首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperinflammatory responses to infection have been postulated as a component of cystic fibrosis (CF) lung disease. Studies have linked intracellular calcium (Ca(2+)(i)) mobilization with inflammatory responses in several systems. We have reported that the pro-inflammatory mediator bradykinin (BK) promotes larger Ca(2+)(i) signals in CF compared with normal bronchial epithelia, a response that reflects endoplasmic reticulum (ER)/Ca(2+) store expansion induced by chronic luminal airway infection/inflammation. The present study investigated whether CF airway epithelia were hyperinflammatory and, if so, whether the hyperinflammatory CF phenotype was linked to larger Ca(2+) stores in the ER. We found that DeltaF508 CF bronchial epithelia were hyperinflammatory as defined by an increased basal and mucosal BK-induced interleukin (IL)-8 secretion. However, the CF hyperinflammation expressed in short-term (6-11-day-old) primary cultures of DeltaF508 bronchial epithelia was lost in long-term (30-40-day-old) primary cultures of DeltaF508 bronchial epithelia, indicating this response was independent of mutant cystic fibrosis transmembrane conductance regulator. Exposure of 30-40-day-old cultures of normal airway epithelia to supernatant from mucopurulent material (SMM) from CF airways reproduced the increased basal and mucosal BK-stimulated IL-8 secretion of short-term CF cultures. The BK-triggered increased IL-8 secretion in SMM-treated cultures was mediated by an increased Ca(2+)(i) mobilization consequent to an ER expansion associated with increases in protein synthesis (total, cytokines, and antimicrobial factors). The increased ER-dependent, Ca(2+)(i)-mediated hyperinflammatory epithelial response may represent a general beneficial airway epithelial adaptation to transient luminal infection. However, in CF airways, the Ca(2+)(i)-mediated hyperinflammation may be ineffective in promoting the eradication of infection in thickened mucus and, consequently, may have adverse effects in the lung.  相似文献   

2.
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca(2+)(i) and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide-induced response was mediated exclusively via Ca(2+)(i) interacting with a Ca(2+)-activated Cl(-) channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca(2+)-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca(2+)(i). However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca(2+)-sensitive and Ca(2+)-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca(2+)(i); and (3) Ca(2+)(i) regulation of the Ca(2+)-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca(2+)(i) failing to activate CaCC in both epithelia.  相似文献   

3.
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB signaling. Adenovirus infections of a human CF (DeltaF508/DeltaF508) nasal cell line (CF15) provided isogenic comparisons of wild-type (wt) CFTR and DeltaF508CFTR. In the absence of bacteria, there were no or only small differences among CF15, CF15-lacZ (beta-galactosidase-expressing), CF15-wtCFTR (wtCFTR-corrected), and CF15-DeltaF508CFTR (to test ER retention of DeltaF508CFTR) cells in NF-kappaB activity, interleukin (IL)-8 secretion, Ca(i) responses, and ER stress. Non-CF and CF primary cultures of human bronchial epithelial cells (HBE) secreted IL-8 equivalently. Upon infection with Pseudomonas aeruginosa (PA) or flagellin (key activator for airway epithelia), CF15, CF15-lacZ, CF15-wtCFTR, and CF15DeltaF508CFTR cells exhibited equal PA binding, NF-kappaB activity, and IL-8 secretion; cells also responded similarly to flagellin when both CFTR (forskolin) and Ca(i) signaling (ATP) were activated. CF and non-CF HBE responded similarly to flagellin + ATP. Thapsigargin (Tg, releases ER Ca(2+)) increased flagellin-stimulated NF-kappaB and ER stress similarly in all cells. We conclude that ER stress, Ca(i), and NF-kappaB signaling and IL-8 secretion were unaffected by wt- or DeltaF508CFTR in control and during exposure to PA, flagellin, flagellin + ATP, or flagellin + ATP + forskolin. Tg, but not wt- or DeltaF508CFTR, triggered ER stress. Previous measurements showing hyperinflammatory responses in CF airway epithelia may have resulted from cell-specific, rather than CFTR- or DeltaF508CFTR-specific effects.  相似文献   

4.
In airway epithelia, purinergic receptor (P2Y2-R) stimulation of intracellular calcium (Ca2+i)-regulated ion transport is restricted to the membrane domain ipsilateral to receptor activation, implying compartmentalization of Ca2+i signaling. Because mitochondria can spatially restrict cellular Ca2+i signals, immunocytochemical, electron microscopic, and fluorescent studies of mitochondria localization were performed in human airway epithelia. Although concentrated at the apical domain, mitochondria were found distributed at both the apical and the basolateral poles and in close association with the endoplasmic reticulum. The role of mitochondria in locally restricting P2Y2-R-induced Ca2+i signals was investigated by measuring changes in mitochondrial Ca2+ (Ca2+m) in human airway epithelial monolayers. P2Y2-R activation induced Ca2+m accumulation in mitochondria confined to the domain ipsilateral to P2Y2-R stimulation, which was blocked by mitochondrial uncoupling with 1 microM CCCP and 2.5 microg/ml oligomycin. The role of mitochondria in restricting the cellular cross-talk between basolateral P2Y2-R-dependent Ca2+i mobilization and apical membrane Ca2+-activated Cl- secretion was investigated in studies simultaneously measuring Ca2+i and Cl- secretion in cystic fibrosis human airway epithelial monolayers. Activation of basolateral P2Y2-Rs produced similar increases in Ca2+i in monolayers without and with pretreatment with uncouplers, whereas Ca2+i-activated Cl- secretion was only efficiently triggered in mitochondria-uncoupled conditions. We conclude that (a) mitochondria function as a Ca2+i-buffering system in airway epithelia, compartmentalizing Ca2+i-dependent functions to the membrane ipsilateral to receptor stimulation; and (b) the mitochondria provide structural barriers that protect the airway epithelia against nonspecific activation of Ca2+i-modulated functions associated with Ca2+i signals emanating from the apical or the basolateral membrane domains.  相似文献   

5.
Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In CF, the most common mutant DeltaF508-CFTR is misfolded, is retained in the ER and is rapidly degraded. If conditions could allow DeltaF508-CFTR to reach and to stabilize in the plasma membrane, it could partially correct the CF defect. We have previously shown that annexin V (anxA5) binds to both the normal CFTR and the DeltaF508-CFTR in a Ca(2+)-dependent manner and that it regulates the chloride channel function of Wt-CFTR through its membrane integration. Our aim was to extend this finding to the DeltaF508-CFTR. Because some studies show that thapsigargin (Tg) increases the DeltaF508-CFTR apical expression and induces an increased [Ca(2+)](i) and because anxA5 relocates and binds to the plasma membrane in the presence of Ca(2+), we hypothesized that the Tg effect upon DeltaF508-CFTR function could involve anxA5. Our results show that raised anxA5 expression induces an augmented function of DeltaF508-CFTR due to its increased membrane localization. Furthermore, we show that the Tg effect involves anxA5. Therefore, we suggest that anxA5 is a potential therapeutic target in CF.  相似文献   

6.
The vertebrate transient receptor potential cationic channel TRPV4 has been proposed as an osmo- and mechanosensor channel. Studies using knock-out animal models have further emphasized the relevance of the TRPV4 channel in the maintenance of the internal osmotic equilibrium and mechanosensation. However, at the cellular level, there is still one important question to answer: does the TRPV4 channel generate the Ca(2+) signal in those cells undergoing a Ca(2+)-dependent regulatory volume decrease (RVD) response? RVD in human airway epithelia requires the generation of a Ca(2+) signal to activate Ca(2+)-dependent K(+) channels. The RVD response is lost in airway epithelia affected with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator channel. We have previously shown that the defective RVD in CF epithelia is linked to the lack of swelling-dependent activation of Ca(2+)-dependent K(+) channels. In the present study, we show the expression of TRPV4 in normal human airway epithelia, where it functions as the Ca(2+) entry pathway that triggers the RVD response after hypotonic stress, as demonstrated by TRPV4 antisense experiments. However, cell swelling failed to trigger Ca(2+) entry via TRPV4 channels in CF airway epithelia, although the channel's response to a specific synthetic activator, 4 alpha-phorbol 12,13-didecanoate, was maintained. Furthermore, RVD was recovered in CF airway epithelia treated with 4 alpha-phorbol 12,13-didecanoate. Together, these results suggest that defective RVD in CF airway epithelia might be caused by the absence of a TRPV4-mediated Ca(2+) signal and the subsequent activation of Ca(2+)-dependent K(+) channels.  相似文献   

7.
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+) signal to activate Ca(2+)-dependent Cl(-) channels. Cytosolic [Ca(2+)](i) was measured in non-polarized human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Primary human CF and non-CF airway epithelial monolayers as well as Calu-3 monolayers were used to assess anion secretion. In vivo nasal potential difference measurements were performed in non-CF and two different CF mouse (DeltaF508 homozygous and bitransgenic gut-corrected but lung-null) models. Zinc and ATP induced a sustained, reversible, and reproducible increase in cytosolic Ca(2+) in CF and non-CF cells with chemistry and pharmacology most consistent with activation of P2X purinergic receptor channels. P2X purinergic receptor channel-mediated Ca(2+) entry stimulated sustained Cl(-) and HCO(3)(-) secretion in CF and non-CF epithelial monolayers. In non-CF mice, zinc and ATP induced a significant Cl(-) secretory response similar to the effects of agonists that increase intracellular cAMP levels. More importantly, in both CF mouse models, Cl(-) permeability of nasal epithelia was restored in a sustained manner by zinc and ATP. These effects were reversible and reacquirable upon removal and readdition of agonists. Our data suggest that activation of P2X calcium entry channels may have profound therapeutic benefit for CF that is independent of cystic fibrosis transmembrane conductance regulator genotype.  相似文献   

8.
9.
Dysregulation of nuclear factor kappa B (NF-(kappa)B) and increased Ca(2+) signals have been reported in airway epithelial cells of patients with cystic fibrosis (CF). The hypothesis that Ca(2+) signaling may regulate NF-(kappa)B activation was tested in a CF bronchial epithelial cell line (IB3-1, CFTR genotype DeltaF508/W1282X) and compared to the CFTR-corrected epithelial cell line S9 using fluorescence microscopy to visualized in situ NF-(kappa)B activation at the single cell level. Upon stimulation with IL-1beta,we observed a slow but prolonged [Ca(2+)](i) increase (up to 10 min) in IB3-1 cells compared to S9 cells. The IL-1beta-induced [Ca(2+)](i) response was accompanied by an activation of NF-(kappa)B in IB3-1 but not in S9 cells. Pretreatment of IB3-1 cells with the ER Ca(2+) pump inhibitor thapsigargin inhibited the IL-1beta-induced [Ca(2+)](i) response. Treatment with either the calcium chelator BAPTA or an inhibitor of I(kappa)Balpha phosphorylation (digitoxin) led to a drastic [Ca(2+)](i) decrease accompanied by an inhibition of NF-(kappa)B activation of IL-1beta-stimulated IB3-1 cells in comparison to untreated cells. In IB3-1 cells cultured at low temperature (26 degrees C) for 16 h, the IL-1beta-induced [Ca(2+)](i) response was inhibited and no significant NF-(kappa)B activation was observed. To our knowledge, this is the first report of visualization of the Ca(2+)-mediated activation of NF-(kappa)B in individual living airway epithelial cells. Our results support the concept that [Ca(2+)](i) is a key regulator of NF-(kappa)B activation in CF airway epithelial cells.  相似文献   

10.
Extracellular nucleotides such as ATP have been shown to regulate ion transport processes in a variety of epithelia. This effect is mediated by the activation of plasma membrane P2Y receptors, which leads to Ca(2+) signaling cascade. Ion transport processes (e.g. activation of apical calcium-dependent Cl(-) channels) are then stimulated via an increase in [Ca(2+)](i). Many polarized epithelia express apical and/or basolateral P2Y receptors. To test whether apical and basolateral stimulation of P2Y receptors elicit polarized Ca(2+) signaling and anion secretion, we simultaneously measured the two parameters in polarized epithelia. Although activation of P2Y receptors located at both apical and basolateral membranes evoked an increase in [Ca(2+)](i), only apical P2Y receptors-coupled Ca(2+) release stimulated an increase in anion secretion. Moreover, the calcium influx evoked by apical and basolateral P2Y receptor stimulation is predominately via the basolateral membrane domain. It appears that the apical P2Y receptor-regulated Ca(2+) release and activation of apical Cl(-) channels is compartmentalized in polarized epithelia with basolateral P2Y-stimulated Ca(2+) release failing to activate anion secretion. These data suggest that there may be two distinct ATP-releasable Ca(2+) pools, each coupled to apical and basolateral membrane receptor but linked to the same calcium influx pathway located at the basolateral membrane.  相似文献   

11.
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) regulates Ca(2+) (I(Ca)) and M-type K(+) currents in superior cervical ganglion sympathetic neurons. In those cells, M(1) muscarinic and AT(1) angiotensin types do not elicit Ca(2+)(i) signals and suppress both currents via depletion of PIP(2), whereas the B(2) bradykinin and P2Y purinergic types elicit robust IP(3)-mediated [Ca(2+)](i) rises and neither deplete PIP(2) nor inhibit I(Ca). We have suggested that this specificity arises from differential Ca(2+)(i) signals underlying receptor-specific stimulation of PIP(2) synthesis by phosphatidylinositol (PI) 4-kinase. Here, we investigate which PI 4-kinase isoform underlies this signal, whether stimulation of PI 4-phosphate 5-kinase is also required, and the origin of receptor-specific Ca(2+)(i) signals. Recordings of I(Ca) were used as a PIP(2) "biosensor." In control, stimulation of M(1), but not B(2) or P2Y, receptors robustly suppressed I(Ca). However, when PI 4-kinase IIIβ, diacylglycerol kinase, Rho, or Rho-kinase was blocked, agonists of all three receptors robustly suppressed I(Ca). Overexpression of exogenous M(1) receptors yielded large [Ca(2+)](i) rises by muscarinic agonist, and transfection of wild-type IRBIT decreased Ca(2+)(i) signals, whereas dominant negative IRBIT-S68A had little effect on B(2) or P2Y responses but greatly increased muscarinic responses. We conclude that overlaid on microdomain organization is IRBIT, setting a "threshold" for [IP(3)], assisting in fidelity of receptor specificity.  相似文献   

12.
Two Cl(-) conductances have been described in the apical membrane of both human and murine proximal airway epithelia that are thought to play predominant roles in airway hydration: (1) CFTR, which is cAMP regulated and (2) the Ca(2+)-activated Cl(-) conductance (CaCC) whose molecular identity is uncertain. In addition to second messenger regulation, cross talk between these two channels may also exist and, whereas CFTR is absent or defective in cystic fibrosis (CF) airways, CaCC is preserved, and may even be up-regulated. Increased CaCC activity in CF airways is controversial. Hence, we have investigated the effects of CFTR on CaCC activity and have also assessed the relative contributions of these two conductances to airway surface liquid (ASL) height (volume) in murine tracheal epithelia. We find that CaCC is up-regulated in intact murine CF tracheal epithelia, which leads to an increase in UTP-mediated Cl(-)/volume secretion. This up-regulation is dependent on cell polarity and is lost in nonpolarized epithelia. We find no role for an increased electrical driving force in CaCC up-regulation but do find an increased Ca(2+) signal in response to mucosal nucleotides that may contribute to the increased Cl(-)/volume secretion seen in intact epithelia. CFTR plays a critical role in maintaining ASL height under basal conditions and accordingly, ASL height is reduced in CF epithelia. In contrast, CaCC does not appear to significantly affect basal ASL height, but does appear to be important in regulating ASL height in response to released agonists (e.g., mucosal nucleotides). We conclude that both CaCC and the Ca(2+) signal are increased in CF airway epithelia, and that they contribute to acute but not basal regulation of ASL height.  相似文献   

13.
Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.  相似文献   

14.
In many cells, increase in intracellular calcium ([Ca(2+)](i)) activates a Ca(2+)-dependent chloride (Cl(-)) conductance (CaCC). CaCC is enhanced in cystic fibrosis (CF) epithelial cells lacking Cl(-) transport by the CF transmembrane conductance regulator (CFTR). Here, we show that in freshly isolated nasal epithelial cells of F508del-homozygous CF patients, expression of TMEM16A and bestrophin 1 was unchanged. However, calcium signaling was strongly enhanced after induction of expression of F508del-CFTR, which is unable to exit the endoplasmic reticulum (ER). Since receptor-mediated [Ca(2+)](i) increase is Cl(-) dependent, we suggested that F508del-CFTR may function as an ER chloride counter-ion channel for Ca(2+). This was confirmed by expression of the double mutant F508del/G551D-CFTR, which remained in the ER but had no effects on [Ca(2+)](i). Moreover, F508del-CFTR could serve as a scavenger for inositol-1,4,5-trisphosphate [IP3] receptor binding protein released with IP(3) (IRBIT). Our data may explain how ER-localized F508del-CFTR controls intracellular Ca(2+) signaling.  相似文献   

15.
Retention of F508del-CFTR proteins in the endoplasmic reticulum (ER) is dependent upon chaperone proteins, many of which require Ca(2+) for optimal activity. Here, we show in human tracheal gland CF-KM4 cells, that after correction of F508del-CFTR trafficking by miglustat (N-butyldeoxynojirimycin) or low temperature (27 degrees C), the Ca(2+) mobilization is decreased compared to uncorrected cells and becomes identical to the Ca(2+) response observed in non-CF MM39 cells. In CF-KM4 and human nasal epithelial CF15 cells, we also show that inhibiting vesicular trafficking by nocodazole prevents not only the rescue of F508del-CFTR but also the Ca(2+) mobilization decrease. Finally, experiments using the CFTR inhibitor CFTR(inh)-172 showed that the presence but not the channel activity of F508del-CFTR at the plasma membrane is required to decrease the Ca(2+) mobilization in corrected CF cells. These findings show that correction of the abnormal trafficking of F508del-CFTR proteins might have profound consequences on cellular homeostasis such as the control of intracellular Ca(2+) level.  相似文献   

16.
Increasing evidence suggests that P2 receptors (P2Rs) in airway epithelial cells perform critical functions in auto- or paracrine regulation of fluid and mucus secretion. In the present study, we characterized the effects of P2R stimulation on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in normal human nasal epithelial (NHNE) cells. [Ca(2+)](i) and pH(i) were measured in primary cultures of NHNE cells using a double perfusion chamber, which enabled us to analyze membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to Na(+)-dependent and bumetanide-sensitive intracellular uptake of NH(4)(+). NKCC activities were observed in the basolateral membrane, but not in the luminal membrane, of NHNE cells. Interestingly, P2Rs were expressed in both membranes, and the stimulation of either luminal or basolateral P2R increased NKCC activity. Blockades of luminal Cl(-) channels, basolateral K(+) channels, or protein kinase C did not affect the activation of NKCC by basolateral P2R stimulation. The effects of luminal P2R stimulation were partially reduced by Cl(-) channel blockers. However, chelation of intracellular Ca(2+) by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) treatment completely blocked the stimulatory effects of luminal and basolateral P2Rs on NKCC. In addition, increasing [Ca(2+)](i) by treatment with ionomycin-stimulated NKCC activity. These results provide evidence that stimulation of P2Rs directly activates basolateral NKCC by Ca(2+)-dependent pathways in NHNE cells, which is an important aspect of the purinergic regulation of ion and fluid secretions in human airway epithelia under physiologic and pathologic conditions.  相似文献   

17.
BACKGROUND INFORMATION: CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, DeltaF508 (deletion of Phe-508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na(+)/H(+)-exchanger regulatory factor 1) in CF airway cells induced both a redistribution of DeltaF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)-dependent activation of DeltaF508CFTR-dependent chloride secretion. In view of the potential importance of the targeted up-regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o(-), with subsequent rescue of apical DeltaF508CFTR chloride transport activity. RESULTS: We found that CFBE41o(-) cells do express ERs (oestrogen receptors) in the nuclear fraction and that beta-oestradiol treatment was able to significantly rescue DeltaF508CFTR-dependent chloride secretion in CFBE41o(-) cell monolayers with a peak between 6 and 12 h of treatment, demonstrating that the DeltaF508CFTR translocated to the apical membrane can function as a cAMP-responsive channel, with a significant increase in chloride secretion noted at 1 nM beta-oestradiol and a maximal effect observed at 10 nM. Importantly, knock-down of NHERF1 expression by transfection with siRNA (small interfering RNA) for NHERF1 inhibited the beta-oestradiol-dependent increase in DeltaF508CFTR protein expression levels and completely prevented the beta-oestradiol-dependent rescue of DeltaF508CFTR transport activity. CONCLUSIONS: These results demonstrate that beta-oestradiol-dependent up-regulation of NHERF1 significantly increases DeltaF508CFTR functional expression in CFBE41o(-) cells.  相似文献   

18.
Gene therapy for cystic fibrosis (CF) has focused on correcting electrolyte transport in airway epithelia. However, success has been limited by the failure of vectors to attach and enter into airway epithelia, and may require redirecting vectors to targets on the apical membrane of airway cells that mediate these functions. The G-protein-coupled P2Y2 receptor (P2Y2-R) is abundantly expressed on the airway lumenal surface and internalizes into coated pits upon agonist activation. We tested whether a small-molecule-agonist (UTP) could direct vectors to P2Y2-R and mediate attachment, internalization, and gene transfer. Fluorescein-UTP studies demonstrated that P2Y2-R agonists internalized with their receptor, and biotinylated UTP (BUTP) mediated P2Y2-R-specific internalization of fluorescently labeled streptavidin (SAF) or SAF conjugated to biotinylated Cy3 adenoviral-vector (BCAV). BUTP conjugated to BCAV mediated P2Y2-R-specific gene transfer in (1) adenoviral-resistant A9 and polarized MDCK cells by means of heterologous P2Y2-R, and (2) well-differentiated human airway epithelial cells by means of endogenous P2Y2-R. Targeting vectors with small-molecule-ligands to apical membrane G-protein-coupled receptors may be a feasible approach for successful CF gene therapy.  相似文献   

19.
Calcium-activated Cl(-) secretion is an important modulator of regulated ion transport in murine airway epithelium and is mediated by an unidentified Ca(2+)-stimulated Cl(-) channel. We have transfected immortalized murine tracheal epithelial cells with the cDNA encoding the permeabilizing P2X(7) purinoreceptor (P2X(7)-R) to selectively permeabilize the basolateral membrane and thereby isolate the apical membrane Ca(2+)-activated Cl(-) current. In P2X(7)-R-permeabilized cells, we have demonstrated that UTP stimulates a Cl(-) current across the apical membrane of CF and normal murine tracheal epithelial cells. The magnitude of the UTP-stimulated current was significantly greater in CF than in normal cells. Ion substitution studies demonstrated that the current exhibited a permselectivity sequence of Cl(-) > I(-) > Br(-) > gluconate(-). We have also determined a rank order of potency for putative Cl(-) channel blockers: niflumic acid > or = 5-nitro-2-(3-phenylpropylamino)benzoic acid > 4, 4'-diisothiocyanostilbene-2,2'-disulfonate > glybenclamide > diphenlyamine-2-carboxylate, tamoxifen, and p-tetra-sulfonato-tetra-methoxy-calix[4]arene. Complete characterization of this current and the corresponding single channel properties could lead to the development of a new therapy to correct the defective airway surface liquid in cystic fibrosis patients.  相似文献   

20.
Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in cftr, a gene encoding a PKA-regulated Cl(-) channel. The most common mutation results in a deletion of phenylalanine at position 508 (DeltaF508-CFTR) that impairs protein folding, trafficking, and channel gating in epithelial cells. In the airway, these defects alter salt and fluid transport, leading to chronic infection, inflammation, and loss of lung function. There are no drugs that specifically target mutant CFTR, and optimal treatment of CF may require repair of both the folding and gating defects. Here, we describe two classes of novel, potent small molecules identified from screening compound libraries that restore the function of DeltaF508-CFTR in both recombinant cells and cultures of human bronchial epithelia isolated from CF patients. The first class partially corrects the trafficking defect by facilitating exit from the endoplasmic reticulum and restores DeltaF508-CFTR-mediated Cl(-) transport to more than 10% of that observed in non-CF human bronchial epithelial cultures, a level expected to result in a clinical benefit in CF patients. The second class of compounds potentiates cAMP-mediated gating of DeltaF508-CFTR and achieves single-channel activity similar to wild-type CFTR. The CFTR-activating effects of the two mechanisms are additive and support the rationale of a drug discovery strategy based on rescue of the basic genetic defect responsible for CF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号