首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Pulse gel electrophoresis was used to measure the reduction of mobilities of λ-DNA-Hind III fragments ranging from 23.130 to 2.027 kilobase pairs in Tris borate buffer solutions mixed with either hexammine cobalt(III), or spermidine3+ trivalent counterions that competed with Tris+ and Na+ for binding onto polyion DNA. The normalized titration curves of mobility were well fit by the two-variable counterion condensation theory. The agreement between measured charge fraction neutralized and counterion condensation prediction was good over a relatively wide range of trivalent cation concentrations at several solution conditions (pH, ionic strength). The effect of ionic strength, trivalent cation concentration, counterion structure, and DNA length on the binding were discussed based on the experimental measurements and the counterion condensation theory. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
For the system κ-carrageenan/amitriptyline it is shown that the degree of binding of amitriptyline is closely related to the carrageenan conformation as regulated by the counterions (Na+ or K+). The adsorption becomes much more pronounced when the carrageenan molecule is in the helix form (counterion K+) than when it has a coil conformation (counterion Na+). Furthermore, for the helical state the adsorption becomes strongly cooperative. It is also shown experimentally that the release from the adsorbed state has a conversion temperature at about 42°C (helix-coil transition). The effect is also related to the linear charge density. For κ-carrageenan with a higher charge density the adsorption is strong and cooperative both in the presence of Na+ and K+ ions. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Amyloid fibril formation is responsible for several neurodegenerative diseases and are formed when native proteins misfold and stick together with different interactive forces. In the present study, we have determined the mode of interaction of the anionic surfactant sarkosyl with hen egg white lysozyme (HEWL) [EC No. 3.2.1.17] at two pHs (9.0 and 13.0) and investigated its impact on fibrillogenesis. Our data suggested that sarkosyl is promoting amyloid fibril formation in HEWL at the concentration range between 0.9 and 3.0 mM and no amyloid fibril formation was observed in the concentration range of 3.0–20.0 mM at pH 9.0. The results were confirmed by several biophysical and computational techniques, such as turbidity measurement, dynamic light scattering, Raleigh scattering, ThT fluorescence, intrinsic fluorescence, far-UV CD and atomic force microscopy. Sarkosyl was unable to induce aggregation in HEWL at pH 13.0 as confirmed by turbidity and RLS measurements. HEWL forms larger amyloid fibrils in the presence of 1.6 mM of sarkosyl. The spectroscopic, microscopic and molecular docking data suggest that the negatively charged carboxylate group and 12-carbon hydrophobic tail of sarkosyl stimulate amyloid fibril formation in HEWL via electrostatic and hydrophobic interaction. This study leads to new insight into the process of suppression of fibrillogenesis in HEWL which can be prevented by designing ligands that can retard the electrostatic and hydrophobic interaction between sarkosyl and HEWL.  相似文献   

4.
The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br, Cl, F, and (all in combination with Na+), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs+, K+, and Na+ (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs+ < K+ < Na+) in this situation.  相似文献   

5.
In the present work, molecular dynamics simulations have been carried out to study the dependence of counterion distribution around the DNA double helix on the character of ion hydration. The simulated systems consisted of DNA fragment d(CGCGAATTCGCG) in water solution with the counterions Na+, K+, Cs+ or Mg2+. The characteristic binding sites of the counterions with DNA and the changes in their hydration shell have been determined. The results show that due to the interaction with DNA at least two hydration shells of the counterions undergo changes. The first hydration shell of Na+, K+, Cs+, and Mg2+ counterions in the bulk consists of six, seven, ten, and six water molecules, respectively, while the second one has several times higher values. The Mg2+ and Na+ counterions, constraining water molecules of the first hydration shell, mostly form with DNA water-mediated contacts. In this case the coordination numbers of the first hydration shell do not change, while the coordination numbers of the second one decrease about twofold. The Cs+ and K+ counterions that do not constrain surrounding water molecules may be easily dehydrated, and when interacting with DNA their first hydration shell may be decreased by three and five water molecules, respectively. Due to the dehydration effect, these counterions can squeeze through the hydration shell of DNA to the bottom of the double helix grooves. The character of ion hydration establishes the correlation between the coordination numbers of the first and the second hydration shells.
Graphical Abstract Hydration of counterions interacting with DNA double helix
  相似文献   

6.
Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li+, Na+ or K+ counterions were studied using periodic density functional theory calculations. Two paths—surface and vacuum desorption—were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water–surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li+?>?Na+?>?K+, which can be attributed to the short ionic radius of Li+, which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process.  相似文献   

7.
The B3LYP/6–31++G* theoretical level was used to study the influence of various hexahydrated monovalent (Li+, Na+, K+) and divalent (Mg2+) metal counterions in interaction with the charged PO2? group, on the geometrical and vibrational characteristics of the DNA fragments of 3′,5′-dDSMP, represented by four conformers (g+g+, g+t, g?g? and g?t). All complexes were optimized through two solvation models [the explicit model (6H2O) and the hybrid model (6H2O/Continuum)]. The results obtained established that, in the hybrid model, counterions (Li+, Na+, K+, Mg2+) always remain in the bisector plane of the O1–P–O2 angle. When these counterions are explicitly hydrated, the smallest counterions (Li+, Na+) deviate from the bisector plane, while the largest counterions (K+ and Mg2+) always remain in the same plane. On the other hand, the present calculations reveal that the g+g+ conformer is the most stable in the presence of monovalent counterions, while conformers g+t and g?t are the most stable in the presence of the divalent counterion Mg2+. Finally, the hybrid solvation model seems to be in better agreement with the available crystallographic and spectroscopic (Raman) experiments than the explicit model. Indeed, the six conformational torsions of the C4′-C3′-O3′-PO?2-O5′-C5′-C4′ segment of all complexes of the g?g? conformer in 6H2O/Continuum remain similar to the available experimental data of A- and B-DNA forms. The calculated wavenumbers of the g+g+ conformer in the presence of the monovalent counterion and of g?t conformer in presence of the divalent counterion in the hybrid model are in good agreement with the Raman experimental data of A- and B-DNA forms. In addition, the maximum deviation between the calculated wavenumbers in the 6H2O/Continuum for the g+g+ conformer and experimental value measured in an aqueous solution of the DMP-Na+ complex, is <1.07% for the PO2? (asymmetric and symmetric) stretching modes and <2.03% for the O5′-C5′ and O3′-C3′ stretching modes.
Graphical abstract dDSMP-(OO)? Mg2+/6W/Continuum
  相似文献   

8.
We examined the effects of pH, internal ionized Ca (Ca2+ i ), cellular ATP, external divalent cations and quinine on Cl-independent ouabain-resistant K+ efflux in volume-clamped sheep red blood cells (SRBCs) of normal high (HK) and low (LK) intracellular K+ phenotypes. In LK SRBCs the K+ efflux was higher at pH 9.0 (350%) than at pHs 7.4 and 6.5, and was inhibited by external divalent cations, quinine, and cellular ATP depletion. The above findings suggest that the increased K+ efflux at alkaline pH is due to the opening of ion channels or specific transporters in the cell membrane. In addition, K+ efflux was activated (100%) when Ca2+ i was increased (+A23187, +Ca2+ o ) into the μm range. However, in comparison to human red blood cells, the Ca2+ i -induced increase in K+ efflux in LK SRBCs was fourfold smaller and insensitive to quinine and charybdotoxin. The Na+ efflux was also higher at pH 9.0 than at pH 7.4, and activated (about 40%) by increasing Ca2+ i . In contrast, in HK SRBCs the K+ efflux at pH 9.0 was neither inhibited by quinine nor activated by Ca2+ i . These studies suggest the presence in LK SRBCs, of at least two pathways for Cl-independent K+ and Na+ transport, of which one is unmasked by alkalinization, and the other by a rise in Ca2+ i . Received: 23 May 1996/Revised: 6 December 1996  相似文献   

9.
The coil–helix transitions of poly (L -glutamic acid) in aqueous alcohol solutions have been investigated for mixed counterion systems. It has been found that coexistence of two kinds of counterion species, i.e., two alkali metal counterions, alkali and alkaline earth metal, and two alkaline earth metals, specifically stabilizes or destabilizes the helix conformation depending upon the combination of the counterion species. The most striking enhancement of the helix content was observed for the combination of Li+ and K+ counterions. It has been suggested that the helix stabilization is attributed to the reduction of the free energy in the contact ion pair formation between the polymer charges and the counterions in the mixed counterion systems. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The marine bacterium, Vibrio alginolyticus, regulates the cytoplasmic pH at about 7.8 over the pH range 6.0–9.0. By the addition of diethanolamine (a membrane-permeable amine) at pH 9.0, the internal pH was alkalized and simultaneously the cellular K+ was released. Following the K+ exit, the internal pH was acidified until 7.8, where the K+ exit leveled off. The K+ exit was mediated by a K+/H+ antiporter that is driven by the outwardly directed K+ gradient and ceases to function at the internal pH of 7.8 and below. The Na+-loaded cells assayed in the absence of KCl generated inside acidic ΔpH at alkaline pH due to the function of an Na+/H+ antiporter, but the internal pH was not maintained at a constant value. At acidic pH range, the addition of KCl to the external medium was necessary for the alkalization of cell interior. These results suggested that in cooperation with the K+ uptake system and H+ pumps, the K+/H+ antiporter functions as a regulator of cytoplasmic pH to maintain a constant value of 7.8 over the pH range 6.0–9.0.  相似文献   

11.
Specific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3M) salt concentrations, in dilute (<0.1M) salt solutions nonspecific electrostatic screening is considered to be dominant. Here, using effective charge (Q*) measurements of hen-egg white lysozyme (HEWL) as a direct and differential measure of ion-association, we experimentally show that anions selectively and preferentially accumulate at the protein surface even at low (<100 mM) salt concentrations. At a given ion normality (50 mN), the HEWL Q* was dependent on anion, but not cation (Li+, Na+, K+, Rb+, Cs+, GdnH+, and Ca2+), identity. The Q* decreased in the order F > Cl > Br > NO3 ∼ I > SCN > ClO4 ≫ SO42−, demonstrating progressively greater binding of the monovalent anions to HEWL and also show that the SO42− anion, despite being strongly hydrated, interacts directly with the HEWL surface. Under our experimental conditions, we observe a remarkable asymmetry between anions and cations in their interactions with the HEWL surface.  相似文献   

12.
At least 25 human proteins can fold abnormally to form pathological deposits that are associated with several degenerative diseases. Despite extensive investigation on amyloid fibrillation, the detailed molecular mechanisms remain rather elusive and there are currently no effective cures for treating these amyloid diseases. The present study examined the effects of dithiothreitol on the fibrillation of hen egg-white lysozyme (HEWL). Our results revealed that the fibrillation of hen lysozyme was significantly inhibited by reduced dithiothreitol (DTTred) while oxidized dithiothreitol (DTTox) had no anti-aggregating activity. Effective inhibitory activity against hen lysozyme fibrillation was observed only when DTTred was added within 8 days of incubation. Our results showed that the initial addition of DTTred interacted with HEWL, leading to a loss in conformational stability. It was concluded from our findings that DTTred-induced attenuation of HEWL fibrillation may be associated with disulfide disruption and extensive structural unfolding of HEWL. Our data may contribute to rational design of effective therapeutic strategies for amyloid diseases.  相似文献   

13.
The types of binding of different mono- and divalent ions to sites of the constitutive pectic acids of the Nitella cell walls were investigated by performing ion exchanges at different pH. The experimental results were then analysed in the framework of a model derived from the polyelectrolyte theory in which the competitive process of dissociation of the exchange sites and their complexation by counterions are taken into account. Divalent ions Ca2+ and Mn2+ interacted specifically with the exchange sites to give rise to strong thermodynamic association constants. They also induced conformational transitions of the pectic acids which allowed some site-specific association with monovalent ions, although the latter, in the absence of divalent ions, interacted only in a purely electrostatic manner with the charged sites. The complexation phenomenon of the monovalent ions also results in a feedback process which enhances or depletes the site-specific interactions of the divalent counterions. Changes in the counterion association with the wall exchange sites will take place without modification in the wall electrostatic field, when divalent ions are present at the usual pH. These specific interactions are supported by the values of the residual interaction energy, calculated from the variations of the apparent pKa of the polygalacturonic acids with their degree of protonation.  相似文献   

14.
Extracellular acidification and reduction of extracellular K+ are known to decrease the currents of some voltage-gated potassium channels. Although the macroscopic conductance of WT hKv1.5 channels is not very sensitive to [K+]o at pH 7.4, it is very sensitive to [K+]o at pH 6.4, and in the mutant, H463G, the removal of K+ o virtually eliminates the current at pH 7.4. We investigated the mechanism of current regulation by K+ o in the Kv1.5 H463G mutant channel at pH 7.4 and the wild-type channel at pH 6.4 by taking advantage of Na+ permeation through inactivated channels. Although the H463G currents were abolished in zero [K+]o, robust Na+ tail currents through inactivated channels were observed. The appearnnce of H463G Na+ currents with a slow rising phase on repolarization after a very brief depolarization (2 ms) suggests that channels could activate directly from closed-inactivated states. In wild-type channels, when intracellular K+ was replaced by NMG+ and the inward Na+ current was recorded, addition of 1 mM K+ prevented inactivation, but changing pH from 7.4 to 6.4 reversed this action. The data support the idea that C-type inactivation mediated at R487 in Kv1.5 channels is influenced by H463 in the outer pore. We conclude that both acidification and reduction of [K+]o inhibit Kv1.5 channels through a common mechananism (i.e., by increasing channel inactivation, which occurs in the resting state or develops very rapidly after activation).  相似文献   

15.
Sodium concentrations as low as 2 mM exerted a significant protective effect on the high-pressure inactivation (160–210 MPa) of Rhodotorula rubra at pH 6.5, but not on two other yeasts tested (Shizosaccharomyces pombe and Saccharomyces cerevisiae). A piezoprotective effect of similar magnitude was observed with Li+ (2 and 10 mM), and at elevated pH (8.0–9.0), but no effect was seen with K+, Ca2+, Mg2+, Mn2+, or NH4 +. Intracellular Na+ levels in cells exposed to low concentrations of Na+ or to pH 8.0–9.0 provided evidence for the involvement of a plasma membrane Na+/H+ antiporter and a correlation between intracellular Na+ levels and pressure resistance. The results support the hypothesis that moderate high pressure causes indirect cell death in R. rubra by inducing cytosolic acidification.Communicated by K. Horikoshi  相似文献   

16.
Fluorescein isothiocyanate (FITC) reactivity with the (Na+ + K+)-ATPase was studied at pH 6.5 and 9.0. Reaction with FITC is nearly complete in 30 min and is irreversible at both pH values. Differential inhibition of enzyme activity is observed at the two pH values as follows: at pH 6.5 the maximal inhibition reached is only 35–45% of the ATPase or p-nitrophenylphosphatase activities, whereas at pH 9.0 ATPase activity can be completely inhibited while maximal phosphatase inhibition is ca. 50%. At all concentrations of FITC tested, more FITC is incorporated into the enzyme at pH 9.0 than at 6.5. At both pH values NaCl increases the inhibition due to FITC while KCl protects against the inhibition. ATP protects the enzyme at both pH values with a K0.5 in the range of 8–20 μm. Enzyme that is partially inactivated at either pH shows no significant change in the K0.5 values for Na+ or K+ or in the Km app for ATP or p-nitrophenylphosphate for the remaining activity. The binding of 48VO4 is not changed by reaction with FITC at either pH, while [3H]ouabain binding is inhibited after reaction at pH 9.0 only in the presence of Mg+2 + Na+ + ATP. [3H]Ouabain binding in the presence of Mg+2 + inorganic phosphate is not inhibited by FITC reaction. Enzyme reacted at both pH values exhibits the expected fluorescein fluorescence (λex = 490, λem = 520) but only with enzyme reacted at pH 9.0 is fluorescence quenching by K+ or reversal by Na+ observed. These results suggest that different classes of amino groups react with FITC at the two pH values tested, and that these groups have distinct roles in the different activities of the enzyme.  相似文献   

17.
BackgroundThe surface of nanoparticles (NPs) is an important factor affecting the process of poly/peptides' amyloid aggregation. We have investigated the in vitro effect of trisodium citrate (TC), gum arabic (GA) and citric acid (CA) surface-modified magnetite nanoparticles (COAT-MNPs) on hen egg-white lysozyme (HEWL) amyloid fibrillization and mature HEWL fibrils.MethodsDynamic light scattering (DLS) was used to characterize the physico-chemical properties of studied COAT-MNPs and determine the adsorption potential of their surface towards HEWL. The anti-amyloid properties were studied using thioflavin T (ThT) and tryptophan (Trp) intrinsic fluorescence assays, and atomic force microscopy (AFM). The morphology of amyloid aggregates was analyzed using Gwyddion software. The cytotoxicity of COAT-MNPs was determined utilizing Trypan blue (TB) assay.ResultsAgents used for surface modification affect the COAT-MNPs physico-chemical properties and modulate their anti-amyloid potential. The results from ThT and intrinsic fluorescence showed that the inhibitory activities result from the more favorable interactions of COAT-MNPs with early pre-amyloid species, presumably reducing nuclei and oligomers formation necessary for amyloid fibrillization. COAT-MNPs also possess destroying potential, which is presumably caused by the interaction with hydrophobic residues of the fibrils, resulting in the interruption of an interface between β-sheets stabilizing the amyloid fibrils.ConclusionCOAT-MNPs were able to inhibit HEWL fibrillization and destroy mature fibrils with different efficacy depending on their properties, TC-MNPs being the most potent nanoparticles.General significanceThe study reports findings regarding the general impact of nanoparticles' surface modifications on the amyloid aggregation of proteins.  相似文献   

18.
Four 20 ns molecular dynamics simulations have been performed with two counterions, K+ or Na+, at two water contents, 15 or 20 H2O per nucleotide. A hexagonal simulation cell comprised of three identical DNA decamers [d(5′-ATGCAGTCAG) × d(5′-TGACTGCATC)] with periodic boundary condition along the DNA helix was used. The simulation setup mimics the DNA state in oriented DNA fibers or in crystals of DNA oligomers. Variation of counterion nature and water content do not alter averaged DNA structure. K+ and Na+ binding to DNA are different. K+ binds to the electronegative sites of DNA bases in the major and the minor grooves, while Na+ interacts preferentially with the phosphate groups. Increase of water causes a shift of both K+ and Na+ from the first hydration shell of O1P/O2P and of the DNA bases in the minor groove with lesser influence for the cation binding to the bases in the major groove. Mobility of both water and cations in the K–DNA systems is faster than in the Na–DNA systems: Na+ organizes and immobilizes water structure around itself and near DNA while for K+ water is less organized and more dynamic.  相似文献   

19.
Abstract

The bonds between lysozyme molecules and precipitant ions in single crystals grown with chlorides of several metals are analysed on the basis of crystal structure data. Crystals of tetragonal hen egg lysozyme (HEWL) were grown with chlorides of several alkali and transition metals (LiCl, NaCl, KCl, NiCl2 and CuCl2) as precipitants and the three-dimensional structures were determined at 1.35?Å resolution by X-ray diffraction method. The positions of metal and chloride ions attached to the protein were located, divided into three groups and analysed. Some of them, in accordance with the recently proposed and experimentally confirmed crystal growth model, provide connections in protein dimers and octamers that are precursor clusters in the crystallization lysozyme solution. The first group, including Cu+2, Ni+2 and Na+1 cations, binds specifically to the protein molecule. The second group consists of metal and chloride ions bound inside the dimers and octamers. The third group of ions can participate in connections between the octamers that are suggested as building units during the crystal growth. The arrangement of chloride and metal ions associated with lysozyme molecule at all stages of the crystallization solution formation and crystal growth is discussed.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Escherichia coli is able to grow at increased NaCl concentrations that provides an increase in medium osmolarity and cellular Na+ content. The addition of 0.5 M NaCl to the growth medium led to a substantial decrease in growth rate during anaerobic fermentation on glucose at pH of 7.3 or 9.0. This inhibitory effect of 0.5 M NaCl was at least threefold stronger than that seen under aerobic conditions, and stronger than equivalent concentrations of sucrose, KCl, or potassium glutamate under anaerobic conditions. Further, proline was found to stimulate the growth rate at high NaCl concentration under anaerobic and to a lesser extent, under aerobic conditions. Wild-type cells and mutants having a functional NhaA or ChaA alone grown under anaerobic conditions at pH 9.0 and subsequently loaded with Na+ were shown to extrude Na+ at a rate that were lower than the extrusion rate reported for appropriate aerobically grown bacteria (Sakuma et al. [1998] Biochim Biophys Acta 1363:231–237). The growth rate and Na+ extrusion activity of a mutant having a functional NhaA were similar to that of the wild type and higher than that of a mutant with an active ChaA. A mutant defective for both NhaA and ChaA was unable to grow under anaerobic conditions at pH 9.0 in the presence of 0.15 M Na+. It is suggested that the observed strong inhibition in the growth of E. coli during fermentation under anaerobic conditions in the presence of increased NaCl concentration could be due to a decrease in Na+ extrusion activity. Received: 18 September 1998 / Accepted: 2 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号