首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
A series of chalcone Mannich base derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease based on the multi-target directed ligands design strategy. In vitro assays demonstrated that most of the derivatives exerted potent selective inhibitory potency on AChE with good multifunctional properties. Among them, representative compound 7c exhibited moderate inhibitory potency for EeAChE (IC50 = 0.44 μM) and MAO-B inhibition (IC50 = 1.21 μM), good inhibitory effect on self-induced Aβ1−42 aggregation (55.0%, at 25 μM), biometal chelating property, moderate antioxidant activity with a value 1.93-fold of Trolox. Moreover, both kinetic analysis of AChE inhibition and molecular modeling study revealed that 7c showed a mixed-type inhibition, binding simultaneously to CAS and PAS of AChE. In addition, 7c also displayed high BBB permeability. These properties indicated 7c may be a promising multifunctional agent for the treatment of AD.  相似文献   

2.
A series of pterostilbene β-amino alcohol derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease (AD). In vitro assays demonstrated that most of the derivatives were selective acetylacholinesterase (AChE) inhibitors with moderate multifunctional properties. Among them, compound 5f exhibited the best inhibitory activity for EeAChE (IC50 = 24.04 μM), that was better than pterostilbene under our experimental condition. In addition, compound 5f displayed reasonable antioxidant activity and could confer significant neuroprotective effect against H2O2-induced PC-12 cell injury. Moreover, 5f also showed self-induced Aβ1-42 aggregation inhibitory potency and displayed high BBB permeability in vitro. These multifunctional properties highlight 5f as a promising candidate for further studies directed to the development of novel drugs against AD.  相似文献   

3.
A series of salicylamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease. In vitro assays demonstrated that most of the derivatives were selective AChE inhibitors. They showed good inhibitory activities of self- and Cu2+-induced Aβ1–42 aggregation, and significant antioxidant activities. Among them, compound 15b exhibited good inhibitory activity toward RatAChE and EeAChE with IC50 value of 10.4 μM and 15.2 μM, respectively. Moreover, 15b displayed high antioxidant activity (2.46 Trolox equivalents), good self- and Cu2+-induced Aβ1–42 aggregation inhibitory potency (42.5% and 31.4% at 25.0 μM, respectively) and moderate disaggregation ability to self- and Cu2+-induced Aβ1–42 aggregation fibrils (23.4% and 27.0% at 25 μM, respectively). Furthermore, 15b also showed biometal chelating abilities, anti-neuroinflammatory ability and BBB permeability. These multifunctional properties indicated compound 15b was worthy of being chosen for further pharmacokinetics, toxicity and behavioral researches to test its potential for AD treatment.  相似文献   

4.
derivatives of benzo[g]indazole 5a, b, benzo[h]quinazoline 7, 12a-c, 13a-c and 15a-c and benzo[h]quinoline 17a-c and 19a-c were synthesized from 6-methoxy-3,4-dihydronaphthalen-1(2H)-one (1). Anticancer activity of all the synthesized compounds was evaluated against four cancerous cell lines; HepG2, MCF-7, HCT116 and Caco-2. MCF-7 cells emerged as the most sensitive cell line against the target compounds. All the examined compounds, except 5a and 5b, displayed potent to moderate anticancer activity against MCF-7 cells with an IC50 values ranging from 7.21 to 21.55 µM. In particular, compounds 15c and 19b emerged as the most potent derivatives against EGFR-expressing MCF-7 cells with IC50 values = 7.70 ± 0.39 and 7.21 ± 0.43 μM, respectively. Additionally, both compounds did not display any significant cytotoxicity towards normal BHK-21 fibroblast cells (IC50 value > 200 µM), thereby providing a good safety profile as anticancer agents. Furthermore, compounds 15c and 19b displayed potent inhibitory activity towards EGFR in the sub-micromolar range (IC50 = 0.13 ± 0.01 and 0.14 ± 0.01 μM, respectively), compared to that of Erlotinib (IC50 = 0.11 ± 0.01 μM). Docking studies for 15c and 19b into EGFR active site was carried out to explore their potential binding modes. Therefore, compounds 15c and 19b can be considered as interesting candidates for further development of more potent anticancer agents.  相似文献   

5.
A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5 μM for EeAChE and 153.8 μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4 μM (EeAChE) and 277.8 μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark.  相似文献   

6.
A series of 2,4-disubstituted phthalazinones were synthesized and their biological activities, including antiproliferation, inhibition against Aurora kinases and cell cycle effects were evaluated. Among them, N-cyclohexyl-4-((4-(1-methyl-1H-pyrazol-4-yl)-1-oxophthalazin-2(1H)-yl) methyl) benzamide (12c) exhibited the most potent antiproliferation against five carcinoma cell lines (HeLa, A549, HepG2, LoVo and HCT116 cells) with IC50 values in range of 2.2–4.6?μM, while the IC50 value of reference compound VX-680 was 8.5–15.3?μM. Moreover, Aurora kinase assays exhibited that compound 12c was potent inhibitor of AurA and AurB kinase with the IC50 values were 118?±?8.1 and 80?±?4.2?nM, respectively. Molecular docking studies indicated that compound 12c forms better interaction with both AurA and AurB. Furthermore, compound 12c induced G2/M cell cycle arrest in HeLa cells by regulating protein levels of cyclinB1 and cdc2. These results suggested that 12c is a promising pan-Aurora kinase inhibitor for the potential treatment of cancer.  相似文献   

7.
A series of 2,5-dihydroxyterephthalamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease. In vitro assays demonstrated that most of the derivatives exhibited good multifunctional activities. Among them, compound 9d showed the best inhibitory activity against both RatAChE and EeAChE (IC50?=?0.56?μM and 5.12?μM, respectively). Moreover, 9d exhibited excellent inhibitory effects on self-induced Aβ1–42 aggregation (IC50?=?3.05?μM) and Cu2+-induced Aβ1–42 aggregation (71.7% at 25.0?μM), and displayed significant disaggregation ability to self- and Cu2+-induced Aβ1–42 aggregation fibrils (75.2% and 77.2% at 25.0?μM, respectively). Furthermore, 9d also showed biometal chelating abilities, antioxidant activity, anti-neuroinflammatory activities and appropriate BBB permeability. These multifunctional properties highlight 9d as promising candidate for further studies directed to the development of novel drugs against AD.  相似文献   

8.
In the search for new treatments for complex disorders such as Alzheimer’s disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood–brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 μM), and BuChE (IC50 = 14.62 μM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.  相似文献   

9.
Transforming growth factor (TGF-β), a key mediator of tumor growth and metastasis, has been recognized as an important cancer drug target. A series of benzo[c][1,2,5]thiadiazol-5-yl imidazoles (14ag) and thieno[3,2-c]-pyridin-2-yl imidazoles (20ag) were designed, synthesized, and evaluated for their activin receptor-like kinase 5 (ALK5) activities. Among these compounds, 14c showed the highest activity (IC50 = 0.008 μM) against ALK5 kinase, which was 16.1-fold and 1.8-fold higher than those of positive control compounds LY-2157299 (IC50 = 0.129 μM) and EW-7197 (IC50 = 0.014 μM), respectively. Compound 14g (350) showed the highest selectivity index of ALK5 against p38α MAP kinase, which was significantly higher than that of positive control compounds LY-2157299 (4) and EW-7197 (211). The inhibitory effects of compound 14c on TGF-β-induced Smad signaling and cell motility were studied in SPC-A1, HepG2 and HUVEC cells using western blot analysis and wound healing assay. ADMET prediction analysis showed that compounds 14c and 14g had good pharmacokinetics and drug-likeness behaviors.  相似文献   

10.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

11.
A series of 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives were designed, synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). The in vitro assays indicated that most of these derivatives were selective AChE inhibitors with good multifunctional properties. Among them, compounds 11b and 11d displayed comprehensive advantages, with good AChE (IC50?=?0.29?±?0.01?μM and 0.46?±?0.02?μM, respectively), MAO-A (IC50?=?8.2?±?0.08?μM and 7.9?±?0.07?μM, respectively) and MAO-B (IC50?=?20.1?±?0.16?μM and 43.8?±?2.0% at 10?μM, respectively) inhibitory activities, moderate self-induced Aβ1–42 aggregation inhibitory potency (35.4?±?0.42% and 48.0?±?1.53% at 25?μM, respectively) and potential antioxidant activity. In addition, the two representative compounds displayed high BBB permeability in vitro. Taken together, these multifunctional properties make 11b and 11d as a promising candidate for the development of efficient drugs against AD.  相似文献   

12.
The inhibition of tyrosinase is an established strategy for treating hyperpigmentation. Our previous findings demonstrated that cinnamic acid and benzoic acid scaffolds can be effective tyrosinase inhibitors with low toxicity. The hydroxyl substituted benzoic and cinnamic acid moieties of these precursors were incorporated into new chemotypes that displayed in vitro inhibitory effect against mushroom tyrosinase. The most active compound, (2-(3-methoxyphenoxy)-2-oxoethyl (E)-3-(4-hydroxyphenyl) acrylate) 6c, inhibited tyrosinase with an IC50 of 5.7 µM, while (2-(3-methoxyphenoxy)-2-oxoethyl 2, 4-dihydroxybenzoate) 4d had an IC50 of 23.8 µM. In comparison, the positive control, kojic acid showed tyrosinase inhibition with an IC50 = 16.7 µM. Analysis of enzyme kinetics revealed that 6c and 4d displayed noncompetitive reversible inhibition of the second tyrosinase enzymatic reaction with Ki values of 11 µM and 130 µM respectively. In silico docking studies with mushroom tyrosinase (PDB ID 2Y9X) predicted possible binding modes in the catalytic site for these active compounds. The phenolic para-hydroxy group of the most active compound 6c is predicted to interact with the catalytic site Cu++ ion. The methoxy part of this compound is predicted to form a hydrogen bond with Arg 268. Compound 6c had no observable toxic effects on cell morphology or cell viability at the highest tested concentration of 91.4 µM. When dosed at 91.4 µM onto B16F10 melanoma cells in vitro 6c showed anti-melanogenic effects equivalent to kojic acid at 880 µM. 6c displayed no PAINS (pan-assay interference compounds) alerts. Our results show that compound 6c is a more potent tyrosinase inhibitor than kojic acid and is a candidate for further development. Our exposition of the details of the interactions between 6c and the catalytic pocket of tyrosinase provides a basis for rational design of additional potent inhibitors of tyrosinase, built on the cinnamic acid scaffold.  相似文献   

13.
By connecting chromanone with dithiocarbamate moieties through flexible linkers, a series of hybrids as novel multifunctional AChE inhibitors have been designed and synthesized. Most of these compounds displayed strong and excellently selective inhibition to eeAChE as well as potent inhibition to self- and AChE-induced Aβ aggregation. Among them, compound 6c showed the best activity to inhibit eeAChE (IC50 = 0.10 μM) and AChE-induced Aβ aggregation (33.02% at 100 μM), and could effectively inhibit self-induced Aβ aggregation (38.25% at 25 μM). Kinetic analysis and docking study indicated that compound 6c could target both the CAS and PAS, suggesting that it was a dual binding site inhibitor for AChE. Besides, it exhibited good ability to penetrate the BBB and low neurotoxicity in SH-SY5Y cells. More importantly, compound 6c was well tolerated in mice (2500 mg/kg, po) and could attenuate the memory impairment in a scopolamine-induced mouse model. Overall, these results highlight 6c as a promising multifunctional agent for treating AD and also demonstrate that the dithiocarbamate is a valid scaffold for design of multifunctional AChE inhibitors.  相似文献   

14.
Aurora kinases are known to be overexpressed in various solid tumors and implicated in oncogenesis and tumor progression. A series of nicotinamide derivatives were synthesized and their biological activities were evaluated, including kinase inhibitory activity against Aur A and Aur B and in vitro antitumor activity against SW620, HT-29, NCI-H1975 and Hela cancer cell lines. In addition, the study of antiproliferation, cytotoxicity and apoptosis was performed meanwhile. As the most potent inhibitor of Aur A, 4-((3-bromo-4-fluorophenyl)amino)-6-chloro-N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3-fluorophenyl)nicotinamide (10l) showed excellent antitumor activity against SW620 and NCI-H1975 with IC50 values were 0.61 and 1.06 μM, while the IC50 values of reference compound were 3.37 and 6.67 μM, respectively. Furthermore, binding mode studies indicated that compound 10l forms better interaction with Aur A.  相似文献   

15.
A series of novel piperazine tethered biphenyl-3-oxo-1,2,4-triazine derivatives were designed, and synthesized. Amongst the synthesized analogs, compound 6g showed significant non-competitive inhibitory potential against acetylcholinesterase (AChE, IC50; 0.2 ± 0.01 μM) compared to standard donepezil (AChE, IC50: 0.1 ± 0.002 μM). Compound 6g also exhibited significant displacement of propidium iodide from the peripheral anionic site (PAS) of AChE (22.22 ± 1.11%) and showed good CNS permeability in PAMPA-BBB assay (Pe(exp), 6.93 ± 0.46). The in vivo behavioral studies of compound 6g indicated significant improvement in cognitive dysfunctions against scopolamine-induced amnesia mouse models. Further, ex vivo studies showed a significant AChE inhibition and reversal of the scopolamine-induced oxidative stress by compound 6g. Moreover, molecular docking and dynamics simulations of compound 6g showed a consensual binding affinity and active site interactions with the PAS and active catalytic site (CAS) residues of AChE.  相似文献   

16.
PI3Kδ is an intriguing target for developing anti-cancer agent. In this study, a new series of 4-(piperid-3-yl)amino substituted 6-pyridylquinazoline derivatives were synthesized. After biological evaluation, compounds A5 and A8 were identified as potent PI3Kδ inhibitors, with IC50 values of 1.3 and 0.7 nM, respectively, which are equivalent to or better than idelalisib (IC50 = 1.2 nM). Further PI3K isoforms selectivity evaluation showed that compound A5 afforded excellent PI3Kδ selectivity over PI3Kα, PI3Kβ and PI3Kγ. A8 exhibited superior PI3Kδ/γ selectivity over PI3Kα and PI3Kβ. Moreover, compounds A5 and A8 selectively exhibited anti-proliferation against SU-DHL-6 in vitro with IC50 values of 0.16 and 0.12 μM. Western blot analysis indicated that A8 could attenuate the AKTS473 phosphorylation. Molecular docking study suggested that A8 formed three key H-bonds action with PI3Kδ, which may account for its potent inhibition of PI3Kδ. These findings indicate that 4-(piperid-3-yl)amino substituted 6-pyridylquinazoline derivatives were potent PI3Kδ inhibitors with distinctive PI3K-isoforms and anti-proliferation profiles.  相似文献   

17.
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC50 = 0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC50 = 21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC50 = 171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (36) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2–C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure–activity relationships were outlined. The most active derivative was compound 3c, with an IC50 value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.  相似文献   

18.
Twenty-five thiadiazole derivatives 125 were synthesized from methyl 4-methoxybenzoate via hydrazide and thio-hydrazide intermediates, and evaluated for their potential against β-glucuronidase enzyme. Most of the compounds including 1 (IC50 = 26.05 ± 0.60 μM), 2 (IC50 = 42.53 ± 0.80 μM), 4 (IC50 = 38.74 ± 0.70 μM), 5 (IC50 = 9.30 ± 0.29 μM), 6 (IC50 = 6.74 ± 0.26 μM), 7 (IC50 = 18.40 ± 0.66 μM), and 15 (IC50 = 18.10 ± 0.53 μM) exhibited superior activity potential than the standard d-saccharic acid-1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking studies were conducted to correlate the in vitro results and to identify possible mode of interaction with enzyme active site.  相似文献   

19.
The α,β-unsaturated-enone contained natural products have been reported showing NF-κB inhibition effect. It is well known that NF-κB inhibitors can also be used to inhibit osteoclastogenesis. In a continual discovery new agents for anti-osteoclastogenesis, 8 different type compounds with α,β-unsaturated-enone fragments from our in-house library were evaluated for NF-κB inhibition and anti-osteoclastogenesis. Experimental results indicated five compounds exhibited inhibition of NF-κB signal pathway. Among them, one compound ((E)-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, 6a) simultaneously inhibits both osteoclastogenesis and NF-κB signal pathway. Furthermore, 12 compounds with similar scaffold with 6a were tested for anti-osteoclastogenesis. As a result, 9 compounds inhibited both NF-κB and osteoclastogenesis. Among them, compound 6b is the most potent inhibitor against NF-κB (IC50 = 2.09 μM) and osteoclast differentiation (IC50 = 0.86 μM). Further studies show that compound 6b blocks the phosphorylation of both p65 and IκBα, and suppresses NF-κB targeted gene expression without interfering MAPKs and PI3K/Akt signal transduction pathways. This study demonstrates that we can identify promising synthesized compounds with new scaffolds as therapeutic solutions against osteoclastogenesis inspired by the privileged fragment derived from natural leads.  相似文献   

20.
Due to recently discovered non-classical acetylcholinesterase (AChE) function, dual binding-site AChE inhibitors have acquired a paramount attention of drug designing researchers. The unique structural arrangements of AChE peripheral anionic site (PAS) and catalytic site (CAS) joined by a narrow gorge, prompted us to design the inhibitors that can interact with dual binding sites of AChE. Eighteen homo- and heterodimers of desloratadine and carbazole (already available tricyclic building blocks) were synthesized and tested for their inhibition potential against electric eel acetylcholinesterase (eeAChE) and equine serum butyrylcholinesterase (eqBChE). We identified a six-carbon tether heterodimer of desloratadine and indanedione based tricyclic dihydropyrimidine (4c) as potent and selective inhibitor of eeAChE with IC50 value of 0.09 ± 0.003 μM and 1.04 ± 0.08 μM (for eqBChE) with selectivity index of 11.1. Binding pose analysis of potent inhibitors suggest that tricyclic ring is well accommodated into the AChE active site through hydrophobic interactions with Trp84 and Trp279. The indanone ring of most active heterodimer 4b is stabilized into the bottom of the gorge and forms hydrogen bonding interactions with the important catalytic triad residue Ser200.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号