首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble adenylyl cyclase (sAC)-derived cAMP regulates various cellular processes; however, the regulatory landscape mediating sAC protein levels remains underexplored. We consistently observed a 85 kD (sAC85) or 75 kD (sAC75) sAC protein band under glucose-sufficient or glucose-deprived states, respectively, in H69 cholangiocytes by immunoblotting. Deglycosylation by PNGase-F demonstrated that both sAC75 and sAC85 are N-linked glycosylated proteins with the same polypeptide backbone. Deglycosylation with Endo-H further revealed that sAC75 and sAC85 carry distinct sugar chains. We observed release of N-linked glycosylated sAC (sACEV) in extracellular vesicles under conditions that support intracellular sAC85 (glucose-sufficient) as opposed to sAC75 (glucose-deprived) conditions. Consistently, disrupting the vesicular machinery affects the maturation of intracellular sAC and inhibits the release of sACEV into extracellular vesicles. The intracellular turnover of sAC85 is extremely short (t1/2 ~30 min) and release of sACEV in the medium was detected within 3 h. Our observations support the maturation and trafficking in cholangiocytes of an N-linked glycosylated sAC isoform that is rapidly released into extracellular vesicles.  相似文献   

2.
Vascular amyloidosis, caused when peptide monomers aggregate into insoluble amyloid, is a prevalent age-associated pathology. Aortic medial amyloid (AMA) is the most common human amyloid and is composed of medin, a 50-amino acid peptide. Emerging evidence has implicated extracellular vesicles (EVs) as mediators of pathological amyloid accumulation in the extracellular matrix (ECM). To determine the mechanisms of AMA formation with age, we explored the impact of vascular smooth muscle cell (VSMC) senescence, EV secretion, and ECM remodeling on medin accumulation. Medin was detected in EVs secreted from primary VSMCs. Small, round medin aggregates colocalized with EV markers in decellularized ECM in vitro and medin was shown on the surface of EVs deposited in the ECM. Decreasing EV secretion with an inhibitor attenuated aggregation and deposition of medin in the ECM. Medin accumulation in the aortic wall of human subjects was strongly correlated with age and VSMC senescence increased EV secretion, increased EV medin loading and triggered deposition of fibril-like medin. Proteomic analysis showed VSMC senescence induced changes in EV cargo and ECM composition, which led to enhanced EV-ECM binding and accelerated medin aggregation. Abundance of the proteoglycan, HSPG2, was increased in the senescent ECM and colocalized with EVs and medin. Isolated EVs selectively bound to HSPG2 in the ECM and its knock-down decreased formation of fibril-like medin structures. These data identify VSMC-derived EVs and HSPG2 in the ECM as key mediators of medin accumulation, contributing to age-associated AMA development.  相似文献   

3.
Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome‐ECM interactions is limited. Here, we investigate whether the exosome‐associated lysyl oxidase family member lysyl oxidase‐like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)‐derived exosomes, placing it in direct vicinity of the ECM. It is up‐regulated twofold in EC‐derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome‐producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC‐derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia‐regulated focal ECM remodelling, a key process in both fibrosis and wound healing.  相似文献   

4.
细胞外囊泡通过参与细胞间通讯,在诸多生理病理过程中发挥着重要作用。因此,细胞外囊泡的分离分析对理解其生物学功能以及发展基于囊泡的疾病诊疗方法具有重要价值。细胞外囊泡的高效分离以及高灵敏可靠检测很大程度上取决于识别配体。核酸适配体是一类高效、特异结合其靶标分子的单链寡核苷酸。核酸适配体的易修饰和可程序化设计等特征,使其成为细胞外囊泡分离和分析的理想识别配体。为提高细胞外囊泡的分离效率,研究者们提出多种策略用于提升核酸适配体的亲和力,以及界面与细胞外囊泡的接触几率。此外,分离不同亚型的细胞外囊泡有助于理解细胞外囊泡的生物学意义。在细胞外囊泡分析方面,根据核酸适配体与细胞外囊泡识别信号的转导方式不同,分为电化学、可视化、表面增强拉曼光谱、荧光法等方法。本文综述了核酸适配体的筛选以及其在细胞外囊泡分离和分析中的最新进展、挑战及未来方向。  相似文献   

5.
6.
Integrins are expressed in a highly regulated manner at the maternal‐fetal interface during implantation. However, the significance of extracellular matrix (ECM) ligands during the integrin‐mediated embryo attachment to the endometrium is not fully understood. Thus, the distribution of fibronectin in the rat uterus and blastocyst was studied at the time of implantation. Fibronectin was absent in the uterine luminal epithelial cells but was intensely expressed in the trophoblast cells and the inner cell mass suggesting that fibronectin secreted from the blastocyst may be a possible bridging ligand for the integrins expressed at the maternal‐fetal interface. An Arg‐Gly‐Asp (RGD) peptide was used to block the RGD recognition sites on integrins, and the effect on rat blastocyst attachment to Ishikawa cells was examined. There was a significant reduction in blastocyst attachment when either the blastocysts or the Ishikawa cells were pre‐incubated with the RGD‐blocking peptide. Thus, successful attachment of the embryo to the endometrium requires the interaction of integrins on both the endometrium and the blastocyst with the RGD sequence of ECM ligands, such as fibronectin. Pre‐treatment of both blastocysts and Ishikawa cells with the RGD peptide also inhibited blastocyst attachment, but not completely, suggesting that ECM bridging ligands that do not contain the RGD sequence are also involved in embryo attachment. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The p-menthane-utilizing microorganism, strain-SF, was identified to be a strain belonging to Pseudomonas mendocina by the physiological and morphological properties. The productivity of cis-p-menthan-l-oI by this strain was examined under various conditions, and as a result it was found that this strain required both magnesium and ferric ions for the hydroxylation of p-menthane, and that the productivity increased up 20% to 35 or 40% by adding 0.1 % (w/v) of agar or a proper emulsifier (PEG nonylphenylether p: 10) into the medium. On the other hand, some new metabolites which were assumed to be the intermediates were identified to be l-hydroxymethyl-4-isopropyl cyclohexanol, l-carboxy-4-isopropyl cyclohexanol, and 3-isopropyl heptanedioic acid by IR, PMR, MS and elementary analyse. From these results, the methabolic pathway of p-menthane by strain-SF was proposed.  相似文献   

8.
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) may deliver therapeutic effects that are comparable to their parental cells. MSC-EVs are promising agents for the treatment of a variety of diseases. To reach the intermediate goal of clinically testing safety and efficacy of EVs, strategies should strive for efficient translation of current EV research. On the basis of our in vitro an in vivo findings regarding the biological actions of EVs and our experience in manufacturing biological stem cell therapeutics for routine use and clinical testing, we discuss strategies of manufacturing and quality control of umbilical cord–derived MSC-EVs. We introduce guidelines of good manufacturing practice and their practicability along the path from the laboratory to the patient. We present aspects of manufacturing and final product quality testing and highlight the principle of “The process is the product.” The approach presented in this perspective article may facilitate translational research during the development of complex biological EV-based therapeutics in a very early stage of manufacturing as well as during early clinical safety and proof-of-concept testing.  相似文献   

9.
Characteristics of the binding of human C-reactive protein (CRP) to laminin   总被引:2,自引:0,他引:2  
Human CRP binds to the basement membrane protein laminin in vitro in a Ca2+-dependent manner via the phosphorylcholine (PC) binding site of C-reactive protein (CRP). The binding was saturable at a molar ratio of 4 (CRP/laminin). The specificity of the binding was shown by inhibition of binding of labeled CRP to laminin by unlabeled CRP, but not by human IgG. Specific binding was optimal in the presence of 5 mM Ca2+, but did not occur in the absence of Ca2+ or in the presence of EDTA. The binding of Ca2+ to CRP causes a conformational change in the molecule, which is required for binding to PC and to laminin. The PC binding site of CRP was implicated in the binding to laminin on the basis of inhibition by both soluble PC and anti-idiotypic mAbs directed to the TEPC-15 PC-binding idiotype found on mouse antibodies to PC. In addition, mouse mAbs specific for the CRP PC binding site displayed decreased reactivity with CRP already bound to laminin. The binding of CRP to laminin provides a possible explanation for selective deposition of CRP at inflamed sites. The CRP-laminin interaction may serve as a means of concentrating CRP at sites of tissue damage so that the CRP might function as a ligand for leukocytes, an event that will result in removal of necrotic tissue and cell debris.  相似文献   

10.
Exosomes are important bidirectional cell–cell communicators in normal and pathological physiology. Although exosomal surface membrane proteins (surfaceome) enable target cell recognition and are an attractive source of disease marker, they are poorly understood. Here, a comprehensive surfaceome analysis of exosomes secreted by the colorectal cancer cell line SW480 is described. Sodium carbonate extraction/Triton X‐114 phase separation and mild proteolysis (proteinase K, PK) of intact exosomes is used in combination with label‐free quantitative mass spectrometry to identify 1025 exosomal proteins of which 208 are predicted to be integral membrane proteins (IMPs) according to TOPCONS and GRAVY scores. Interrogation of UniProt database‐annotated proteins reveals 124 predicted peripherally‐associated membrane proteins (PMPs). Surprisingly, 108 RNA‐binding proteins (RBPs)/RNA nucleoproteins (RNPs) are found in the carbonate/Triton X‐114 insoluble fraction. Mild PK treatment of SW480‐GFP labeled exosomes reveal 58 proteolytically cleaved IMPs and 14 exoplasmic PMPs (e.g., CLU/GANAB/LGALS3BP). Interestingly, 18 RBPs/RNPs (e.g., EIF3L/RPL6) appear bound to the outer exosome surface since they are sensitive to PK proteolysis. The finding that outer surface‐localized miRNA Let‐7a‐5p is RNase A–resistant, but degraded by a combination of RNase A/PK treatment suggests exosomal miRNA species also reside on the outer surface of exosomes bound to RBPs/RNPs.  相似文献   

11.
Summary Atherosclerotic lesions are composed of cellular elements that have migrated from the vessel lumen and wall to form the cellular component of the developing plaque. The cellular elements are influenced by various growth-regulatory molecules, cytokines, chemoattractants, and vasoregulatory molecules that regulate the synthesis of the extracellular matrix composing the plaque. Because vascular smooth muscle cells (VSMC) constitute the major cellular elements of the atherosclerotic plaque and are thought to be responsible for the extracellular matrix that becomes calcified in mature plaques, immunostaining for collagenous and noncollagenous proteins typically associated with bone matrix was conducted on VSMC grownin vitro. VSMC obtained from human aorta were grown in chambers on glass slides and immunostained for procollagen type I, bone sialoprotein, osteonectin, osteocalcin, osteopontin, decorin, and biglycan. VSMC demonstrated an intense staining for procollagen type I, and a moderately intense staining for the noncollagenous proteins, bone sialoprotein and osteonectin, two proteins closely associated with bone mineralization. Minimal immunostaining was noted for osteocalcin, osteopontin, decorin, and biglycan. The presence in VSMC of collagenous and noncollagenous proteins associated with bone mineralization suggest that the smooth muscle cells in the developing atherosclerotic plaque play an important role in the deposition of the extracellular matrix involved in calcification of developing lesions.  相似文献   

12.
Extracellular vesicles (EVs) are membrane‐enclosed particles that are released by virtually all cells from all living organisms. EVs shuttle biologically active cargo including protein, RNA, and DNA between cells. When shed by cancer cells, they function as potent intercellular messangers with important functional consequences. Cells produce a diverse spectrum of EVs, spanning from small vesicles of 40–150 nm in diameter, to large vesicles up to 10 μm in diameter. While this diversity was initially considered to be purely based on size, it is becoming evident that different classes of EVs, and different populations within one EV class may harbor distinct molecular cargo and play specific functions. Furthermore, there are considerable cell type‐dependent differences in the cargo and function of shed EVs. This review focuses on the most recent proteomic studies that have attempted to capture the EV heterogeneity by directly comparing the protein composition of different EV classes and EV populations derived from the same cell source. Recent studies comparing protein composition of the same EV class(es) derived from different cell types are also summarized. Emerging approaches to study EV heterogeneity and their important implications for future studies are also discussed.  相似文献   

13.
By two independent methods, the solubilized receptor for phosvitin (PV) has a subunit MW of 116K. Affinity chromatography, showed that only 2 of the more than 25 proteins present in the total detergent solubilized oocyte membrane extract were retained on a PV–agarose column. These proteins of MW of 116K and 100K could be eluted from PV–agarose with free PV. By gel exclusion chromatography, the receptor-125I-PV complexes elute in the void volume of a Biogel A-1.5 column. When these void fractions were assayed by SDS-PAGE only a single protein of MW of 116K was observed in addition to 125I-PV.  相似文献   

14.
Cancer cachexia is a wasting syndrome characterised by the loss of fat and/or muscle mass in advanced cancer patients. It has been well-established that cancer cells themselves can induce cachexia via the release of several pro-cachectic and pro-inflammatory factors. However, it is unclear how this process is regulated and the key cachexins that are involved. In this study, we validated C26 and EL4 as cachexic and non-cachexic cell models, respectively. Treatment of adipocytes and myotubes with C26 conditioned medium induced lipolysis and atrophy, respectively. We profiled soluble secreted proteins (secretome) as well as small extracellular vesicles (sEVs) released from cachexia-inducing (C26) and non-inducing (EL4) cancer cells by label-free quantitative proteomics. A total of 1268 and 1022 proteins were identified in the secretome of C26 and EL4, respectively. Furthermore, proteomic analysis of sEVs derived from C26 and EL4 cancer cells revealed a distinct difference in the protein cargo. Functional enrichment analysis using FunRich highlighted the enrichment of proteins that are implicated in biological processes such as muscle atrophy, lipolysis, and inflammation in both the secretome and sEVs derived from C26 cancer cells. Overall, our characterisation of the proteomic profiles of the secretory factors and sEVs from cachexia-inducing and non-inducing cancer cells provides insights into tumour factors that promote weight loss by mediating protein and lipid loss in various organs and tissues. Further investigation of these proteins may assist in highlighting potential therapeutic targets and biomarkers of cancer cachexia.  相似文献   

15.
迁移体(migrasome)是俞立教授于2015年报道的新细胞器。迁移体是细胞迁移过程中尾部产生的收缩丝的尖端或交叉点产生出的膜性细胞器。细胞产生迁移体的过程称为迁移性胞吐(migracytosis),介导细胞内物质的释放和细胞间远距离通讯,在斑马鱼胚胎发育及器官形成中具有重要作用。本篇综述总结了目前有关迁移体的研究进展,包括早期迁移体的发现过程,TSPAN4和胆固醇形成的宏结构域,整合素(integrin)与细胞外基质的相互作用以及特异性是迁移体发生的核心分子机制、迁移体研究的第一个活体动物模型以及迁移体具有和潜在的生理意义、血清中迁移体的研究。本篇综述还归纳了当前建立的迁移体研究方法和工具,包括迁移体纯化的方法、迁移体的鉴定方法、迁移体的分子标志物、迁移体的染料标记方法和抑制迁移体发生的小分子抑制剂等相关研究进展,为迁移体领域的研究奠定工具基础和树立标准。本综述还对迁移体这个新兴领域中的重要问题和研究方向进行展望,期待更多其他领域的科学家投入迁移体领域的研究中。  相似文献   

16.
We assayed the cytoskeleton organization of normal, scar, and embryonic human fibroblasts spread on major proteins of the extracellular matrix (ECM), type-I and-IV collagens, laminin 2/4, and fibronectin. Confocal fluorescent microscopy showed that fibroblasts of different origins were distinguished by their organization of actin structures and focal contacts visualized with antibodies to vinculin. It was found that different fibroblasts spread on identical ECM proteins had a common spatial organization of their cytoskeletons and some modifications of their actin structures and focal contacts. Variations in the organization of actin microfilaments indicate differences in cell interactions with various ECM proteins. The difference may be dependent on the integrin combination exposed on the cell membrane. It is suggested that fibroblasts of different origins differ in their morphogenetic functions.  相似文献   

17.
Collagens play important roles in development and homeostasis in most higher organisms. In order to function, collagens require the specific chaperone HSP47 for proper folding and secretion. HSP47 is known to bind to the collagen triple helix, but the exact positions and numbers of binding sites are not clear. Here, we employed a collagen II peptide library to characterize high-affinity binding sites for HSP47. We show that many previously predicted binding sites have very low affinities due to the presence of a negatively charged amino acid in the binding motif. In contrast, large hydrophobic amino acids such as phenylalanine at certain positions in the collagen sequence increase binding strength. For further characterization, we determined two crystal structures of HSP47 bound to peptides containing phenylalanine or leucine. These structures deviate significantly from previously published ones in which different collagen sequences were used. They reveal local conformational rearrangements of HSP47 at the binding site to accommodate the large hydrophobic side chain from the middle strand of the collagen triple helix and, most surprisingly, possess an altered binding stoichiometry in the form of a 1:1 complex. This altered stoichiometry is explained by steric collisions with the second HSP47 molecule present in all structures determined thus far caused by the newly introduced large hydrophobic residue placed on the trailing strand. This exemplifies the importance of considering all three sites of homotrimeric collagen as independent interaction surfaces and may provide insight into the formation of higher oligomeric complexes at promiscuous collagen-binding sites.  相似文献   

18.
Cartilage contains numerous noncollagenous proteins in its extracellular matrix, including proteoglycans. At least 40 such molecules have been identified, differing greatly in structure, distribution, and function. Some are present in only selected cartilages or cartilage zones, some vary in their presence with a person's development and age, and others are more universal in their expression. Some may not even be made by the chondrocytes, but may arise by absorption from the synovial fluid. In many cases, the molecules' function is unclear, but the importance of others is illustrated by their involvement in genetic disorders. This review provides a selective survey of these molecules and discusses their structure, function, and involvement in inherited and arthritic disorders.  相似文献   

19.
Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen alpha-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41 degrees C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36 degrees C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences.  相似文献   

20.
The production of abundant connective tissue within malignant tumors, the so-called desmoplastic stromal reaction, is a hallmark of colorectal adenocarcinomas. This stroma is produced to a large extent by myofibroblasts and contains various amounts of collagens (type I, III, and V), chondroitin sulfate proteoglycan, hyaluronic acid, fibronectin, and tenascin-C. In this study we have established a monolayer coculture model between two different colorectal adenocarcinoma cell lines (HRT-18, and CX-2) and colonic fibroblasts (CCD-18) to investigate the mechanisms regulating (i) the production of extracellular matrix (ECM) components, (ii) the induction of myofibroblastic differentiation, and (iii) cellular proliferation. We found that TGFbeta1 and FGF-2 stimulated ECM synthesis of fibroblasts. Myofibroblastic differentiation was stimulated by TGFbeta1 but suppressed by FGF-2. There was a mutual stimulation of proliferation between fibroblasts and carcinoma cells. The analogies with ECM components expressed in cocultures and colorectal adenocarcinoma samples suggest that the coculture model used in this study is useful to study tumor cell-fibroblast interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号