首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Vacuolar ion channels in guard cells play important roles during stomatal movement and are regulated by many factors including Ca(2+), calmodulin, protein kinases, and phosphatases. We report that physiological cytosolic and luminal Mg(2+) levels strongly regulate vacuolar ion channels in fava bean (Vicia faba) guard cells. Luminal Mg(2+) inhibited fast vacuolar (FV) currents with a K(i) of approximately 0.23 mM in a voltage-dependent manner at positive potentials on the cytoplasmic side. Cytosolic Mg(2+) at 1 mM also inhibited FV currents. Furthermore, in the absence of cytosolic Mg(2+), cytosolic Ca(2+) at less than 10 μM did not activate slow vacuolar (SV) currents. However, when cytosolic Mg(2+) was present, submicromolar concentrations of cytosolic Ca(2+) activated SV currents with a K(d) of approximately 227 nM, suggesting a synergistic Mg(2+)-Ca(2+) effect. The activation potential of SV currents was shifted toward physiological potentials in the presence of cytosolic Mg(2+) concentrations. The direction of SV currents could also be changed from outward to both outward and inward currents. Our data predict a model for SV channel regulation, including a cytosolic binding site for Ca(2+) with an affinity in the submicromolar range and a cytosolic low-affinity Mg(2+)-Ca(2+) binding site. SV channels are predicted to contain a third binding site on the vacuolar luminal side, which binds Ca(2+) and is inhibitory. In conclusion, cytosolic Mg(2+) sensitizes SV channels to physiological cytosolic Ca(2+) elevations. Furthermore, we propose that cytosolic and vacuolar Mg(2+) concentrations ensure that FV channels do not function as a continuous vacuolar K(+) leak, which would prohibit stomatal opening.  相似文献   

2.
Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.  相似文献   

3.
Non-selective slow vacuolar (SV) channels mediate uptake of K+ and Na+ into vacuolar compartment. Under salt stress plant cells accumulate Na+ in the vacuole and release vacuolar K+ into the cytoplasm. It is, however, unclear how plants mediate transport of K+ from the vacuole without concomitant efflux of toxic Na+. Here we show by patch-clamp studies on isolated Arabidopsis thaliana cell culture vacuoles that SV channels do not mediate Na+ release from the vacuole as luminal Na+ blocks this channel. Gating of the SV channel is dependent on the K+ gradient across the vacuolar membrane. Under symmetrical K+ concentrations on both sides of the vacuolar membrane, SV channels mediate potassium uptake. When cytoplasmic K+ decreases, SV channels allow K+ release from the vacuole. In contrast to potassium, Na+ can be taken up by SV channels, but not released even in the presence of a 150-fold gradient (lumen to cytoplasm). Accumulation of Na+ in the vacuole shifts the activation potential of SV channels to more positive voltages and prevents gradient-driven efflux of K+. Similar to sodium, under physiological conditions, vacuolar Ca2+ is not released from vacuoles via SV channels. We suggest that a major Arabidopsis SV channel is equipped with a positively charged intrinsic gate located at the luminal side, which prevents release of Na+ and Ca2+, but permits efflux of K+. This property of the SV channel guarantees that K+ can shuttle across the vacuolar membrane while maintaining Na+ and Ca2+ stored in this organelle.  相似文献   

4.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

5.
The PMC1 gene in Saccharomyces cerevisiae encodes a vacuolar Ca2+ ATPase required for growth in high-Ca2+ conditions. Previous work showed that Ca2+ tolerance can be restored to pmc1 mutants by inactivation of calcineurin, a Ca2+/calmodulin-dependent protein phosphatase sensitive to the immunosuppressive drug FK506. We now report that calcineurin decreases Ca2+ tolerance of pmc1 mutants by inhibiting the function of VCX1, which encodes a vacuolar H+/Ca2+ exchanger related to vertebrate Na+/Ca2+ exchangers. The contribution of VCX1 in Ca2+ tolerance is low in strains with a functional calcineurin and is high in strains which lack calcineurin activity. In contrast, the contribution of PMC1 to Ca2+ tolerance is augmented by calcineurin activation. Consistent with these positive and negative roles of calcineurin, expression of a vcx1::lacZ reporter was slightly diminished and a pmc1::lacZ reporter was induced up to 500-fold by processes dependent on calcineurin, calmodulin, and Ca2+. It is likely that calcineurin inhibits VCX1 function mainly by posttranslational mechanisms. Activities of VCX1 and PMC1 help to control cytosolic free Ca2+ concentrations because their function can decrease pmc1::lacZ induction by calcineurin. Additional studies with reporter genes and mutants indicate that PMR1 and PMR2A, encoding P-type ion pumps required for Mn2+ and Na+ tolerance, may also be induced physiologically in response to high-Mn2+ and -Na+ conditions through calcineurin-dependent mechanisms. In these situations, inhibition of VCX1 function may be important for the production of Ca2+ signals. We propose that elevated cytosolic free Ca2+ concentrations, calmodulin, and calcineurin regulate at least four ion transporters in S. cerevisiae in response to several environmental conditions.  相似文献   

6.
TPK1 (formerly KCO1) is the founding member of the family of two-pore domain K(+) channels in Arabidopsis (Arabidopsis thaliana), which originally was described following expression in Sf9 insect cells as a Ca(2+)- and voltage-dependent outwardly rectifying plasma membrane K(+) channel. In plants, this channel has been shown by green fluorescent protein fusion to localize to the vacuolar membrane, which led to speculations that the TPK1 gene product would be a component of the nonselective, Ca(2+) and voltage-dependent slow-vacuolar (SV) cation channel found in many plants species. Using yeast (Saccharomyces cerevisiae) as an expression system for TPK1, we show functional expression of the channel in the vacuolar membrane. In isolated vacuoles of yeast yvc1 disruption mutants, the TPK1 gene product shows ion channel activity with some characteristics very similar to the SV-type channel. The open channel conductance of TPK1 in symmetrically 100 mM KCl is slightly asymmetric with roughly 40 pS at positive membrane voltages and 75 pS at negative voltages. Similar to the SV-type channel, TPK1 is activated by cytosolic Ca(2+), requiring micromolar concentration for activation. However, in contrast to the SV-type channel, TPK1 exhibits strong selectivity for K(+) over Na(+), and its activity turned out to be independent of the membrane voltage over the range of +/-80 mV. Our data clearly demonstrate that TPK1 is a voltage-independent, Ca(2+)-activated, K(+)-selective ion channel in the vacuolar membrane that does not mediate SV-type ionic currents.  相似文献   

7.
The SV channel encoded by the TPC1 gene represents a Ca2+- and voltage-dependent vacuolar cation channel. Point mutation D454N within TPC1 , named fou2 for fatty acid oxygenation upregulated 2 , results in increased synthesis of the stress hormone jasmonate. As wounding causes Ca2+ signals and cytosolic Ca2+ is required for SV channel function, we here studied the Ca2+-dependent properties of this major vacuolar cation channel with Arabidopsis thaliana mesophyll vacuoles. In patch clamp measurements, wild-type and fou2 SV channels did not exhibit differences in cytosolic Ca2+ sensitivity and Ca2+ impermeability. K+ fluxes through wild-type TPC1 were reduced or even completely faded away when vacuolar Ca2+ reached the 0.1-m m level. The fou2 protein under these conditions, however, remained active. Thus, D454N seems to be part of a luminal Ca2+ recognition site. Thereby the SV channel mutant gains tolerance towards elevated luminal Ca2+. A three-fold higher vacuolar Ca/K ratio in the fou2 mutant relative to wild-type plants seems to indicate that fou2 can accumulate higher levels of vacuolar Ca2+ before SV channel activity vanishes and K+ homeostasis is impaired. In response to wounding fou2 plants might thus elicit strong vacuole-derived cytosolic Ca2+ signals resulting in overproduction of jasmonate.  相似文献   

8.
Voltage-gated, Ca2+ release channels have been characterized at the vacuolar membrane of broad bean guard cells using patch clamps of excised, inside-out membrane patches. The most prevalent Ca2+ release channel had a conductance of 27 pS over voltages negative of the reversal potential (Erev) (cytosol referenced to vacuole), with 5,10, or 20 mM Ca2+ as the charge carrier on the vacuolar side and 50 mM K+ on the cytosolic side. The single-channel current saturated at ~2.6 pA. The relative permeability of the channel was in the range of a Pca2+:Pk+ ratio of 6:1. Divalent cations could act as charge carriers on the vacuolar side with a conductance series of Ba2+ > Mg2+ > Sr2+ > Ca2+ and a selectivity sequence of Ca2+ [approximately equals to] Ba2+ [approximately equals to] Sr2+ > Mg2+. The channel was gated open by cytosol-negative (physiological) transmembrane voltages, increases in vacuolar Ca2+ concentration, and increases in the vacuolar pH. The channel was potently inhibited by the Ca2+ channel blockers Gd3+ (half-maximal inhibition at 10.3 [mu]M) and nifedipine (half-maximal inhibition at 77 [mu]M). The stilbene derivative 4,4[prime]-diisothiocyano-2,2[prime]-stilbene disulfonate was also inhibitory (half-maximal inhibition for a 4-min incubation period at 6.3[mu]M). The 27-pS channel coresides in individual guard cell vacuoles with a less frequently observed 14-pS Ca2+ release channel that had similar, although not identical, voltage dependence and gating characteristics and a lower selectivity for Ca2+ over K+. The requirement for two channels with a similar function at the vacuolar membrane of guard cells is discussed.  相似文献   

9.
In order to test the hypothesis that slowly activating vacuolar (SV) channels mediate Ca2+-induced Ca2+ release the voltage- and Ca2+-dependence of these K+ and Ca2+- permeable channels were studied in a quantitative manner. The patch-clamp technique was applied to barley (Hordeum vulgare L.) mesophyll vacuoles in the whole vacuole and vacuolar-free patch configuration. Under symmetrical ionic conditions the current-voltage relationship of the open SV channel was characterized by a pronounced inward rectification. The single channel current amplitude was not affected by changes in cytosolic Ca2+ whereas an increase in vacuolar Ca2+ decreased the unitary current in a voltage-dependent manner. The SV channel open-probability increased with positive potentials and elevated cytosolic Ca2+, but not with elevated cytosolic Mg2+. An increase of cytosolic Ca2+ shifted the half-activation potential to more negative voltages, whereas an increase of vacuolar Ca2+ shifted the half-activation potential to more positive voltages. At physiological vacuolar Ca2+ activities (50 μM to 2 mM) changes in cytosolic Ca2+ (5 μM to 2 mM) revealed an exponential dependence of the SV channel open-probability on the electrochemical potential gradient for Ca2+ (ΔμCa). At the Ca2+ equilibrium potential (ΔμCa = 0) the open-probability was as low as 0.4%. Higher open-probabilities required net Ca2+ motive forces which would drive Ca2+ influx into the vacuole. Under conditions favouring Ca2+ release from the vacuole, however, the open-probability further decreased. Based on quantitative analysis, it was concluded that the SV channel is not suited for Ca2+-induced Ca2+ release from the vacuole.  相似文献   

10.
A Cl- channel with a small single-channel conductance (3 pS) was observed in cell-attached patches formed on the apical membrane of cells from the distal nephron cell line (A6) cultured on permeable supports. The current-voltage (I-V) relationship from cell-attached patches or inside-out patches with 1 microM cytosolic Ca2+ strongly rectified with no inward current at potentials more negative than ECl. However, the rectification decreased (i.e., inward current increased) when the cytosolic Ca2+ concentration ([Ca2+]i) was increased above 1 microM. If [Ca2+]i is increased to 800 microM, the I-V relationship became linear. Besides the change in the I-V relationship, an increase in [Ca2+]i also increases the open probability of the channel. Regardless of the recording condition, the channel has one open and one closed state. Both closing and opening rates were dependent on [Ca2+]i; an increase of [Ca2+]i decreased the closing rate and increased the opening rate. The Ca2+ dependence of transition rates at positive membrane potentials (cell interior with respect to external surface) were much larger than the dependence at negative intracellular potentials. The I-V relationship of chloride channels in inside-out patches from cells pretreated with insulin was linear even with 1 microM [Ca2+]i, while channel currents from cells under similar conditions but without insulin still strongly rectified. Alkaline phosphatase applied to the intracellular surface of inside-out patches altered the outward rectification of single channels in a manner qualitatively similar to that of insulin pretreatment. These observations suggest that phosphorylation/dephosphorylation of the channel modulates the sensitivity of the Cl- channel to cytosolic Ca2+ and that insulin produces its effect by promoting dephosphorylation of the channel.  相似文献   

11.
Vacuolar calcium channels   总被引:4,自引:0,他引:4  
The central vacuole is the largest Ca2+ store in a mature plant cell. Ca2+ release from this store contributes to Ca2+-mediated intracellular signalling in a variety of physiological responses. However, the routes for vacuolar Ca2+ release are not well characterized. To date, at least two voltage-dependent and two ligand-gated Ca2+-permeable channels have been reported in plant vacuoles. However, the so-called VVCa (vacuolar voltage-gated Ca2+) channel most probably is not a separate channel but is identical to another voltage-dependent channel-the so-called SV (slow vacuolar) channel. Studies in the last few years have added a new dimension to our knowledge of SV channel-mediated ion transport and the mechanisms of its regulation by multiple natural factors. Recently, the SV channel was identified as the product of the TPC1 gene in Arabidopsis. In contrast, the TPC1 channel from other species was thought to be localized in the plasma membrane. A re-evaluation of this work under the assumption that the TPC1 channel is generally a vacuolar channel provides interesting insights into the physiological function of the TPC1/SV channel. Considerably less is known about vacuolar Ca2+ channels that are supposed to be activated by inositol 1,4,5-trisphosphate or cADP ribose. The major problems are controversial reports about functional characteristics, and a remarkable lack of homologues of animal ligand-gated Ca2+ channels in higher plants. To help understand Ca2+-mediated intracellular signalling in plant cells, a critical update of existing experimental evidence for vacuolar Ca2+ channels is presented.  相似文献   

12.
The mucosal-to-serosal and serosal-to-mucosal fluxes of Na+ and Cl- were carried out in control and experimental groups treated with different doses of heat-labile enterotoxin in the presence or absence of Ca2+-ionophore, Ca2+ channel blocker and calmodulin inhibitor. There was net secretion of Na+ and Cl- in 16 and 32 units of heat-labile enterotoxin treated groups in comparison to net absorption in control group, however, in animals treated with 8 units of heat-labile enterotoxin, no change in Na+ and Cl- fluxes was found when compared to control. Ca2+- ionophore increased net secretion of Na+ and Cl- in 16 and 32 units of heat-labile enterotoxin treated groups and also caused secretion in control group instead of net absorption. Ca2+ channel blocker and calmodulin inhibitor partially reversed the effect of heat-labile enterotoxin. The effect of Ca2+-ionophore was more pronounced in the control group while that of Ca2+ channel blocker and calmodulin inhibitor was more pronounced in 16 and 32 units of heat-labile enterotoxin treated groups. The findings suggest the involvement of Ca2+ and calmodulin in the action of heat-labile enterotoxin of Escherichia coli in mice.  相似文献   

13.
Phosphatases in cytosolic fractions, vacuoles, and vacuolar membranes from barley (Hordeum vulgare L.) leaves were found to dephosphorylate inositol 1,4,5-trisphosphate (IP3). 1,4-inositol bisphosphate (1,4-IP2) is the main product of IP3 dephosphorylation by the cytosolic fraction. The activity was strictly Mg2+ dependent. In contrast, IP3 dephosphorylation activity of both the soluble vacuolar and the tonoplast fractions was inhibited up to 50% by Mg2+. When vacuolar membranes were incubated with IP3, 1,4-IP2 was produced only under neutral and slightly alkaline conditions. Under acidic conditions, however, dephosphorylation yielded putative 4,5-inositol bisphosphate. Li+ (20 mM) and Ca2+ (100 [mu]M) strongly inhibited activity in the soluble vacuolar fraction but had only a slight effect on the activities of the cytosolic and tonoplast fractions.  相似文献   

14.
The patch-clamp technique was applied to vacuoles isolated from a photoautotrophic suspension cell culture of Chenopodium rubrum L. and vacuolar clamp currents, which are predominantly carried by the previously identified Ca2+-dependent slow vacuolar (SV) ion channels, were recorded. These currents, which were activated by 1-s voltage pulses of -100 mV (vacuolar interior negative) in the presence of 100 M Ca2+ (cytosolic side), could be blocked completely and reversibly by the calmodulin antagonist W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and its chlorine-deficient analogue W-5; half-maximum inhibition was found at approx. 6 M for W-7 and 70 M for W-5. Inhibition was reversed by addition of 1 g · ml–1 calmodulin purified from Chenopodium cell suspensions; reversal by bovine brain calmodulin was scarcely appreciable. We conclude that cytosolic calmodulin mediates the Ca2+ dependence of the SV-channel in the Chenopodium tonoplast.Abbreviations SV-channel slowly activated, vacuolar ion channel - W-5 N-(6-aminohexyl)-1-naphthalenesulfonamide - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide We acknowledge support by the Deutsche Forschungsgemeinschaft and the Bundesminister für Forschung und Technologie, Bonn, and by the Justus-Liebig-Universität Giessen (to W.B.)  相似文献   

15.
Carpaneto A  Cantù AM  Gambale F 《Planta》2001,213(3):457-468
The slow vacuolar (SV) channel can mediate a large part of the ionic current in plant tonoplasts, but its actual physiological role is still unclear. We demonstrate that in vacuoles from the taproots of sugar beet (Beta vulgaris L.), besides Ca2+, cytoplasmic Mg2+ also plays an important role in promoting the activation of the SV channel. An increase in Mg2+ concentration decreases the time constants of channel activation and deactivation, and determines a consistent shift, towards negative voltages, of the conductance characteristic; as an example, when the free concentration of Mg2+ was increased from the micromolar range up to 10 mM the activation shifted by about -60 mV. The experimental results obtained, which are based on a fast perfusion procedure allowing us to change the solution bathing the vacuole in a few milliseconds, suggest that magnesium-binding is a faster process than the voltage-activation gating of the channel, which constitutes the rate-limiting step controlling channel opening. Interestingly, the activation of the channel mediated by Mg2+ depends on the cooperative binding of at least three magnesium ions. We verified that cytoplasmic magnesium favours the activation of SV channels in the presence of nanomolar cytoplasmic calcium concentrations. A critical discussion on the Calcium Induced Calcium Release (CICR) mechanism proposed for the SV channel is presented.  相似文献   

16.
Z M Pei  J M Ward  J F Harper    J I Schroeder 《The EMBO journal》1996,15(23):6564-6574
Calcium-Dependent Protein Kinases (CDPKs) in higher plants contain a C-terminal calmodulin-like regulatory domain. Little is known regarding physiological CDPK targets. Both kinase activity and multiple Ca2+-dependent signaling pathways have been implicated in the control of stomatal guard cell movements. To determine whether CDPK or other protein kinases could have a role in guard cell signaling, purified and recombinant kinases were applied to Vicia faba guard cell vacuoles during patch-clamp experiments. CDPK activated novel vacuolar chloride (VCL) and malate conductances in guard cells. Activation was dependent on both Ca2+ and ATP. Furthermore, VCL activation occurred in the absence of Ca2+ using a Ca2+-independent, constitutively active, CDPK* mutant. Protein kinase A showed weaker activation (22% as compared with CDPK). Current reversals in whole vacuole recordings shifted with the Nernst potential for Cl-and vanished in glutamate. Single channel recordings showed a CDPK-activated 34 +/- 5 pS Cl- channel. VCL channels were activated at physiological potentials enabling Cl- uptake into vacuoles. VCL channels may provide a previously unidentified, but necessary, pathway for anion uptake into vacuoles required for stomatal opening. CDPK-activated VCL currents were also observed in red beet vacuoles suggesting that these channels may provide a more general mechanism for kinase-dependent anion uptake.  相似文献   

17.
Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic Ca2+ concentration have been shown to trigger ion efflux from guard cells, resulting in stomatal closure. Here, we report a novel type of largely voltage-independent K+-selective ion channel in the vacuolar membrane of guard cells that is activated by physiological increases in the cytoplasmic Ca2+ concentration. These vacuolar K+ (VK) channels had a single channel conductance of 70 pS with 100 mM KCI on both sides of the membrane and were highly selective for K+ over NH4+ and Rb+. Na+, Li+, and Cs+ were not measurably permeant. The Ca2+, voltage, and pH dependences, high selectivity for K+, and high density of VK channels in the vacuolar membrane of guard cells suggest a central role for these K+ channels in the initiation and control of K+ release from the vacuole to the cytoplasm required for stomatal closure. The activation of K+-selective VK channels can shift the vacuolar membrane to more positive potentials on the cytoplasmic side, sufficient to activate previously described slow vacuolar cation channels (SV-type). Analysis of the ionic selectivity of SV channels demonstrated a Ca2+ over K+ selectivity (permeability ratio for Ca2+ to K+ of ~3:1) of these channels in broad bean guard cells and red beet vacuoles, suggesting that SV channels play an important role in Ca2+-induced Ca2+ release from the vacuole during stomatal closure. A model is presented suggesting that the interaction of VK and SV channel activities is crucial in regulating vacuolar K+ and Ca2+ release during stomatal closure. Furthermore, the possibility that the ubiquitous SV channels may represent a general mechanism for Ca2+-induced Ca2+ release from higher plant vacuoles is discussed.  相似文献   

18.
Gelli A  Blumwald E 《Plant physiology》1993,102(4):1139-1146
Voltage patch-clamp experiments at the whole-vacuole and single-channel levels were employed to study the retrieval of Ca2+ from vacuoles into the cytoplasm in sugar beet cell (Beta vulgaris L.) suspension cultures. Channels allowing the movement of Ca2+ out of the vacuole were identified at physiological conditions of pH, vacuolar membrane potential, and vacuole/cytoplasm Ca2+ concentrations. The operation of the channel was voltage dependent and inositol-1,4,5-triphosphate insensitive and displayed high selectivity for Ca2+ ions. These channels bear similarities to the dihydropyridine-sensitive L-type Ca2+ channels from animal cells. Bay K-8644, an agonist, increased the frequency of channel openings, whereas nifedipine, an antagonist, reduced the channel activity. Both effects were elicited only from the vacuolar side of the channel. Channel activities were also inhibited by verapamil, La3+, and cytoplasmic Ca2+ concentrations higher than 1 x 10-6 M. The modulation of the channel currents by cytoplasmic Ca2+ would suggest the role of these channels in triggering the initiation of signal transduction processes in plant cells.  相似文献   

19.
Using the patch‐clamp technique, we investigated the transport properties of vacuolar ion channels from the roots of water hyacinth, Eichhornia crassipes (Mart. Solms, Pontederiacae). Eichhornia crassipes vacuoles displayed large voltage‐dependent rectifying slow‐vacuolar (SV) currents, which activated in a few seconds at positive potentials and deactivated at negative voltages in a few hundreds of millseconds. Similarly to SV channel previously identified in the tonoplast of terrestrial plants, SV currents in E. crassipes were activated by micromolar concentrations of Ca2+ and current slightly increased (25%) on addition (10 mm ) of the reducing agent dithiothreitol (DTT). Eichhornia crassipes SV channels were equally permeable to K+ and Na+. The permeability sequence derived from current values is: K+ ≈ Na+ > Rb+ > NH4+ ≈ Cs+ >> TEA+. Excised membrane patches displayed single channel transitions typical of SV‐type single channel openings with a conductance of (83·0 ± 5·6) pS; a smaller channel with a conductance of (31·0 ± 2·7) pS was also identified. Metals such as Ni2+ and Zn2+ decreased the vacuolar current in a reversible manner. However, although Zn2+ inhibition is comparable to that induced by the same metal in vacuoles from the main root of sugar beet (Beta vulgaris L.), the inhibition of the SV currents by Ni2+ is not as substantial in E. crassipes as in sugar beet. To our knowledge, this is the first electrophysiological characterization of ionic transport in E. crassipes, a pervasive troublesome aquatic weed, which has exceptional absorption properties of several water contaminants such as heavy metals, pesticides and phenols.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号