of 37 h.  相似文献   

7.
Summary Aspergillus terreus NRRL 1960 was grown on porous disks rotating intermittently in and out of the liquid phase. This immobilized fungal cell bioreactor was used to produce itaconic acid from glucose in a continuous operation. The effect of temperature, pH, disk rotation speed, and feed rate on the itaconic acid concentration and volumetric productivity were studied. The highest itaconic acid concentration and volumetric productivity obtained were 18.2 g/l and 0.73 g/l·h, respectively, under the following conditions: temperature at 36°C, pH 3.0, disk rotation speed at 8 rpm, and feed rate at 60 ml/h. These results are better than those by conventional fermentation or by other immobilized method.Nomenclature F feed rate (l/h) - K 1s saturation constant for immobilized cells (g/l) - K 2s saturation constant for suspended cells (g/l) - M 1 increased mass of immobilized cells (g) - M 2 total mass of immobilized cells (g) - P concentration of itaconic acid (g/l) - S substrate concentration in and out of the reactor (g/l) - S 0 substrate concentration in the feed (g/l) - V liquid volume of the reactor (1) - X concentration of the suspended cells (g/l) - Y 1 apparent yield of the immobilized cells (g cells/g substrate) - Y 2 apparent yield of the suspended cells (g cell/g substrate) - Y 3 apparent yield of itaconic acid (g itaconic acid/g substrate) - m 1 maintenance and by-products coefficient of the immobilized cells (g substrate/g cell·h) - m 2 maintenance and by-products coefficient of the suspended cells (g substrate/g cell·h) - µ1max maximum specific growth rate of the immobilized cells (h-1) - µ2max maximum specific growth rate of the suspended cells (h-1)  相似文献   

8.
By extensive microbial screening, about 50 strains with the ability to secrete gluconic acid were isolated from wild flowers. The strains belong to the yeast-like mould Aureobasidium pullulans (de Bary) Arnaud. In shake flask experiments, gluconic acid concentrations between 23 and 140 g/l were produced within 2 days using a mineral medium. In batch experiments, various important fermentation parameters influencing gluconic acid production by A. pullulans isolate 70 (DSM 7085) were identified. Continuous production of gluconic acid with free-growing cells of the isolated yeast-like microorganisms was studied. About 260 g/l gluconic acid at total glucose conversion could be achieved using continuous stirred tank reactors in defined media with residence times (RT) of about 26 h. The highest space-time-yield of 19.3 g l(-1) x h(-1)) with a gluconic acid concentration of 207.5 g/l was achieved with a RT of 10.8 h. The possibility of gluconic acid production with biomass retention by immobilised cells on porous sinter glass is discussed. The new continuous gluconate fermentation process provides significant advantages over traditional discontinuous operation employing Aspergillus niger. The aim of this work was the development of a continuous fermentation process for the production of gluconic acid. Process control becomes easier, offering constant product quality and quantity.  相似文献   

9.
Summary Aspergillus terreus NRRC 1960 spores were entrapped in calcium alginate gel beads or alternotely the fungal mycelium was immobilized either on Celite R-626 or in agar gel cubes, and the biocatalyst was employed both in repeated batch and in continuous column reactors to produce itaconic acid from D-xylose or D-glucose. The highest itaconic acid yield obtained in a submerged culture batch fermentation was 54.5% based on total initial glucose (55 g/l) with a volumetric productivity of 0.32 g/l h, and 44.8% from xylose (67 g/l) with a productivity of 0.20 g/l h. In a repeated batch fermentation mycelium immobilized in agar gel had a productivity of 0.112 g/l h, and mycelium grown from spores immobilized in calcium alginate gel 0.06 g/l h, both from xylose (60 g/l). With the best immobilized biocatalyst system used employing Celite R-626 as a carrier, volumetric productivities of 1.2 g/l h from glucose and 0.56 g/l h from xylose (both at 60 g/l) were obtained in continuous column operation for more than 2 weeks.  相似文献   

10.
Fumaric acid production from xylose by immobilized Rhizopus arrhizus cells   总被引:1,自引:1,他引:0  
Summary The production of fumaric acid by immobilized Rhizopus arrhizus TKK 204-1-1a mycelium was optimized in batch fermentations using statistical experimental design and empiric modelling. The maximum fumaric acid concentration was obtained at a xylose concentration of about 6% and a carbon:nitrogen ratio of about 160. In repeated batch fermentations with immobilized cells the highest volumetric productivity of fumaric acid reached was 87 mg/l per hour when the initial xylose concentration was 10%, the C:N ratio 160 and the residence time 1.75 days. The maximum product concentration was 16.4 g/l when the initial xylose concentration was 10%, the C:N ratio 160 and the residence time 10.25 days. The maximum yield from initial xylose (6.47%) was 23.7% with a product concentration of 15.3 g/l and volumetric productivity of 71 mg/l per hour at a residence time of 9 days and a C:N ratio of 188.3. Immobilization could increase the fumaric acid concentration to a level 3.4 times higher than that produced by free cells.  相似文献   

11.
A rotating fibrous-bed bioreactor (RFB) was developed for fermentation to produce L(+)-lactic acid from glucose and cornstarch by Rhizopus oryzae. Fungal mycelia were immobilized on cotton cloth in the RFB for a prolonged period to study the fermentation kinetics and process stability. The pH and dissolved oxygen concentration (DO) were found to have significant effects on lactic acid productivity and yield, with pH 6 and 90% DO being the optimal conditions. A high lactic acid yield of 90% (w/w) and productivity of 2.5 g/L.h (467 g/h.m(2)) was obtained from glucose in fed-batch fermentation. When cornstarch was used as the substrate, the lactic acid yield was close to 100% (w/w) and the productivity was 1.65 g/L.h (300 g/h.m(2)). The highest concentration of lactic acid achieved in these fed-batch fermentations was 127 g/L. The immobilized-cells fermentation in the RFB gave a virtually cell-free fermentation broth and provided many advantages over conventional fermentation processes, especially those with freely suspended fungal cells. Without immobilization with the cotton cloth, mycelia grew everywhere in the fermentor and caused serious problems in reactor control and operation and consequently the fermentation was poor in lactic acid production. Oxygen transfer in the RFB was also studied and the volumetric oxygen transfer coefficients under various aeration and agitation conditions were determined and then used to estimate the oxygen transfer rate and uptake rate during the fermentation. The results showed that the oxygen uptake rate increased with increasing DO, indicating that oxygen transfer was limited by the diffusion inside the mycelial layer.  相似文献   

12.
Summary The time course for the synthesis of glutamic acid and by-products from glucose was investigated using immobilized cell reactor of the bacterium C.glutamicum. Lactic acid, succinic acid, alanine acid and aspartic acid were formed early in the fermentation and during the active growth phase, whereas gluconic acid, -ketoglutaric acid and proline were produced late and during the active phase of glutamic acid synthesis. Oxygen transfer rate in fermentation broth had a pronounced effect on the nature and quantities of fermentation products. In continuous fermentation and at OTR of 102.5 mMO2/l.h., formation of by-products greatly decreased and up to 58.5 g/l of glutamic acid were produced with a conversion efficiency of 74.6% of the theoretical value and volumetric productivity of 6.2 g/l.h.  相似文献   

13.
The continuous itaconic acid production from sucrose with Aspergillus terreus TKK 200-5-3 mycelium immobilized on polyurethane foam cubes was optimized in column bioreactors using statistical experimental design and empirical modelling. The highest itaconic acid product concentration calculated on the basis of the obtained model was 15.8 g l-1 in the investigated experimental area, when sucrose concentration was 13.5%, aeration rate 150 ml min-1 and residence time 178 h. From sucrose with immobilized A. terreus TKK 200-5-3 mycelium itaconic acid production was stable for at least 4.5 months in continuous column bioreactors. In comparison, using glucose as substrate and immobilized A. terreus TKK 200-5-1 mycelium as biocatalyst similar stability was obtained with higher product concentration. The omission of copper sulphate from the production medium gave the highest itaconic acid product concentration (26 g l-1) from 9% glucose with 0.25% ammonium nitrate and 0.095% magnesium sulphate.  相似文献   

14.
A complex biocatalyst system with a bioreactor equipped with a microfiltration (MF) module was employed to produce high-content fructooligosaccharides (FOS) in a continuous process initiated by a batch process. The system used mycelia of Aspergillus japonicus CCRC 93007 or Aureobasidium pullulans ATCC 9348 with beta-fructofuranosidase activity and Gluconobacter oxydans ATCC 23771 with glucose dehydrogenase activity. Calcium carbonate slurry was used to control pH to 5.5, and gluconic acid in the reaction mixture was precipitated as calcium gluconate. Sucrose solution with an optimum concentration of 30% (w/v) was employed as feed for the complex cell system, and high-content FOS was discharged continuously from a MF module. The complex cell system was run at 30 degrees C with an aeration rate of 5 vvm and produced more than 80% FOS with the remainder being 5-7% glucose and 8-10% sucrose on a dry weight basis, plus a small amount of calcium gluconate. The system worked for a 7-day continuous production process with a dilution rate of 0.04 h(-1), and the volumetric productivity for total FOS was more than 160 g L(-1) h(-1).  相似文献   

15.
Fermentation of sugar by Saccharomyces cerevisiae, for production of ethanol in an immobilized cell reactor (ICR) was successfully carried out to improve the performance of the fermentation process. The fermentation set-up was comprised of a column packed with beads of immobilized cells. The immobilization of S. cerevisiae was simply performed by the enriched cells cultured media harvested at exponential growth phase. The fixed cell loaded ICR was carried out at initial stage of operation and the cell was entrapped by calcium alginate. The production of ethanol was steady after 24 h of operation. The concentration of ethanol was affected by the media flow rates and residence time distribution from 2 to 7 h. In addition, batch fermentation was carried out with 50 g/l glucose concentration. Subsequently, the ethanol productions and the reactor productivities of batch fermentation and immobilized cells were compared. In batch fermentation, sugar consumption and ethanol production obtained were 99.6% and 12.5% v/v after 27 h while in the ICR, 88.2% and 16.7% v/v were obtained with 6 h retention time. Nearly 5% ethanol production was achieved with high glucose concentration (150 g/l) at 6 h retention time. A yield of 38% was obtained with 150 g/l glucose. The yield was improved approximately 27% on ICR and a 24 h fermentation time was reduced to 7 h. The cell growth rate was based on the Monod rate equation. The kinetic constants (K(s) and mu(m)) of batch fermentation were 2.3 g/l and 0.35 g/lh, respectively. The maximum yield of biomass on substrate (Y(X-S)) and the maximum yield of product on substrate (Y(P-S)) in batch fermentations were 50.8% and 31.2% respectively. Productivity of the ICR were 1.3, 2.3, and 2.8 g/lh for 25, 35, 50 g/l of glucose concentration, respectively. The productivity of ethanol in batch fermentation with 50 g/l glucose was calculated as 0.29 g/lh. Maximum production of ethanol in ICR when compared to batch reactor has shown to increase approximately 10-fold. The performance of the two reactors was compared and a respective rate model was proposed. The present research has shown that high sugar concentration (150 g/l) in the ICR column was successfully converted to ethanol. The achieved results in ICR with high substrate concentration are promising for scale up operation. The proposed model can be used to design a lager scale ICR column for production of high ethanol concentration.  相似文献   

16.
Summary A system coupling fermentor and decantor permitted strong accumulation of yeast flocs that were homogeneously suspended in the reactional volume. At 100–190 g/l glucose feed practically total substrate conversion was attained. At 130 g/l glucose feed the highest productivity (18.4 g.l.h) and the highest ethanol yield (90.6%) were reached with biomass levels of 80–90 g/l. We observed that the stability of this system is limited when a critical fermentation rate (D.So) close to 39–40 g/l.h (with corresponding ethanol productivities of 19–20 g/l.h) is reached. Higher fermentation rates provoked de-flocculation and lost of biomass.Symbols D dilution rate (h–1) - E ethanol (g/l) - Sr residual substrate (g/l) - So substrate in the feed (g/l) - X biomass (g/l) - ethanol yield (%) - DSo fermentation rate (g/l.h) (for Sr0) - PE ethanol productivity (g/l.h)  相似文献   

17.
High fermenter (volumetric) ethanol productivities (80 g/lh–1) were attained in a simple single-stage continuous-stirred-tank-reactor (CSTR) employing a flocculent mutant of Zymomonas mobilis with a feed containing 100g/l glucose. Under these conditions a final ethanol concentration of 47.6 g/l was obtained, representing a maximum conversion efficiency of 97% of theoretical.Nomenclature SR = Medium glucose concentration (g/l)X Biomass concentration (g/l) - P Ethanol concentration (g/l) - VP Volumetric productivity (g ethanol/l/h) - Yp/s Product yield coefficient (g ethanol/g glucose consumed) - Qp Specific rate of ethanol formation (g ethanol/g cells/h) - D Dilution rate (h–1) - Dmax Maximum dilution rate: ie., highest dilution rate at which the effluent glucose concentration 4g/l (h–1)  相似文献   

18.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

19.
Zymomonas mobilis CP4 fed-batch fermentations of glucose-fructose mixtures were carried out at different operational conditions (aeration, feed rate and substrate concentration) to test their effects on the system productivity. In these fermentations, the main products were ethanol and sorbitol. Kinetic parameters were calculated using the experimental data. However, parameters in the sorbitol synthesis rate were estimated from data recorded in different experiments in order to avoid the effect of the simultaneous cell growth and ethanol synthesis. In this case, the crude cell extract was used as source of the enzyme responsible for the sorbitol synthesis. The highest degree of conversion of fructose into sorbitol obtained with the extract was equal to 71% in a sugar mixture with an initial concentration of 200 g/l. Results obtained in the fed-batch fermentations showed that aeration of the culture has a positive effect on the final biomass concentration. However, final ethanol concentration is lower under aerated conditions. The best sugar yields to biomass and ethanol were 0.032 and 0.411 g/g, respectively. On the other hand, the highest sorbitol yield in the fed-batch fermentations was 0.148 g/g.  相似文献   

20.
Wang Y  Li Y  Pei X  Yu L  Feng Y 《Journal of biotechnology》2007,129(3):510-515
Genome shuffling is an efficient approach for the rapid improvement of industrially important microbial phenotypes. Here we improved the acid tolerance and volumetric productivity of an industrial strain Lactobacillus rhamnosus ATCC 11443 by genome shuffling. Five strains with subtle improvements in pH tolerance and volumetric productivity were obtained from the populations generated by ultraviolet irradiation and nitrosoguanidine mutagenesis, and then they were subjected for recursive protoplast fusion. A library that was more likely to yield positive colonies was created by fusing the lethal protoplasts obtained from both ultraviolet irradiation and heat treatments. After three rounds of genome shuffling, four strains that could grow at pH 3.6 were obtained. We observed 3.1- and 2.6-fold increases in lactic acid production and cell growth of the best performing at pH 3.8, respectively. The maximum volumetric productivity was 5.77+/-0.05 g/lh when fermented with 10% glucose under neutralizing condition with CaCO(3), which was 26.5+/-1.5% higher than the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号