首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An awned rice(Oryza sativa) plant carrying a tiny extra chromosome was discovered among the progeny of a telotrisomic line 2nt4L. Fluorescence in situ hybridization(FISH) using chromosome specific BAC clones revealed that this extra chromosome was a ring chromosome derived from part of the long arm of chromosome 4. So the aneuploidy plant was accordingly named as 2nt4L ring. We did not detect any Cent O FISH signals on the ring chromosome, and found only the centromeric probe Centromeric Retrotransposon of Rice(CRR) was co-localized with the centromere-specific histone CENH3 as revealed by sequential FISH after immunodetection. The extra ring chromosome exhibited a unique segregation pattern during meiosis, including no pairing between the ring chromosome and normal chromosome 4during prophase I and pre-separation of sister chromatids at anaphase I.  相似文献   

2.
We here describe the first example of the replacement of an autosome by two ring chromosomes originating from the missing chromosome, presented in a patient with a single chromosome 18 and two additional ring chromosomes. Detailed fluorescence in situ hybridization (FISH) analysis revealed the chromosome 18 origin of both ring chromosomes and characterized the small and the large ring chromosome as derivatives of the short and long arm of chromosome 18, respectively. The loss of subtelomeric regions of the short and the long arm of chromosome 18 in the ring chromosomes was confirmed by FISH studies. Molecular studies showed the exclusive presence of the paternal alleles for microsatellite markers located distal to the short and long arm loci D18S843 and D18S474, respectively. This indicates the maternal origin of both rings and provides evidence for substantial deletions of the distal parts of both arms of chromosome 18 in the ring chromosomes. The dysmorphic features of the patient can be explained by these deletions in both chromosome arms, as the clinical findings partly overlap with observations in 18p- and 18q-syndrome and are similar to some cases of ring chromosome 18. Centromere misdivision is suggested as one mechanism involved in the formation of the ring chromosomes.  相似文献   

3.
Molecular cloning of a microdissected small accessary ring chromosome 4 from a moderately retarded and dysmorphic patient has been performed to identify the origin of the ring chromosome. FISH was performed with cosmids identified with the cloned, microdissected products and with other markers from chromosome 4. The present study clearly demonstrates that the small ring in this patient originates from three discontinuous regions of chromosome 4: 4p13 or 14, the centromere, and 4q31. It is suggested that the origin of the ring chromosome is a ring involving the entire chromosome 4, which has then been involved in breakage and fusion events, as a consequence of DNA replication generating interlocked rings. A second severely retarded and dysmorphic patient also had a small accessary ring derived from chromosome 4. FISH studies of this ring are consistent with an origin from a contiguous region including the centromere to band 4q12. It is apparent that there are at least two mechanisms for the formation of small ring chromosomes. This adds a further complication in any attempt to ascertain common phenotypes between patients known to have morphologically similar markers derived from the same chromosome.  相似文献   

4.
A direct tandem duplication chromosome 21 was found in a boy with Down's syndrome. The proband's mother and grandmother both carried a ring chromosome 21. The observed duplication chromosome in the child may be explained either by recombination between the maternal ring and the mother's normal chromosome 21 or by break of a double-sized ring chromosome 21.  相似文献   

5.
We report on the conventional cytogenetic and fluorescence in situ hybridization (FISH) results obtained for a 3.5-year-old girl with developmental and language delay and a supernumerary ring chromosome mosaicism in 8% of T-lymphocytes analyzed. Using different conventional and molecular cytogenetic techniques as YAC hybridization and comparative genomic hybridization, we could show that the extra tricentric ring chromosome consists of three heterochromatic blocks with inserted euchromatic material. Additionally, chromosome microdissection followed by FISH analysis demonstrated that the small tricentric ring chromosome consisted of material from the pericentromeric region of chromosome 1q21. Thus, the patient has a mosaic of normal cells and cells with partial pentasomy of the pericentromeric region of chromosome 1. So far, 19 cases with single supernumerary marker chromosome 1 have been published, but no tricentric ring chromosome 1 is, to our knowledge, reviewed in the literature. In this study, we compare the clinical features of our patient with cytogenetically comparable cases described in the literature. We introduce a hypothesis for the formation of a tricentric ring chromosome: starting with a monocentric ring, sister chromatid exchange leading to the formation of a tetracentric ring, which underwent intrastrand recombination generating the tricentric ring.  相似文献   

6.
A small supernumerary ring chromosome has been found in a boy with overweight, dysmorphic facies and mental retardation. His mother had an interstitial deletion of the long arm of chromosome 19 and the same ring chromosome. By means of fluorescence in situ hybridization the ring chromosome was shown to be derived from the deleted chromosome, after the occurrence of two breaks: one in the centromere region, the other in the q-arm of chromosome 19.  相似文献   

7.
A plant with 2n = 14 + 1 ring chromosomes was obtained in the progeny of a primary trisomie for chromosome 7 of a two-rowed cultivar, Shin Ebisu 16. The morphological characteristics of the trisomic plants with an extra ring chromosome were similar to the primary trisomic for chromosome 7 (Semierect), which suggests that it originated from this chromosome. The ring chromosomes were not completely stable in mitotic cells because of abnormal behavior. Chromosome complements varied in different plants and in different roots within a plant. Root tip cells and spikes with 2n = 14 and 14 + 2 ring chromosomes were observed on plants with 14 + 1 ring chromosomes. Breakage-fusion-bridge cycle was inferred. The ring chromosome was associated with two normal homologues forming a trivalent in 17.6% sporocytes at metaphase I. The transmission of the extra ring chromosome was 23.1% in the progeny of the plant with 14 + 1 ring chromosomes. Trivalent formation may have been much higher at early prophase stages which were difficult to analyze in barley; only 4 of 120 sporocytes analyzed showed an isolated ring at pachytene. The ring chromosome moved to one pole without separation in 24.7% of the sporocytes at AI, and divided in 27.1% sporocytes giving rise to 8-8 separation. Only 10% of the sporocytes showed bridge formation at AI.  相似文献   

8.
We report the molecular characterization of a ring X chromosome that was transmitted from a mother to a male who has short stature and minor dysmorphic features. This represents only the second reported ring X chromosome in a male. The ring is derived from breakage within the Xp pseudoautosomal region (PAR) and just proximal to the Xq PAR. The total amount of deleted material is 700-900 kb DNA and includes six known transcribed genes. Interestingly, SHOX, a gene implicated in short stature, is not deleted from the ring chromosome. Possible pathogenetic explanations for the patient's clinical features include insufficient dosage of deleted genes, a position effect on SHOX expression, and cell death during development because of ring chromosome nondisjunction. The findings are also relevant to observations made of "complete" ring chromosomes.  相似文献   

9.
Summary A ring chromosome 9 is reported in a 12-year-old, moderately mentally retarded boy. As in other ring chromosome 9 patients, the clinical stigmata are nonspecific and their expressivity is mild. The finding of two normal cells of a total of 121 cells examined favors the hypothesis of a postzygotic, mitotic origin of the ring chromosome formation.  相似文献   

10.
NotI and SfiI genomic restriction maps were used to detect and characterize a ring chromosome II in a Schizosaccharomyces pombe strain with a meiotic defect on chromosome II. The ring chromosome was formed by an intrachromosomal fusion near, or at, the very ends of chromosome II.  相似文献   

11.
Summary A male newborn with a ring 10 chromosome is described. The distal part of the long arm of chromosome 10, deleted during ring formation (10q25), is translocated to the short arm of chromosome 19.  相似文献   

12.
Summary Cytogenetic studies on lymphocytes from a 14-year-old mentally retarded girl with somatic anomalies suggestive of a chromosomal abnormality revealed a ring chromosome 15. The long arm of the defective chromosome is broken at band q24 or q25. The silver staining technique for nucleolus organizer regions showed that the ring had lost the achromatic stalk and the satellite. The chromosomal mosaicism resulting from the structural instability of the ring chromosome was analyzed and compared with 6 cases reported in the literature. It is proposed that the clinical manifestations in the different patients with ring chromosome 15 result from both the deficiency in the long arm and the mosaic configurations.  相似文献   

13.
We have integrated a plasmid containing a yeast centromere, CEN5, into the HIS4 region of chromosome III by transformation. Of the three transformant colonies examined, none contained a dicentric chromosome, but all contained a rearranged chromosome III. In one transformant, rearrangement occurred by homologous recombination between two Ty elements; one on the left arm and the other on the right arm of chromosome III. This event produced a ring chromosome (ring chromosome III) of about 60 kb consisting of CEN3 and all other sequences between the two Ty elements. In addition, a linear chromosome (chromosome IIIA) consisting of sequences distal to the two Ty elements including CEN5, but lacking 60 kb of sequences from the centromeric region, was produced. Two other transformants also contain a similarly altered linear chromosome III as well as an apparently normal copy of chromosome III. These results suggest that dicentric chromosomes cannot be maintained in yeast and that dicentric structures must be resolved for the cell to survive.--The meiotic segregation properties of ring chromosome III and linear chromosome IIIA were examined in diploid cells which also contained a normal chromosome III. Chromosome IIIA and normal chromosome III disjoined normally, indicating that homology or parallel location of the centromeric regions of these chromosomes are not essential for proper meiotic segregation. In contrast, the 60-kb ring chromosome III, which is homologous to the centromeric region of the normal chromosome III, did not appear to pair with fidelity with chromosome III.  相似文献   

14.
The silver staining techniques was used to study two cases of ring chromosomes (ring chromosome 15 and ring chromosome 22) and two cases of small extra chromosomes. This technique allows identification of the breakpoints and provides some information about the origin of small extra chromosomes.  相似文献   

15.
Ten cases of small ring chromosomes which did not stain with distamycinA/DAPI and did not possess satellite regions associated with nucleolus-organizing regions are described. In situ hybridization with a battery of biotinylated pericentric repeat probes specific either for individual chromosomes or for groups of chromosomes allowed the identification of the chromosomal origin of these marker chromosomes. There was one example of a marker derived from each of chromosomes 1, 3, 6, 14, 16, 18, 20, 13 or 21, and the X, and there were two examples of markers derived from chromosome 12. One case possessed two markers, one derived from chromosome 6, and one derived from the X. The mechanism of generation of ring marker chromosomes is discussed. Five of seven cases who could be phenotypically assessed were abnormal. Three of these--the first with a ring chromosome derived from chromosome 1; the second with two markers, one derived from chromosome 6 and the other from the X chromosome; and the third with a ring chromosome derived from chromosome 20--each possessed distinctive facies. Additional cases with identified rings may allow the delineation of new chromosomal syndromes.  相似文献   

16.
A ring chromosome replacing a normal chromosome could involve variable structural rearrangements and mitotic instability. However, most previously reported cases lacked further genomic characterization. High-resolution oligonucleotide array comparative genomic hybridization with single-nucleotide polymorphism typing (aCGH+SNP) was used to study 2 unrelated cases with a ring chromosome 21. Case 1 had severe myopia, hypotonia, joint hypermobility, speech delay, and dysmorphic features. aCGH detected a 1.275-Mb duplication of 21q22.12-q22.13 and a 6.731-Mb distal deletion at 21q22.2. Case 2 showed severe growth and developmental retardations, intractable seizures, and dysmorphic features. aCGH revealed a contiguous pattern of a 3.612- Mb deletion of 21q22.12-q22.2, a 4.568-Mb duplication of 21q22.2-q22.3, and a 2.243-Mb distal deletion at 21q22.3. Mitotic instability was noted in 13, 30, and 76% of in vitro cultured metaphase cells, interphase cells, and leukocyte DNA, respectively. The different phenotypes of these 2 cases are likely associated with the unique genomic structure and distinct mitotic behavior of their ring chromosome 21. These 2 cases represent a subtype of ring chromosome 21 probably involving somatic dicentric ring breakage and reunion. A cytogenomic approach is proposed for characterizing the genomic structure and mitotic instability of ring chromosome abnormalities.  相似文献   

17.
The phenotypically normal sister of a patient affected by fragile X syndrome was referred for genetic counselling and was found to carry a mosaic karyotype 46,X,r(X)/45,X. Because the probability of the simultaneous chance occurrence of fragile X syndrome and a ring chromosome X in the same family is very low, we postulated that the breakpoint of the ring chromosome X originated in the cytogenetic break in Xq27.3 responsible for fragile X syndrome. In order to determine the relative positions of the breakpoint on the ring chromosome X and the (CGG)n unstable sequence responsible for the fragile X mutation, we used molecular markers to analyse the telomeric regions of chromosome X in this family. The results showed that the ring chromosome X was the maternal fragile X chromosome and that the telomeric deletion on the long arm encompassed the (CGG)n sequence. This suggests that the cytogenetic break in Xq27.3 is distinct from the unstable (CGG)n sequence, or that the break followed by the end-to-end fusion creating the ring chromosome was not completely conservative. Analysis of DNA markers on the short arm of chromosome X evidenced a deletion of a large part of the pseudoautosomal region, allowing us to position the genes involved in stature and in some syndromes associated with telomeric deletions of Xp on the proximal side of the pseudoautosomal region.  相似文献   

18.
The cytological behavior of a human ring-chromosome   总被引:7,自引:0,他引:7  
Ulla Gripenberg 《Chromosoma》1967,20(3):284-289
A ring chromosome derived from group 17–18 was found in a mentally retarded girl. The ring shows considerable variability. With respect to the size the ring is enlarged in 9% of the cells. In 19% of the cells the ring is eliminated; in these cells the chromosome number is only 45. The elimination of the ring has been studied. There are cytological indications of two simultaneous mechanisms: lagging and destruction of complex unstable structures.  相似文献   

19.
Two mutant alleles of the meiotic locus, mei-9, have been examined for their effect on magnification of a rod Xbb chromosome and transmission of a ring Xbb chromosome under magnifying conditions. Our results indicate that the effects of these two mutations are allele-specific: mei-9a strongly inhibits both rod chromosome magnification and ring chromosome loss under magnifying conditions, while mei-9b has a smaller inhibitory effect on rod chromosome magnification and on the transmission of ring chromosomes under magnifying conditions. These observations can be explained by a difference in leakiness between the two alleles. Our results demonstrate that mutants defective in excision repair and repair replication inhibit ribosomal gene magnification. This suggests that a component of the excision repair pathway is involved in the process of magnification.  相似文献   

20.
A supernumerary ring chromosome was found on amniocentesis performed for advanced maternal age. A review of the literature found 34 reports of supernumerary ring chromosome I which are compared to our case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号