首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Musculoskeletal lower limb models have been shown to be able to predict hip contact forces (HCFs) that are comparable to in vivo measurements obtained from instrumented prostheses. However, the muscle recruitment predicted by these models does not necessarily compare well to measured electromyographic (EMG) signals. In order to verify if it is possible to accurately estimate HCFs from muscle force patterns consistent with EMG measurements, a lower limb model based on a published anatomical dataset (Klein Horsman et al., 2007. Clinical Biomechanics. 22, 239-247) has been implemented in the open source software OpenSim. A cycle-to-cycle hip joint validation was conducted against HCFs recorded during gait and stair climbing trials of four arthroplasty patients (Bergmann et al., 2001. Journal of Biomechanics. 34, 859-871). Hip joint muscle tensions were estimated by minimizing a polynomial function of the muscle forces. The resulting muscle activation patterns obtained by assessing multiple powers of the objective function were compared against EMG profiles from the literature. Calculated HCFs denoted a tendency to monotonically increase their magnitude when raising the power of the objective function; the best estimation obtained from muscle forces consistent with experimental EMG profiles was found when a quadratic objective function was minimized (average overestimation at experimental peak frame: 10.1% for walking, 7.8% for stair climbing). The lower limb model can produce appropriate balanced sets of muscle forces and joint contact forces that can be used in a range of applications requiring accurate quantification of both. The developed model is available at the website https://simtk.org/home/low_limb_london.  相似文献   

2.
A variety of musculoskeletal models are applied in different modelling environments for estimating muscle forces during gait. Influence of different modelling assumptions and approaches on model outputs are still not fully understood, while direct comparisons of standard approaches have been rarely undertaken. This study seeks to compare joint kinematics, joint kinetics and estimated muscle forces of two standard approaches offered in two different modelling environments (AnyBody, OpenSim). It is hypothesised that distinctive differences exist for individual muscles, while summing up synergists show general agreement. Experimental data of 10 healthy participants (28 ± 5 years, 1.72 ± 0.08 m, 69 ± 12 kg) was used for a standard static optimisation muscle force estimation routine in AnyBody and OpenSim while using two gait-specific musculoskeletal models. Statistical parameter mapping paired t-test was used to compare joint angle, moment and muscle force waveforms in Matlab. Results showed differences especially in sagittal ankle and hip angles as well as sagittal knee moments. Differences were also found for some of the muscles, especially of the triceps surae group and the biceps femoris short head, which occur as a result of different anthropometric and anatomical definitions (mass and inertia of segments, muscle properties) and scaling procedures (static vs. dynamic). Understanding these differences and their cause is crucial to operate such modelling environments in a clinical setting. Future research should focus on alternatives to classical generic musculoskeletal models (e.g. implementation of functional calibration tasks), while using experimental data reflecting normal and pathological gait to gain a better understanding of variations and divergent behaviour between approaches.  相似文献   

3.
The purpose of this study was to develop a method for identifying subject-specific passive elastic joint moment-angle relationships in the lower extremity, which could subsequently be used to estimate passive contributions to joint kinetics during gait. Twenty healthy young adults participated in the study. Subjects were positioned side-lying with their dominant limb supported on a table via low-friction carts. A physical therapist slowly manipulated the limb through full sagittal hip, knee, and ankle ranges of motion using two hand-held 3D load cells. Lower extremity kinematics, measured with a passive marker motion capture system, and load cell readings were used to compute joint angles and associated passive joint moments. We formulated a passive joint moment-angle model that included eight exponential functions to account for forces generated via the passive stretch of uni-articular structures and bi-articular muscles. Model parameters were estimated for individual subjects by minimizing the sum of squared errors between model predicted and experimentally measured moments. The model predictions closely replicated measured joint moments with average root-mean-squared errors of 2.5, 1.4, and 0.7 Nm about the hip, knee, and ankle respectively. We show that the models can be coupled with gait kinematics to estimate passive joint moments during walking. Passive hip moments were substantial from terminal stance through initial swing, with energy being stored as the hip extended and subsequently returned during pre- and initial swing. We conclude that the proposed methodology could provide quantitative insights into the potentially important role that passive mechanisms play in both normal and abnormal gait.  相似文献   

4.
Musculoskeletal models are widely used to estimate joint kinematics, intersegmental loads, and muscle and joint contact forces during movement. These estimates can be heavily affected by the soft tissue artefact (STA) when input positional data are obtained using stereophotogrammetry, but this aspect has not yet been fully characterised for muscle and joint forces. This study aims to assess the sensitivity to the STA of three open-source musculoskeletal models, implemented in OpenSim.A baseline dataset of marker trajectories was created for each model from experimental data of one healthy volunteer. Five hundred STA realizations were then statistically generated using a marker-dependent model of the pelvis and lower limb artefact and added to the baseline data. The STA׳s impact on the musculoskeletal model estimates was finally quantified using a Monte Carlo analysis.The modelled STA distributions were in line with the literature. Observed output variations were comparable across the three models, and sensitivity to the STA was evident for most investigated quantities. Shape, magnitude and timing of the joint angle and moment time histories were not significantly affected throughout the entire gait cycle, whereas magnitude variations were observed for muscle and joint forces. Ranges of contact force variations differed between joints, with hip variations up to 1.8 times body weight observed. Variations of more than 30% were observed for some of the muscle forces.In conclusion, musculoskeletal simulations using stereophotogrammetry may be safely run when only interested in overall output patterns. Caution should be paid when more accurate estimated values are needed.  相似文献   

5.
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.  相似文献   

6.
Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.  相似文献   

7.
The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis.  相似文献   

8.
Musculo-skeletal loading plays an important role in the primary stability of joint replacements and in the biological processes involved in fracture healing. However, current knowledge of musculo-skeletal loading is still limited. In the past, a number of musculo-skeletal models have been developed to estimate loading conditions at the hip. So far, a cycle-to-cycle validation of predicted musculo-skeletal loading by in vivo measurements has not been possible. The aim of this study was to determine the musculo-skeletal loading conditions during walking and climbing stairs for a number of patients and compare these findings to in vivo data.Following total hip arthroplasty, four patients underwent gait analysis during walking and stair climbing. An instrumented femoral prosthesis enabled simultaneous measurement of in vivo hip contact forces. On the basis of CT and X-ray data, individual musculo-skeletal models of the lower extremity were developed for each patient. Muscle and joint contact forces were calculated using an optimization algorithm. The calculated peak hip contact forces both over- and under-estimated the measured forces. They differed by a mean of 12% during walking and 14% during stair climbing.For the first time, a cycle-to-cycle validation of predicted musculo-skeletal loading was possible for walking and climbing stairs in several patients. In all cases, the comparison of in vivo measured and calculated hip contact forces showed good agreement.Thus, the authors consider the presented approach as a useful means to determine valid conditions for the analysis of prosthesis loading, bone modeling or remodeling processes around implants and fracture stability following internal fixation.  相似文献   

9.
Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p  0.05) and large effect sizes (d  0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability.  相似文献   

10.
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle–tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model.  相似文献   

11.
Hip loading affects the development of hip osteoarthritis, bone remodelling and osseointegration of implants. In this study, we analyzed the effect of subject-specific modelling of hip geometry and hip joint centre (HJC) location on the quantification of hip joint moments, muscle moments and hip contact forces during gait, using musculoskeletal modelling, inverse dynamic analysis and static optimization. For 10 subjects, hip joint moments, muscle moments and hip loading in terms of magnitude and orientation were quantified using three different model types, each including a different amount of subject-specific detail: (1) a generic scaled musculoskeletal model, (2) a generic scaled musculoskeletal model with subject-specific hip geometry (femoral anteversion, neck-length and neck-shaft angle) and (3) a generic scaled musculoskeletal model with subject-specific hip geometry including HJC location. Subject-specific geometry and HJC location were derived from CT. Significant differences were found between the three model types in HJC location, hip flexion–extension moment and inclination angle of the total contact force in the frontal plane. No model agreement was found between the three model types for the calculation of contact forces in terms of magnitude and orientations, and muscle moments. Therefore, we suggest that personalized models with individualized hip joint geometry and HJC location should be used for the quantification of hip loading. For biomechanical analyses aiming to understand modified hip joint loading, and planning hip surgery in patients with osteoarthritis, the amount of subject-specific detail, related to bone geometry and joint centre location in the musculoskeletal models used, needs to be considered.  相似文献   

12.
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p < 0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom.  相似文献   

13.
Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur.  相似文献   

14.
In using musculoskeletal models, researchers can calculate muscle forces, and subsequently joint contact forces, providing insight into joint loading and the progression of such diseases as osteoarthritis (OA). The purpose of this study was to estimate the knee contact force (KCF) in patients with varying degrees of OA severity using muscle forces and joint reaction forces derived from OpenSim. Walking data was obtained from healthy individuals (n=14) and those with moderate (n=10) and severe knee OA (n=2). For each subject, we generated 3D, muscle-actuated, forward dynamic simulations of the walking trials. Muscle forces that reproduced each subject’s gait were calculated. KCFs were then calculated using the vector sum of the muscle forces and joint reaction forces along the longitudinal axis of the femur. Moderate OA subjects exhibited a similar KCF pattern to healthy subjects, with lower second peaks (p=0.021). Although subjects with severe OA had similar initial peak KCF to healthy and moderate OA subjects (more than 4 times BW), the pattern of the KCF was very different between groups. After an initial peak, subjects with severe OA continually unloaded the joint, whereas healthy and moderate OA subjects reloaded the knee during late stance. In subjects with symmetric OA grades, there appears to be differences in loading between OA severities. Similar initial peaks of KCF imply that reduction of peak KCF may not be a compensatory strategy for OA patients; however, reducing duration of high magnitude loads may be employed.  相似文献   

15.
Musculo-tendon forces and joint reaction forces are typically estimated using a two-step method, computing first the musculo-tendon forces by a static optimization procedure and then deducing the joint reaction forces from the force equilibrium. However, this method does not allow studying the interactions between musculo-tendon forces and joint reaction forces in establishing this equilibrium and the joint reaction forces are usually overestimated. This study introduces a new 3D lower limb musculoskeletal model based on a one-step static optimization procedure allowing simultaneous musculo-tendon, joint contact, ligament and bone forces estimation during gait. It is postulated that this approach, by giving access to the forces transmitted by these musculoskeletal structures at hip, tibiofemoral, patellofemoral and ankle joints, modeled using anatomically consistent kinematic models, should ease the validation of the model using joint contact forces measured with instrumented prostheses. A blinded validation based on four datasets was made under two different minimization conditions (i.e., C1 – only musculo-tendon forces are minimized, and C2 – musculo-tendon, joint contact, ligament and bone forces are minimized while focusing more specifically on tibiofemoral joint contacts). The results show that the model is able to estimate in most cases the correct timing of musculo-tendon forces during normal gait (i.e., the mean coefficient of active/inactive state concordance between estimated musculo-tendon force and measured EMG envelopes was C1: 65.87% and C2: 60.46%). The results also showed that the model is potentially able to well estimate joint contact, ligament and bone forces and more specifically medial (i.e., the mean RMSE between estimated joint contact force and in vivo measurement was C1: 1.14BW and C2: 0.39BW) and lateral (i.e., C1: 0.65BW and C2: 0.28BW) tibiofemoral contact forces during normal gait. However, the results remain highly influenced by the optimization weights that can bring to somewhat aphysiological musculo-tendon forces.  相似文献   

16.
Knee joint forces measured from instrumented implants provide important information for testing the validity of computational models that predict knee joint forces. The purpose of this study was to validate a parametric numerical model for predicting knee joint contact forces against measurements from four subjects with instrumented TKRs during the stance phase of gait. Model sensitivity to abnormal gait patterns was also investigated. The results demonstrated good agreement for three subjects with relatively normal gait patterns, where the difference between the mean measured and calculated forces ranged from 0.05 to 0.45 body weights, and the envelopes of measured and calculated forces (from three walking trials) overlapped. The fourth subject, who had a "quadriceps avoidance" external moment pattern, initially had little overlap between the measured and calculated force envelopes. When additional constraints were added, tailored to the subject's gait pattern, the model predictions improved to complete force envelope overlap. Coefficient of multiple determination analysis indicated that the shape of the measured and calculated force waveforms were similar for all subjects (adjusted coefficient of multiple correlation values between 0.88 and 0.92). The parametric model was accurate in predicting both the magnitude and waveform of the contact force, and the accuracy of model predictions was affected by deviations from normal gait patterns. Equally important, the envelope of forces generated by the range of solutions substantially overlapped with the corresponding measured envelope from multiple gait trials for a given subject, suggesting that the variable strategic processes of in vivo force generation are covered by the solution range of this parametric model.  相似文献   

17.
Lower extremity muscle strength training is a focus of rehabilitation following total hip arthroplasty (THA). Strength of the hip abductor muscle group is a predictor of overall function following THA. The purpose of this study was to investigate the effects of hip abductor strengthening following rehabilitation on joint contact forces (JCFs) in the lower extremity and low back during a high demand step down task. Five THA patients performed lower extremity maximum isometric strength tests and a stair descent task. Patient-specific musculoskeletal models were created in OpenSim and maximum isometric strength parameters were scaled to reproduce measured pre-operative joint torques. A pre-operative forward dynamic simulation of each patient performing the stair descent was constructed using their corresponding patient-specific model to predict JCFs at the ankle, knee, hip, and low back. The hip abductor muscles were strengthened with clinically supported increases (0–30%) above pre-operative values in a probabilistic framework to predict the effects on peak JCFs (99% confidence bounds). Simulated hip abductor strengthening resulted in lower peak JCFs relative to pre-operative for all five patients at the hip (18.9–23.8 ± 16.5%) and knee (20.5–23.8 ± 11.2%). Four of the five patients had reductions at the ankle (7.1–8.5 ± 11.3%) and low back (3.5–7.0 ± 5.3%) with one patient demonstrating no change. The reduction in JCF at the hip joint and at joints other than the hip with hip abductor strengthening demonstrates the dynamic and mechanical interdependencies of the knee, hip and spine that can be targeted in early THA rehabilitation to improve overall patient function.  相似文献   

18.
Characterisation of hip joint contact forces is essential for the definition of hip joint prosthesis design requirements. In vivo hip joint contact force measurements have been made using instrumented hip joint prostheses. However, to allow determination of the range of values of joint contact force and their directions relative to anatomical structures in a range of subject groups sufficient to form an agreed data base it is necessary to adopt a different approach without the use of an implanted transducer. The use of mathematical models of the lower limb to examine the forces in soft tissues and at the joints has provided valuable insight into internal loading conditions. Several authors have proposed mathematical musculo-skeletal models. However, there have been only limited attempts at validation of these models. It is possible to use the results of in vivo force measurements from instrumented prostheses to validate the results calculated using the mathematical models. In this study two subjects with instrumented hip joint prostheses were studied. Forces at the hip joints were calculated using a three-dimensional model of the leg. Walking at slow, normal and fast speeds (0.97-2.01m/s), weight transfer from two to one leg and back again, and sit to stand were studied. Direct comparisons were made between the 'gold standard' measured hip joint contact forces and the calculated forces. There was general agreement between the calculated and measured forces in both pattern and magnitude. There were, however, discrepancies. Reasons for these differences in results are discussed and possible model developments suggested.  相似文献   

19.
Inverse dynamics is a standard approach for estimating joint loadings in the lower extremity from kinematic and ground reaction data for use in clinical and research gait studies. Variability in estimating body segment parameters and uncertainty in defining anatomical landmarks have the potential to impact predicted joint loading. This study demonstrates the application of efficient probabilistic methods to quantify the effect of uncertainty in these parameters and landmarks on joint loading in an inverse-dynamics model, and identifies the relative importance of the parameters and landmarks to the predicted joint loading. The inverse-dynamics analysis used a benchmark data set of lower-extremity kinematics and ground reaction data during the stance phase of gait to predict the three-dimensional intersegmental forces and moments. The probabilistic analysis predicted the 1-99 percentile ranges of intersegmental forces and moments at the hip, knee, and ankle. Variabilities, in forces and moments of up to 56% and 156% of the mean values were predicted based on coefficients of variation less than 0.20 for the body segment parameters and standard deviations of 2 mm for the anatomical landmarks. Sensitivity factors identified the important parameters for the specific joint and component directions. Anatomical landmarks affected moments to a larger extent than body segment parameters. Additionally, for forces, anatomical landmarks had a larger effect than body segment parameters, with the exception of segment masses, which were important to the proximal-distal joint forces. The probabilistic modeling approach predicted the range of possible joint loading, which has implications in gait studies, clinical assessments, and implant design evaluations.  相似文献   

20.
During level walking, arm swing plays a key role in improving dynamic stability. In vivo investigations with a telemeterized vertebral body replacement showed that spinal loads can be affected by differences in arm positions during sitting and standing. However, little is known about how arm swing could influence the lumbar spine and hip joint forces and motions during walking. The present study aims to provide better understanding of the contribution of the upper limbs to human gait, investigating ranges of motion and joint reaction forces.A three-dimensional motion analysis was carried out via a motion capturing system on six healthy males and five patients with hip instrumented implant. Each subject performed walking with different arm swing amplitudes (small, normal, and large) and arm positions (bound to the body, and folded across the chest). The motion data were imported in a commercial musculoskeletal analysis software for kinematic and inverse dynamic investigation.The range of motion of the thorax with respect to the pelvis and of the pelvis with respect to the ground in the transversal plane were significantly associated with arm position and swing amplitude during gait. The hip external-internal rotation range of motion statistically varied only for non-dominant limb. Unlike hip joint reaction forces, predicted peak spinal loads at T12-L1 and L5-S1 showed significant differences at approximately the time of contralateral toe off and contralateral heel strike.Therefore, arm position and swing amplitude have a relevant effect on kinematic variables and spinal loads, but not on hip loads during walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号