首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Rooster sperm is sensitive to cooling, which restricts procedures to store sperms for extended periods of time for artificial insemination of commercial flocks. This study was conducted to evaluate the suitability of adding L-carnitine (LC) to chilled-storage of rooster sperm and its effects on sperm quality parameters and its fertility potential during storage at 5 °C. Pooled semen from roosters were divided into six equal aliquots and diluted with media supplemented with different concentrations of LC (0, 0.5, 1, 2, 4 and 8 mM LC). Diluted semen samples were cooled to 5 °C and stored over 48 h. Motility, viability, membrane functionality, lipid peroxidation and mitochondria activity of the sperm were assessed at 0, 24 and 48 h of storage. Moreover, fertility potential of chilled stored sperm was considered at 24 h of storage. While sperm quality was not affected by LC at the beginning of storage (0 h), supplementation of extender with 1 and 2 mM of LC significantly improved the percentage of sperm motility, viability, membrane integrity and mitochondria activity at 24 h and 48 h compared to other groups. Lipid peroxidation was significantly reduced in sperm samples diluted with 1 and 2 mM LC at 24 h (2.15 ± 0.52 nmol/ml and 2.21 ± 0.52 nmol/ml) and 48 h (3.42 ± 0.49 nmol/ml and 3.38 ± 0.49 nmol/ml) compared to other groups. Furthermore, fertility rates during artificial insemination using sperms cooled for 24 h in the presence of 1 and 2 mM LC were significantly higher (78%) than in the control group (64%). These findings suggest that optimum doses of LC could protect rooster sperm against cool storage-induced functional and structural damages.  相似文献   

2.
In the horse industry, milk or milk-based extenders are used routinely for dilution and storage of semen cooled to 4-8 degrees C. Although artificial insemination (AI) with chilled and transported semen has been in use for several years, pregnancy rates are still low and variable related to variable semen quality of stallions. Over the years, a variety of extenders have been proposed for cooling, storage and transport of stallion semen. Fractionation of milk by microfiltration, ultrafiltration, diafiltration and freeze-drying techniques has allowed preparation of purified milk fractions in order to test them on stallion sperm survival. Finally, a high protective fraction, native phosphocaseinate (NPPC), was identified. A new extender, INRA96, based on modified Hanks' salts, supplemented with NPPC was then developed for use with cooled/stored semen.Four experiments were conducted to compare INRA96 and milk-based extenders under various conditions of storage. The diluted semen was maintained under aerobic conditions when stored at 15 degrees C, and anaerobic conditions when stored at 4 degrees C. In experiment 1, split ejaculates from 13 stallions were diluted either in INRA96 extender then stored at 15 degrees C or diluted in Kenney or INRA82 extenders and then stored at 4 degrees C for 24h, until insemination. In experiment 2, semen from two stallions was extended in INRA96 then inseminated immediately or stored at 15 degrees C for 3 days until insemination. In experiment 3, semen from three stallions was diluted in INRA96 then stored at 15 or 4 degrees C for 24h until insemination, finally, in experiment 4, split ejaculates from four stallions were diluted in INRA96 or E-Z Mixin extenders then stored at 4 degrees C for 24h until insemination. Experiment 1 demonstrated that at 15 degrees C, INRA96 extender significantly improved pregnancy rate per cycle compared to Kenney or INRA82 extenders at 4 degrees C after 24h of storage (57%, n=178 versus 40%, n=171, respectively; P<0.01). Experiment 2 showed that semen stored at 15 degrees C for 3 days can achieve pregnancy at a fertility rate per cycle of 48% (n=52) compared to 68% (n=50, immediate insemination, P=0.06). Experiment 3 demonstrated that INRA96 extender can be as efficient at 15 degrees C (54%, n=37) as at 4 degrees C (54%, n=35) after 24h of storage. Finally, experiment 4 showed that INRA96 extender used at 4 degrees C (59%, n=39) seems to improve fertility per cycle compared to E-Z Mixin at 4 degrees C (49%, n=39, P=0.25), but this result has to be confirmed.These results demonstrate that semen diluted in INRA96 extender and stored at 15 degrees C can be an alternative to semen diluted in milk-based extenders and stored at 4 degrees C for "poor cooler" stallions. Furthermore, INRA96 extender can be as efficient at 15 degrees C as at 4 degrees C, for preserving sperm motility and fertility.  相似文献   

3.
Semen cryopreservation is an important technique for the banking of animal germplasm from endangered species and exploitation of genetically superior sires through artificial insemination. Being a member of bovidae family, bison semen has poor freezing ability as compared to dairy and beef bulls' semen. This study was designed to quantify the damage to bison sperm at different stages of cryopreservation, and to determine the effects of extender (commercial Triladyl(?) vs. custom made tris-citric acid [TCA]) and freeze rate (-10, -25 and -40°C/min) on post-thaw quality of bison semen. Semen was collected from five bison bulls (three woods and two plains) via electroejaculation. In Experiment 1, semen was diluted in Triladyl? extender and frozen with freeze rate -10°C/min. Sperm motility characteristics were recorded in fresh, diluted, cooled (4°C) and freeze-thawed semen using computer-assisted sperm analyzer (CASA). In Experiment 2, semen was diluted in Triladyl? or TCA extender, and frozen with three different freeze rates, i.e. -10, -25 or -40°C/min. Thawing was performed at 37°C for 60s. Post-thaw sperm motility characteristics were assessed using CASA, and sperm structural characteristics (plasma membrane, mitochondrial membrane potential and acrosomes) were evaluated using flow cytometer, at 0 and 3h while incubating semen at 37°C. In Experiment 1, total and progressive motilities did not differ among pre-freeze stages of cryopreservation (P>0.05). However, sperm total and progressive motilities declined (P<0.001) in freeze-thawed semen by 35% and 42%, respectively, compared to after cooling (pre-freeze) semen. In Experiment 2, Triladyl?, as compared to TCA, yielded greater (P<0.05) post-thaw sperm total motility (41% compared to 36%) and progressive motility (34% compared to 29%) at 0h, respectively. The percent change in post-thaw sperm total and progressive motilities, VAP, VCL, VSL, IPM-high ΔΨm and IPM-IACR during 3h incubation at 37°C, was less (P<0.05) in TCA than in Triladyl?. There was an effect of freeze rate on post-thaw sperm average path velocity at 0h, and total motility, progressive motility, VCL, IPM and IPM-IACR at 3h were the greatest (P<0.05) when bison semen was frozen at -40°C/min. Likewise, the percent change in post-thaw sperm total and progressive motilities, during 3h incubation at 37°C, was less (P<0.05) in bison semen frozen at -40°C/min. All post-thaw bison sperm characteristics decreased (P<0.05) from 0h to 3h, during incubation at 37°C. In conclusion, the maximum damage to bison sperm occurred during freeze-thaw processes. Post-thaw total and progressive motilities of bison sperm were greater in Triladyl? at 0h whereas sperm survival was greater in TCA extender during 3h post-thaw incubation. Bison sperm had greater survival (P<0.05) when frozen at -40°C/min freeze rate.  相似文献   

4.
Ejaculates were collected form three mixed-breed male dogs daily for 3 d. The semen was diluted in either a nonfat dried milk solid-glucose (NFDMS-G) or egg yolk citrate (EYC) extender at a concentration of 25 x 10(6) sperm/ml. The diluted samples were exposed to three different storage temperatures (35, 22 and 4 degrees C). Three cooling rates (-1.0, -0.3 and -0.1 degrees C/min) were also investigated at the lowest storage temperature (4 degrees C). The semen was evaluated for total motility, progressive motility and velocity at 0, 6, 12, 24, 48, 72, 96 and 120 h after collection by two independent observers. Interactions between extenders, temperatures and time after collection were found for each of the variables. Nonfat dried milk solid-glucose diluent was superior to EYC (P<0.05) in preservating sperm motility parameters that were evaluated for most of the observations. The evaluated sperm motility parameters were also significantly superior (P<0.05) in semen stored at 4 degrees C than at 35 or 22 degrees C for most of the observations. The progressive motility and velocity of sperm in semen cooled at 4 degrees C in NFDMS-G were higher (P<0.05) at the fast and medium cooling rates (-1.0 and -0.3 degrees C) than at the slow cooling rate (-0.1 degrees C/min) at 24 and 72 h, and at 48 h, respectively. In conclusion, the present study suggests that canine spermatozoal motility is well preserved when a NFDMS-glucose extender is added to the semen and the semen is cooled at a medium or fast rate to a storage temperature of 4 degrees C. Additional studies are needed to evaluate the fertility of semen stored in this manner.  相似文献   

5.
The aim of the present study was to evaluate the effects of supplementation of semen extender with various non-enzymatic antioxidants on the quality of cooled or cryopreserved Arabian stallion spermatozoa. Semen collected from four pure Arabian stallions was centrifuged at 600g for 15 min. Spermatozoa were then diluted in INRA-82 extender supplemented with bovine serum albumin (BSA; 0, 10, 15 and 20 mg/mL) or trehalose (0, 75, 100 and 150 mM) or zinc sulphate (0, 100, 150 and 200 μM). The diluted semen was then either cooled at 5 °C or cryopreserved in 0.5–ml plastic straws. After cooling or thawing, sperm motility, viability, sperm abnormalities, viability index, and plasma membrane integrity were evaluated. The results showed that supplementation of semen extender with 150 mM trehalose or with 200 μM zinc sulphate significantly (P < 0.05) improved motility, viability, sperm membrane integrity and acrosome status in Arabian stallion spermatozoa after cooling or after freezing and thawing compared with controls (non-supplemented media) or with those supplemented with other concentrations of trehalose or zinc sulphate. Supplementation of semen extender with BSA did not improve sperm motility or cryosurvival of Arabian stallion spermatozoa after cooling or after freezing and thawing. In conclusion, supplementation of semen extender with non-enzymatic antioxidants (trehalose or zinc sulphate) improved the quality of chilled and frozen/thawed Arabian stallion spermatozoa. The most beneficial effects occur when semen diluent was supplemented with 150 mM trehalose or 200 μM zinc sulphate.  相似文献   

6.
R.L. Ax  J.R. Lodge 《Cryobiology》1975,12(1):93-97
Rooster spermatozoa were stored at 25, 5, or ?196 °C in either TC199, a pyruvate-lactate mouse ova culture medium, or as undiluted semen. There was a linear decrease in percent of motile sperm during storage at 25 or 5 °C in all cases, and a curvilinear decrease with increasing storage times at ?196 °C. Percent of motile sperm present after increasing storage time suggested pyruvate-lactate is a better extender than TC199 at the three storage temperatures studied. Pullets inseminated with 1 × 108 motile sperm using fresh sperm diluted in TC199 or pyruvate-lactate, or stored 24 hr at 5 or ?196 °C produced 68.7, 74.1, 20.6, and 10.8% fertile eggs, respectively. The differences in fertility between controls or between samples stored at 5 and ?196 °C were not significant. However, fertility from sperm stored at 5 and ?196 °C was significantly lower (p < .05) than both control groups. Thus, it can be concluded that TC199 or pyruvate-lactate may be used to dilute fresh rooster semen collections prior to insemination. In contrast, fertility of rooster sperm is not satisfactorily maintained after 5 or ?196 °C storage for 24 hr in a pyruvate-lactate extender.  相似文献   

7.
This study was aimed to evaluate the effect of addition of reduced glutathione (GSH) to the extender on the rooster's semen quality parameters and fertility potential. Semen samples were diluted with Lake extender contained 0, 0.5, 1, 2, 4 and 8 mM GSH. Then, were chilled to 5 °C and stored for a period of 48 h. Sperm motion characteristics, viability, membrane integrity, lipid peroxidation, mitochondrial activity and fertility potential were evaluated. At the initiation of the experiment (0 h), GSH did not affect sperm parameters, while 2–4 mM GSH improved (P ≤ 0.05) quality indicators during storage periods. Moreover, the samples treated with 2–4 mM GSH have had a lower lipid peroxidation compared to other groups (P ≤ 0.05). Artificial insemination using the semen samples, which had been stored in groups treated with 2–4 mM GSH for a period of 24 h, led to greater (P ≤ 0.05) fertilizing potential compared to the control group.  相似文献   

8.
Five experiments tested the efficiency of a simple, low-cost system (CP) for cooling and storing equine semen at 2.0 degrees C for 24 h and 48 h. Pantaneiro stallions of known fertility were used. Semen quality was evaluated for progressive motility (PM), plasma membrane integrity (PMI), and pregnancy rate. Experiment 1 showed that PM and PMI were similar between CP and the control (Equitainer) in cooled semen. In Experiment 2, the influence was evaluated of combinations (four treatments) of two volumes (50/100 ml) and two sperm concentrations (500/750x10(6)) on sperm quality of semen cooled and preserved by CP (cooling system replaced at 24 h). While PM decreased gradually from before cooling to 24 h and 48 h, PMI decreased only at the least and greatest sperm volume and concentrations. Storage time did not affect PMI. Results from Experiment 3 showed that CP maintained semen PM>or=30% in all samples 24 h after cooling and decreased to about 70% 42 h after cooling. Results from Experiments 4 and 5 confirmed semen quality after cooling and storage (24 h and 48 h, respectively), achieving a 69% pregnancy rate in the first estrous cycle when insemination occurred. Thus, the CP system is satisfactory for cooling and preserving equine semen for up to 48 h.  相似文献   

9.
This study was designed to evaluate the possible benefits of adding gelatin to a standard milk extender, for solid storage of sheep semen at 15 degrees C. Solid storage was assessed in terms of effects on sperm motility and membrane integrity up to 2 days (Study 1), and on in vitro penetration capacity after storage for 24h (Study 2). In both studies, semen was diluted in CONTROL (standard milk extender) and GEL (1.5 g gelatin/100ml extender) diluents to a final concentration of 400 x 10(6)sperm/ml. In Study 1, semen samples were stored at 15 degrees C, and sperm quality variables analyzed after 2, 24 and 48 h of storage. Motility and viability values were significantly lowered using the liquid compared to the gel extender for all storage periods, except for motility after 2h of storage, whose values were similar. After 2h of incubation at 37 degrees C, motile cell percentages and membrane integrity were significantly lower in the CONTROL group than in the GEL group for all storage periods. In Study 2, in vitro matured lamb oocytes were randomly divided into three groups and fertilized with CONTROL diluted semen stored for 2h or 24h, or with GEL diluted semen stored for 24h. After co-incubation, oocytes were evaluated for signs of penetration. Storage of semen in the GEL diluent for 24h gave rise to increased in vitro fertilization rates in comparison with the CONTROL diluent. Our findings indicate that the solid storage at 15 degrees C of ram spermatozoa by adding gelatin to the extender leads to improved survival and in vitro penetrating ability over the use of the normal liquid extender. A solid diluent could thus be a useful option for the preservation of fresh ovine semen for extended periods.  相似文献   

10.
New studies are underway to find new methods for supporting longer storage of cooled stallion semen. It is known that high concentrations of reactive oxygen species (ROS) cause sperm pathology. The metalloprotein superoxide dismutase (SOD) is responsible for H2O2 and O2 production, by dismutation of superoxide radicals. The aim of this study is to assess the quality of chilled stallion semen processed with extenders containing SOD at different concentrations as antioxidant additives. A total of 80 ejaculates collected from 5 standardbred stallions was divided into 5 aliquots treated as: native semen (control 1); native semen diluted 1:3 with Kenney semen extender (control 2); spermatozoa diluted after centrifugation in extender without (control 3) or with SOD at 25 IU/ml (experimental 1) or 50IU/ml (experimental 2). Each sample was analyzed for motility, viability and acrosome status, immediately after semen preparation and again after storage at 5 °C for 24h, 48h and 72h.Acrosome integrity was evaluated by Chlortetracycline (CTC) and Fluorescent-labeled peanut lectin agglutinin (PNA-FITC conjugated staining). A proteomic approach of quantifying extracellular signal regulated kinase (ERK) was also evaluated as an indirect indicator of oxidative stress. In all samples sperm progressive motility and sperm acrosomal integrity showed a significant reduction between fresh and cooled spermatozoa at 24h, 48h and 72h. Quality parameters of sperm were significantly higher (Progressive Motility P < 0.01; Viability P < 0.001) in aliquots supplemented with SOD. ERK phosphorylation was statistically higher (P < 0.01) in aliquots without SOD. The Authors concluded that addition of SOD to semen extenders improves the quality of chilled equine semen and reduces ERK activation.  相似文献   

11.
The fertility of liquid-preserved boar semen declines during storage at 17°C, insemination trials even indicating early losses in fertilizing ability within the first 24-48 h of storage. Standard semen parameters barely reflect these changes in semen quality, and new approaches for assessment of functional changes in stored spermatozoa are needed. Capacitation, the essential prefertilization step for spermatozoa in the female genital tract, is specifically induced in vitro by bicarbonate. Therefore, we have investigated changes in responsiveness of boar spermatozoa to bicarbonate during storage. Ejaculates of 14 boars were diluted in Beltsville thawing solution, cooled to 17°C and stored for 12, 24, 72, 120, and 168 h before investigation. At each time, basic semen quality was characterized by sperm motility and viability. Subsequently, washed subsamples were incubated in variants of an in vitro fertilization (IVF) medium and assessed for kinetic changes of viability (plasma membrane integrity) and intracellular calcium concentration using flow cytometry in combination with propidium iodide and Fluo-3. By this means, it was possible to determine specific effects of bicarbonate and calcium on sperm subpopulations over incubation time. During storage, standard semen parameters remained on a high level. However, flow cytometric analysis of sperm responses to capacitating and control media revealed two opposing effects of storage. There was a loss of response to bicarbonate in part of the live sperm population but an increasing degree of instability in the rest. Assessment of response to capacitating media by flow cytometry appears a markedly more sensitive way of monitoring sperm functionality during storage than the standard semen parameters of motility and viability.  相似文献   

12.
Cockerel semen is sensitive to cooling, which limits chilled storage of semen for more than 24 h. Results of artificial insemination with cold-stored semen are not desirable. This study was conducted to evaluate the effects of dietary fish oil and vitamin E (vitE) for cold-storage of rooster semen and its effects on parameters of semen during 48 h cooling preservation. Roosters were assigned into four dietary treatments; 1) control group received a basal diet, 2) vitE group received a basal diet supplemented with 200 mg/kg vitE, 3) fish oil group (FO) received a basal diet supplemented with 2% fish oil and 4) fish oil and vitE group received a basal diet supplemented with 2% fish oil and 200 mg/kg vitE (FO + vitE). Semen samples were collected after 40 days of feeding and then diluted and cooled to 5 °C for preservation up to 2 days. Several quality indicators of sperm such as motion characteristics, membrane integrity, and viability, and abnormal morphology, activity of mitochondria, lipid peroxidation and acrosome integrity of the sperm were assessed at different times of storage (0, 24 and 48 h). None of sperm were significantly affected by the diets at the start of storage (0 h, p > 0.05). FO and FO + vitE improved the percentage of total motility, viability, and mitochondria activity at 24 h (P ≤ 0.05). After 48 h, only FO + vitE group produced the higher percentage of total motility, viability and membrane integrity (P ≤ 0.05). Lipid peroxidation was significantly reduced in sperm obtained from roosters fed diets of FO + vitE and vitE compared to FO and control (P ≤ 0.05) at times of 24 and 48 h. There was no significant difference between control and vitE groups in none of parameters (P > 0.05). Integrity of acrosome and abnormal morphology were not significantly affected by the diets (P > 0.05). Supplementation of roosters' diet with 2% fish oil and 200 mg/kg vitamin E improved the quality of cold-stored semen by supporting several indicators of sperm quality through reducing lipid peroxidation.  相似文献   

13.
The control of bacteria in semen of stallions has been most effective with the use of seminal extenders containing suitable concentrations of antibiotics. However, the detrimental effect of antibiotics on sperm motility may be greater in stored, cooled semen due to the prolonged exposure to the antibiotic. Therefore, a study was conducted to determine the effect of various antibiotics on sperm motion characteristics following short term exposure and during cooled storage of semen. Reagent grade amikacin sulfate, ticarcillin disodium, gentamicin sulfate and polymixin B sulfate were added to a nonfat, dried, skim milk - glucose seminal extender at concentrations of 1000 or 2000 mug or IU/ml. Aliquots of raw semen were diluted with extender-antibiotic combinations to a concentration of 25 x 10(6) spermatozoa/ml. An aliquot was also diluted with extender without antibiotic. Aliquots were incubated at 23 degrees C for 1 h. In addition, portions of the aliquots were cooled from 23 to 5 degrees C and stored for 48 h. During 1 h of incubation of extended semen at 23 degrees C, there was a significant (P<0.05) reduction in the percentage of progressively motile spermatozoa for samples containing gentamicin sulfate. After 24 h of storage at 5 degrees C, 2000 mug/ml of gentamicin and levels equal to and greater than 1000 IU/ml of polymixin B in seminal extender resulted in significant (P<0.05) reductions in the percentages of motile and progressively motile spermatozoa. After 48 h of cooled storage, a level of 1000 mug/ml of gentamicin sulfate. resulted in significant (P<0.05) reductions in the percentages of motile and progressively motile spermatozoa. Levels equal to or greater than 1000 IU/ml of polymixin B sulfate also resulted in a significant (P<0.05) reduction in mean curvilinear velocity. Levels up to 2000 mug/ml of amikacin sulfate and ticarcillin disodium had no significant effect on sperm motion characteristics during short-term incubation at 23 degrees C or storage for 24 h at 5 degrees C. Overall, the addition of antibiotics to extender did not significantly (P>0.05) improve motion characteristics of spermatozoa over control samples. However, levels of gentamicin sulfate greater than 1000 mug/ml and of polymixin B sulfate equal to or greater than 1000 IU/ml should be avoided in seminal extenders used for cooled semen.  相似文献   

14.
Artificial insemination (AI) in rabbits is not extensive in the breeding programs of the rabbit meat industry. A limiting factor is related to the semen preservation. In order to improve the use of AI, two experiments have been conducted to evaluate sperm viability and fertility of rabbit semen chilled and stored at 15 degrees C after dilution in Tris-based extenders. In Experiment 1, pooled semen samples were diluted 1:10 (semen/extender) in four different Tris-based extenders (Tris-citric-glucose (TCG), TES-Tris-glucose (TTG), Tris-citric-fructose (TCF) and TES-Tris-fructose (TTF)) and stored at 15 degrees C. Sperm viability was evaluated at 0, 24, 48, 72 and 96 h following dilution for total sperm motility (TSM), forward progressive motility (FPM), plasma membrane integrity (PMI) and acrosome integrity (NAR). Viability of spermatozoa declined with time of storage (P<0.05), irrespective of the extender used. There were interactions between extender and time of storage (P<0.05) in all viability parameters evaluated. After 96 h of storage, TCG provided the highest sperm viability (P<0.05) and TTG the lowest (P>0.05). In Experiment 2, a field trial was conducted at a commercial farm to evaluate the conception and farrowing rates of rabbit spermatozoa extended in TCG. After synchronization of oestrous and induction of ovulation, 3713 does with different physiological conditions (nulliparous, primiparous, lactating and re-breeding) were inseminated one time (15x10(6) sperm per doses) with semen stored at 0 (n: 1275), 24 (n: 1503) and 48 h (n: 935) at 15 degrees C. Overall conception and farrowing rates were 77.1+/-0.7 and 70.4+/-0.7, respectively, and the mean litter size was 7.6+/-0.1. Fertility results were unaffected by the time of semen storage (P>0.05). Regardless of time of semen storage, fertility results were affected by the physiological conditions of does (P<0.05). Nulliparous and lactating does showed the highest fertility and primiparous the lowest. In summary, these results indicate that Tris-buffer extenders are effective for preserving viability and fertilizing capability of rabbit spermatozoa stored at 15 degrees C.  相似文献   

15.
Two experiments were conducted to examine the effects of cooling rate and storage temperature on motility parameters of stallion spermatozoa. In Experiment 1, specific cooling rates to be used in Experiment 2 were established. In Experiment 2, three ejaculates from each of two stallions were diluted to 25 x 10(6) sperm/ml with 37 degrees C nonfat dry skim milk-glucose-penicillin-streptomycin seminal extender, then assigned to one of five treatments: 1) storage at 37 degrees C, 2) storage at 25 degrees C, 3) slow cooling rate to and storage at 4 degrees C, 4) moderate cooling rate to and storage at 4 degrees C, and 5) fast cooling rate to and storage at 4 degrees C. Total spermatozoal motility (TSM), progressive spermatozoal motility (PSM), and spermatozoal velocity (SV) were estimated at 6, 12, 24, 48, 72, 96 and 120 h postejaculation. The longevity of spermatozoal motility was greatly reduced when spermatozoa were stored at 37 degrees C as compared to lower spermatozoal storage temperatures. At 6 h postejaculation, TSM values (mean % +/- SEM) of semen stored at 37 degrees C, slowly cooled to and stored at 25 degrees C or slowly cooled to and stored at 4 degrees C were 5.4 +/- 1.1, 79.8 +/- 1.6, and 82.1 +/- 1.6, respectively. Mean TSM for semen that was cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a moderate rate for four of seven time periods (6, 24, 72 and 120 h), and it was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a fast rate for five of seven time periods (6, 12, 24, 72 and 120 h). Mean TSM of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 25 degrees C for five of seven time periods (24 to 120 h). A similar pattern was found for PSM. Mean SV of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean SV of semen cooled to 25 degrees C for all time periods. A slow cooling rate (initial cooling rate of -0.3 degrees /min) and a storage temperature of 4 degrees C appear to optimize liquid preservation of equine spermatozoal motility in vitro.  相似文献   

16.
In the donkey species, the application of cooled semen artificial insemination could aid the survival of endangered breeds. Fifteen ejaculates collected from three Amiata donkeys were used to evaluate the effect of three extenders on spermatozoal motility characteristics after cooling and preservation for up to 72 h. Semen was diluted at a 1:4 semen:extender ratio in INRA96, INRA82 and INRA82 added of 2% centrifuged egg yolk (INRA82-Y) and motility was evaluated by the computerized analyzer CEROS 12.1 at hours 0, 24, 48 and 72. Total motility, and rapid spermatozoa after 24, 48 and 72 h of preservation were higher in INRA82-Y than in INRA96 or INRA82, as was progressive motility after 72 h. INRA82-Y was thus used in a second study, where the effects of centrifugation and of removal of seminal plasma on cooled donkey semen were evaluated on 12 ejaculates from four males. Rapid spermatozoa after 24 and 72 h, and total motility after 72 h were better preserved in the non-centrifuged samples than when seminal plasma was removed, the contrary was true for the proportion of spermatozoa keeping their progressive motility at hour 48. In conclusion, INRA82-Y kept sperm motility characteristics during cooled storage better than INRA82 or INRA96, and removal of seminal plasma during in vitro preservation did not seemed advantageous. Further studies are needed to better understand the changes in motility patterns of donkey spermatozoa caused by seminal plasma and semen extenders, and their relation to fertility.  相似文献   

17.
We conducted two studies to improve preservation of rabbit semen. The objective of the first study was determine whether a glucose- and fructose-based extender with two different amounts of gelatin would solidify at 15 degrees C, and to evaluate the influence of gelatin supplementation on sperm motility parameters after storing semen up to 10 days at 15 degrees C. The fertility of rabbit semen diluted in the best gelatin-supplemented extender established in Study 1 and stored for up to 5 days was evaluated in the second study. In Study 1, semen was collected with an artificial vagina from 40 bucks. Each ejaculate was diluted to (80-100) x 10(6) spermatozoa/mL (1:3, semen/extender) at 37 degrees C in one of the three following glucose- and fructose-based extenders: control (standard liquid extender), semi-gel or gel (0.7 or 1.4 g gelatin in 100 mL extender, respectively). Pools of semen were allocated among 0.6 mL plastic artificial insemination (AI) guns. Thirty (10 per extender group) AI doses were immediately analyzed (0 h) and the remainder stored in a refrigerator (15 degrees C) for 12, 24, 36, 48, 72, 96, or 240 h. All doses with gelatin extenders solidified at 15 degrees C. Semen samples, prewarmed to 37 degrees C, were evaluated with a computer-assisted sperm analysis (CASA) system. The percentage of motile cells was significantly lower using the liquid compared to the gel extenders during semen storage from 0 to 96 h. Although significance was lost, these differences persisted after 240 h of storage. Motility of spermatozoa in the semi-gel extender was intermediate between that of liquid and gel extender throughout the study. Study 2 was performed on 1250 multiparous lactating does. Five homogeneous groups of 250 does previously synchronized were inseminated using semen previously stored for 120, 96, 72, 48 or 24 h, respectively. Rabbit does receiving 24 h-stored semen (diluted with the control extender used in Study 1) served as controls. The remaining females received seminal doses supplemented with 1.4 g/100mL gelatin (gel extender used in Study 1). Kindling rates for rabbit does inseminated with gelatin-supplemented (solid) semen doses stored for 48 h (88%) or 72 h (83%) were similar to those recorded for liquid controls stored for 24 h (81%), whereas rates significantly decreased when the semen was solid and stored for 96 h (64%) or 120 h (60%) before AI. In conclusion, rabbit spermatozoa were effectively stored in the solid state at 15 degrees C, with fertility preserved for up to 5 days. Solid storage of rabbit semen would facilitate commercial distribution.  相似文献   

18.
The objective of this study was to determine if centrifugation and partial removal of seminal plasma would improve spermatozoal motility in semen from stallions whose whole ejaculates have poor tolerance to cooling and storage. Stallions were divided into two groups (n = 5/group) based on the ability of their extended semen to maintain spermatozoal motility after cooling and storage. Group 1 stallions ("good coolers") produced semen in which progressive spermatozoal motility after 24 h of cooling and storage was reduced by < or = 30% of progressive motility prior to storage. Group 2 stallions ("poor coolers") produced semen in which progressive spermatozoal motility after 24 h of cooling and storage was reduced by > or = 40% of progressive motility prior to storage. The sperm-rich portion of each ejaculate was divided into 4 aliquots. Two aliquots underwent standard processing for cooled transported semen and were examined after 24 and 48 h of cooling and storage in an Equitainer. The remaining two aliquots were diluted 1:1 with semen extender, then centrifuged at 400 x g for 12 min at room temperature. After centrifugation, approximately 90% of the seminal plasma was removed, and the sperm pellet was resuspended in extender to a final concentration of 25 to 50 x 10(6) sperm/mL. These aliquots were then packaged as for the non-centrifuged aliquots and examined after 24 and 48 h of storage. The spermatozoal motion characteristics in fresh semen and after 24 and 48 h of cooling and storage was determined via computer-assisted semen analysis. Centrifugation and partial removal of seminal plasma increased the percentage of progressively motile spermatozoa and limited the reduction in progressive spermatozoal motility of "poor cooling" stallions after 48 h of cooling and storage. Results of this study indicate that centrifugation and partial removal of seminal plasma is beneficial for stallions whose ejaculates have poor tolerance to cooling and storage with routine semen dilution and packaging techniques, especially if the semen is stored for > 24 h.  相似文献   

19.
Semen was collected with an artificial vagina from four adult rams. The ejaculates were pooled and diluted, using a split-sample technique, in four different extenders: one for milk (Mi), one for sodium citrate (Na), and two for Tris-based extenders (T1 and T2) including egg yolk. Thereafter, the diluted semen was stored at 5 and 20 degrees C, respectively. We evaluated sperm viability after 0, 6, 12, 24 and 30 h of storage. We assessed sperm motility subjectively, and we determined sperm membrane integrity using both the hypo-osmotic resistance test (ORT) and a fluorophore staining (SYBR-14 and propidium iodide) technique. We evaluated acrosomal status with Spermac and capacitation status with Chlortetracycline (CTC assay). All sperm viability parameters were influenced by storage time and extender, while sperm motility was the only evaluated parameter that was influenced by the interaction between extender and temperature. Semen that was diluted and stored in the commercially available Tris-based extender (T2) maintained sperm motility for a longer period of time, and acrosome and membrane integrity was higher during storage for up to 30 h as compared to the other extenders independent of storage temperature. In general, however, storage of ram semen at 5 degrees C seemed to influence sperm viability parameters less than storage at 20 degrees C. In conclusion, the results of the present study indicate that Tris-based extenders, especially T2, preserved sperm viability better than both the sodium citrate- and the milk-based extender did when liquid ram semen was stored up to 30 h at 5 and 20 degrees C. Whether the differences found between the extenders will be reflected in the fertility results after AI is yet unknown and needs to be further studied.  相似文献   

20.
The objective of this study was to evaluate the effects of reduced glutathione (GSH) and catalase (CAT) supplementation on the kinematics and membrane functionality of sperm during the liquid storage of ram semen, cooled at 5 °C, for up to 24 h. Semen samples from four rams were pooled, diluted with Tris-egg yolk extender without antioxidants (control) or supplemented with either CAT (100, 200, and 400 U/mL) or GSH (100, 200, and 400 mM) at a final concentration of 50 × 106 sperm/mL. Sperm kinematics, which was analyzed by computer-assisted sperm analysis (CASA), and membrane functionality, which was analyzed using the hypo-osmotic swelling test (HOST), were determined after the addition of the semen samples at different processing times (fresh/diluted, 1.5, 6, 12, and 24 h, at 5 °C). No significant differences were recorded in the kinematics or membrane functionality between treatments at different times. The supplementation of diluents with 100 and 200 U/mL of CAT prevented the harmful effects of cooling on total sperm motility. No significant differences were observed in progressive sperm motility throughout processing, regardless of the treatment and time of evaluation. Supplementation with 400 mM GSH resulted in an earlier reduction (P < 0.05) of total sperm motility, a decrease in rapid sperm rate and a reduction in curvilinear velocity during incubation, at 5 °C. The cooling induced a reduction (P < 0.05) in the percentage of sperm with a functional plasma membrane (HOST), especially after 1.5 h of incubation. Based on the results of the present study, the addition of CAT (100 and 200 U/mL) reduced the deleterious effects of cooling on total motility in ram sperm maintained at 5 °C for 24 h, although it did not affect the functionality of the sperm membranes. However, the addition of 400 mM GSH caused negative effects on the velocity parameters of the sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号