首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Faba bean (Vicia faba L.) is an important food legume crop with a huge genome. Development of genetic markers for faba bean is important to study diversity and for molecular breeding. In this study, we used Next Generation Sequencing (NGS) technology for the development of genomic simple sequence repeat (SSR) markers. A total of 14,027,500 sequence reads were obtained comprising 4,208 Mb. From these reads, 56,063 contigs were assembled (16,367 Mb) and 2138 SSRs were identified. Mono and dinucleotides were the most abundant, accounting for 57.5 % and 20.9 % of all SSR repeats, respectively. A total of 430 primer pairs were designed from contigs larger than 350 nucleotides and 50 primers pairs were tested for validation of SSR locus amplification. Nearly all (96 %) of the markers were found to produce clear amplicons and to be reproducible. Thirty-nine SSR markers were then applied to 46 faba bean accessions from worldwide origins, resulting in 161 alleles with 87.5 % polymorphism, and an average of 4.1 alleles per marker. Gene diversity (GD) of the markers ranged from 0 to 0.48 with an average of 0.27. Testing of the markers showed that they were useful in determining genetic relationships and population structure in faba bean accessions.  相似文献   

2.
Oil camellia trees are important woody plants for the production of high-quality cooking oil. On the contrary to their economic importance, their genetic and genomic resources are very limited, which greatly hamper the genetic studies on oil camellia trees. Microsatellites or simple sequence repeats (SSRs) have great value in many aspects of genetic analyses due to their high polymorphism and codominant inheritance. In this study, we report the large-scale development and characterization of SSR markers derived from genomic sequences of Camellia chekiangoleosa by high-throughput pyrosequencing technology. A total of 1,091,393 genomic shotgun reads were generated using Roche 454 FLX sequencer, the average read length was 319 bp, and the total sequence throughput was 347.9 Mb. These sequences were assembled into 35,315 contigs with total length of 14.8 Mb and the N50 contig size of 770 bp. By analyzing with microsatellite (MISA), a total of 5,844 perfect microsatellites were detected from the assembled sequences. Among them, tetranucleotide repeats were found to be the most frequent microsatellites in the genome of C. chekiangoleosa, and all the dominant repeat motifs for different types of SSRs were detected to be rich in A/T. Experimental analysis with 900 SSR primer pairs revealed that 66 % of them succeeded in PCR amplification. Further investigation with 345 SSR primer pairs showed that a relatively high percentage of primers amplified polymorphic loci (31.9 %). Experimental data also revealed that, overall, long microsatellite repeats (>20 bp) were more variable than the short ones (<20 bp) in the genome of oil camellia tree.  相似文献   

3.
With the aim of developing additional genomic resources in safflower, a set of 41,011 ESTs of safflower were mined for the presence of SSRs. 18,773 SSR containing ESTs (SSR-ESTs) were identified and were analyzed to remove redundant sequences leading to identification of 8,810 non-redundant SSR-ESTs (categorized into 6104 singletons and 2,706 contigs) having 13,085 non-redundant SSRs. The average number of non-redundant SSRs per EST was 0.32 and they predominantly consisted of dinucleotide (57.7 %), and trinucleotide (37.7 %) repeat motifs. 500 primer pairs were designed for the non-redundant EST-SSRs of which, 151 were tested. 60 markers which gave robust amplicons, were validated in a set of 19 Carthamus lines. A subset of EST-SSR markers, having average polymorphism information content (PIC) ≥0.4 could precisely elucidate the pedigree relatedness among these lines. Further, these markers exhibited high cross-species transferability to five other wild species of Carthamus. The markers reported here would be a valuable addition to existing safflower marker resources aiding in hastening its improvement.  相似文献   

4.
5.
Simple sequence repeat (SSR) markers were developed for cultivated sunflower (Helianthus annuus L.) from the DNA sequences of 970 clones isolated from genomic DNA libraries enriched for (CA)n,, (CT)n, (CAA)n, (CATA)n, or (GATA)n. The clones harbored 632 SSRs, of which 259 were unique. SSR markers were developed for 130 unique SSRs by designing and testing primers for 171 unique SSRs. Of the total, 74 SSR markers were polymorphic when screened for length polymorphisms among 16 elite inbred lines. The mean number of alleles per locus was 3.7 for dinucleotide, 3.6 for trinucleotide, and 9.5 for tetranucleotide repeats and the mean polymorphic information content (PIC) scores were 0.53 for dinucleotide, 0.53 for trinucleotide, and 0.83 for tetranucleotide repeats. Cluster analyses uncovered patterns of genetic diversity concordant with patterns produced by RFLP fingerprinting. SSRs were found to be slightly more polymorphic than RFLPs. Several individual SSRs were significantly more polymorphic than RFLP and other DNA markers in sunflower (20% of the polymorphic SSR markers had PIC scores ranging from 0.70 to 0.93). The newly developed SSRs greatly increase the supply of sequence-based DNA markers for DNA fingerprinting, genetic mapping, and molecular breeding in sunflower; however, several hundred additional SSR markers are needed to routinely construct complete genetic maps and saturate the genome.  相似文献   

6.
Pineapple (Ananas comosus (L.) Merrill) is the second most important tropical fruit in term of international trade. The availability of whole genomic sequences and expressed sequence tags (ESTs) offers an opportunity to identify and characterize microsatellite or simple sequence repeat (SSR) markers in pineapple. A total of 278,245 SSRs and 41,962 SSRs with an overall density of 728.57 SSRs/Mb and 619.37 SSRs/Mb were mined from genomic and ESTs sequences, respectively. 5′-untranslated regions (5′-UTRs) had the greatest amount of SSRs, 3.6–5.2 fold higher SSR density than other regions. For repeat length, 12 bp was the predominant repeat length in both assembled genome and ESTs. Class I SSRs were underrepresented compared with class II SSRs. For motif length, dinucleotide repeats were the most abundant in genomic sequences, whereas trinucleotides were the most common motif in ESTs. Tri- and hexanucleotides of total SSRs were more prevalent in ESTs than in the whole genome. The SSR frequency decreased dramatically as repeat times increased. AT was the most frequent single motif across the entire genome while AG was the most abundant motif in ESTs. Across six examined plant species, the pineapple genome displayed the highest density, substantially more than the second-place cucumber. Annotation and expression analyses were also conducted for genes containing SSRs. This thorough analysis of SSR markers in pineapple provided valuable information on the frequency and distribution of SSRs in the pineapple genome. This genomic resource will expedite genomic research and pineapple improvement.  相似文献   

7.
Ricinus communis is a versatile industrial oil crop that is cultivated worldwide. Genetic improvement and marker-assisted breeding of castor bean have been slowed owing to the lack of abundant and efficient molecular markers. As co-dominant markers, simple sequence repeats (SSRs) are useful for genetic evaluation and molecular breeding. The recently released whole-genome sequence of castor bean provides useful genomic resources for developing markers on a genome-wide scale. In the present study, the distribution and frequency of microsatellites in the castor bean genome were characterised and numerous SSR markers were developed using genomic data mining. In total, 18,647 SSR loci at a density of one SSR per 18.89 Kb in the castor bean genome sequence (representing approximately 352.27 Mb) were identified. Dinucleotide repeats were the most frequently observed microsatellites, although the AAT repeat motif was also prevalent. Using six cultivars as screening samples, 670 polymorphic SSR markers from 1,435 primer pairs (46.7 %) were developed. Trinucleotide motif loci contained a higher proportion of polymorphisms (48.5 %) than dinucleotide motif loci (39.2 %). The polymorphism level in the SSR loci was positively correlated with the increasing number of repeat units in the microsatellites. The phylogenetic relationship among 32 varieties was evaluated using the developed SSR markers. Cultivars developed at the same institute clustered together, suggesting that these cultivars have a narrow genetic background. The large number of SSR markers developed in this study will be useful for genetic mapping and for breeding improved castor-oil plants. These markers will also facilitate genetic and genomic studies of Euphorbiaceae.  相似文献   

8.
Brassica juncea is an economically important oilseed crop worldwide. It has limited genomic resources at present. We generated 47,962,057 expressed sequence reads which were assembled into 45,280 unigenes. A total of 4108 SSR loci (≥10 bp) were identified in these unigenes. Trinucleotide was the most frequent repeat unit (59.91 %) followed by di- (38.66 %), tetra - (0.71 %), hexa - (0.49 %) and pentanucleotide repeats (0.24 %). Primers were designed for 2863 SSR loci among which 460 were selected for primer synthesis. A total of 339 loci amplified successfully of which 134 (39.5 %) exhibited polymorphism among six B. juncea genotypes with PIC values ranging from 0.18 to 0.81. Further, 25 polymorphic SSRs were used for analysis of genetic variability in 25 genotypes of Brassicas and their wild relatives. Two to five alleles with PIC values 0.22–0.66 were detected at these loci. The dendrogram grouped the genotypes according to their known pedigree/systematic position.  相似文献   

9.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

10.
11.
Sweet orange (Citrus sinensis) is one of the major cultivated and most-consumed citrus species. With the goal of enhancing the genomic resources in citrus, we surveyed, developed and characterized microsatellite markers in the ≈347 Mb sequence assembly of the sweet orange genome. A total of 50,846 SSRs were identified with a frequency of 146.4 SSRs/Mbp. Dinucleotide repeats are the most frequent repeat class and the highest density of SSRs was found in chromosome 4. SSRs are non-randomly distributed in the genome and most of the SSRs (62.02%) are located in the intergenic regions. We found that AT-rich SSRs are more frequent than GC-rich SSRs. A total number of 21,248 SSR primers were successfully developed, which represents 89 SSR markers per Mb of the genome. A subset of 950 developed SSR primer pairs were synthesized and tested by wet lab experiments on a set of 16 citrus accessions. In total we identified 534 (56.21%) polymorphic SSR markers that will be useful in citrus improvement. The number of amplified alleles ranges from 2 to 12 with an average of 4 alleles per marker and an average PIC value of 0.75. The newly developed sweet orange primer sequences, their in silico PCR products, exact position in the genome assembly and putative function are made publicly available. We present the largest number of SSR markers ever developed for a citrus species. Almost two thirds of the markers are transferable to 16 citrus relatives and may be used for constructing a high density linkage map. In addition, they are valuable for marker-assisted selection studies, population structure analyses and comparative genomic studies of C. sinensis with other citrus related species. Altogether, these markers provide a significant contribution to the citrus research community.  相似文献   

12.
Microsatellites (simple sequence repeats, SSRs) are important genetic markers in tree breeding and conservation. Here we utilized high-throughput 454 sequencing technology to mine microsatellites from masson pine (MP) genomic DNA. First, we analyzed the characteristics of SSRs in all nonredundant MP reads (genome survey sequences, GSSs) and compared them with loblolly pine (LP) GSSs and BACs (bacterial artificial chromosome clone sequences), and three other nonconiferous species GSSs. Second, a set of MP GSS–SSR primer pairs were designed. There were extremely low overall GSS–SSR densities (28 SSR/Mb) in MP when compared with LP (48 SSR/Mb) and the other species. AT, AAT, AAAT, and AAAAAT were the richest motifs in di-, tri-, tetra-, and hexanucleotides, respectively. Two hundred forty GSS–SSR primer pairs were designed in total, and 20 novel polymorphic markers were identified using three populations (two natural and one clonal seed orchard) as evaluating samples. These markers should be useful for future MP population genetics studies.  相似文献   

13.
Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic and universally distributed in eukaryotes. SSRs have been used extensively as sequence tagged markers in genetic studies. Recently, the functional and evolutionary importance of SSRs has received considerable attention. Here we report the mining and characterization of the SSRs in papaya genome. We analyzed SSRs from 277.4 Mb of whole genome shotgun (WGS) sequences, 51.2 Mb bacterial artificial chromosome (BAC) end sequences (BES), and 13.4 Mb expressed sequence tag (EST) sequences. The papaya SSR density was one SSR per 0.7 kb of DNA sequence in the WGS, which was higher than that in BES and EST sequences. SSR abundance was dramatically reduced as the repeat length increased. According to SSR motif length, dinucleotide repeats were the most common motif in class I, whereas hexanucleotides were the most copious in class II SSRs. The tri- and hexanucleotide repeats of both classes were greater in EST sequences compared to genomic sequences. In class I SSR, AT and AAT were the most frequent motifs in BES and WGS sequences. By contrast, AG and AAG were the most abundant in EST sequences. For SSR marker development, 9,860 primer pairs were surveyed for amplification and polymorphism. Successful amplification and polymorphic rates were 66.6% and 17.6%, respectively. The highest polymorphic rates were achieved by AT, AG, and ATG motifs. The genome wide analysis of microsatellites revealed their frequency and distribution in papaya genome, which varies among plant genomes. This complete set of SSRs markers throughout the genome will assist diverse genetic studies in papaya and related species.  相似文献   

14.
The development of organized, informative, robust, user-friendly, and freely accessible molecular markers is imperative to the Musa marker assisted breeding program. Although several hundred SSR markers have already been developed, the number of informative, robust, and freely accessible Musa markers remains inadequate for some breeding applications. In view of this issue, we surveyed SSRs in four different data sets, developed large-scale non-redundant highly informative therapeutic SSR markers, and classified them according to their attributes, as well as analyzed their cross-taxon transferability and utility for the genetic study of Musa and its relatives. A high SSR frequency (177 per Mbp) was found in the Musa genome. AT-rich dinucleotide repeats are predominant, and trinucleotide repeats are the most abundant in transcribed regions. A significant number of Musa SSRs are associated with pre-miRNAs, and 83% of these SSRs are promising candidates for the development of therapeutic SSR markers. Overall, 74% of the SSR markers were polymorphic, and 94% were transferable to at least one Musa spp. Two hundred forty-three markers generated a total of 1047 alleles, with 2-8 alleles each and an average of 4.38 alleles per locus. The PIC values ranged from 0.31 to 0.89 and averaged 0.71. We report the largest set of non-redundant, polymorphic, new SSR markers to be developed in Musa. These additional markers could be a valuable resource for marker-assisted breeding, genetic diversity and genomic studies of Musa and related species.  相似文献   

15.
Chinese jujube (Ziziphus jujuba), an economically important species in the Rhamnaceae family, is a popular fruit tree in Asia. Here, we surveyed and characterized simple sequence repeats (SSRs) in the jujube genome. A total of 436,676 SSR loci were identified, with an average distance of 0.93 Kb between the loci. A large proportion of the SSRs included mononucleotide, dinucleotide and trinucleotide repeat motifs, which accounted for 64.87%, 24.40%, and 8.74% of all repeats, respectively. Among the mononucleotide repeats, A/T was the most common, whereas AT/TA was the most common dinucleotide repeat. A total of 30,565 primer pairs were successfully designed and screened using a series of criteria. Moreover, 725 of 1,000 randomly selected primer pairs were effective among 6 cultivars, and 511 of these primer pairs were polymorphic. Sequencing the amplicons of two SSRs across three jujube cultivars revealed variations in the repeats. The transferability of jujube SSR primers proved that 35/64 SSRs could be transferred across family boundary. Using jujube SSR primers, clustering analysis results from 15 species were highly consistent with the Angiosperm Phylogeny Group (APGIII) System. The genome-wide characterization of SSRs in Chinese jujube is very valuable for whole-genome characterization and marker-assisted selection in jujube breeding. In addition, the transferability of jujube SSR primers could provide a solid foundation for their further utilization.  相似文献   

16.
Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.  相似文献   

17.
Tartary buckwheat is an important edible crop as well as medicinal plant in China. More and more research is being focused on this minor grain crop because of its medicinal functions, but there is a paucity of molecular markers for tartary buckwheat due to the lack of genomics. In this study, a genome survey was carried out in tartary buckwheat, from which SSR markers were developed for analysis of genetic diversity. The survey generated 21.9 Gb raw sequence reads which were assembled into 348.34 Mb genome sequences included 204,340 contigs. The genome size was estimated to be about 497 Mb based on K-mer analysis. In total, 24,505 SSR motifs were identified and characterised from this genomic survey sequence. Most of the SSR motifs were di-nucleotide (67.14 %) and tri-nucleotide (26.05 %) repeats. AT/AT repeat motifs were the most abundant, accounting for 78.60 % of di-nucleotide repeat motifs. SSR fingerprinting of 64 accessions yielded 49.71 effective allele loci from a total of 63 with the 23 polymorphic SSR primer combinations. Analyses of the population genetic structure using SSR data strongly suggested that the 64 accessions of tartary buckwheat clustered into two separate subgroups. One group was mainly distributed in Nepal, Bhutan and the Yunnan-Guizhou Plateau regions of China; the other group was mainly derived from the Loess Plateau regions, Hunan and Hubei of China and USA. The cluster analysis of these accession’s genetic similarity coefficient by UPMGA methods strongly supported the two subgroup interpretation. However accessions from Qinghai of China could be grouped into either of the two subgroups depending on which classification method was used. This region is at the intersection of the two geographical regions associated with the two subgroups. These results and information could be used to identify and utilize germplasm resources for improving tartary buckwheat breeding.  相似文献   

18.
Linseed (Linum usitatissimum L.) is regarded as a cash crop of tomorrow because of the presence of nutraceutically important ??-linolenic acid (ALA) and lignan. However, only limited breeding progress has been made in this crop, mainly due to the lack of sufficient genetic and genomic resources. Among these, simple sequence repeats (SSR) are useful DNA markers for diversity analysis, genetic mapping and tagging traits because of their co-dominant and highly polymorphic nature. In order to develop SSR markers for linseed, we used three microsatellite isolation methods, viz., PCR Isolation of Microsatellite Arrays (PIMA), 5??-anchored PCR method, and Fast Isolation by AFLP of Sequences COntaining repeats (FIASCO). The amplified products from these methods were pooled and sequenced using the 454 GS-FLX platform. A total of 36,332 reads were obtained, which assembled into 2,183 contigs and 2,509 singlets. The contigs and the singlets contained 1,842 microsatellite motifs, with dinucleotide motifs as the most abundant repeat type (54%) followed by trinucleotide motifs (44%). Based on this, 290 SSR markers were designed, 52 of which were evaluated using a panel of 27 diverse linseed genotypes. Among the three enrichment methods, the 5??-anchored PCR method was most efficient for isolation of microsatellites, while FIASCO was most efficient for developing SSR markers. We show the utility of next-generation sequencing technology for efficiently discovering a large number of microsatellite markers in non-model plants.  相似文献   

19.
20.
A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats were generally more polymorphic than sequences containing trinucleotide repeats. Additional eight SSRs from published apple, pear, and Sorbus torminalis SSRs, whose position on the apple genome was unknown, have also been mapped. The transferability of SSRs across Maloideae species resulted in being efficient with 41% of the markers successfully transferred. For all 156 SSRs, the primer sequences, repeat type, map position, and quality of the amplification products are reported. Also presented are allele sizes, ranges, and number of SSRs found in a set of nine cultivars. All this information and those of the previous CH-SSR series can be searched at the apple SSR database () to which updates and comments can be added. A large number of apple ESTs containing SSR repeats are available and should be used for the development of new apple SSRs. The apple SSR database is also meant to become an international platform for coordinating this effort. The increased coverage of the apple genome with SSRs allowed the selection of a set of 86 reliable, highly polymorphic, and overall the apple genome well-scattered SSRs. These SSRs cover about 85% of the genome with an average distance of one marker per 15 cM.E. Silfverberg-Dilworth and C. L. Matasci contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号