首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
Tributyltin in the concentration range 1–4μm failed to stimulate Ca2+ transport by Lucilia flight-muscle mitochondria in a medium containing KCl and respiratory substrate but devoid of Pi, despite its promotion of a rapid Cl/OH exchange. When 2mm-Pi was present, concentrations of tributyltin greater than 1μm inhibited the initial rate of Ca2+ transport and induced efflux of the ion from the mitochondria in Cl- or NO3-containing media. Lower concentrations had little effect. Oligomycin added at up to 10μg/mg of mitochondrial protein had no effect on Ca2+ transport. By contrast, approx. 0.3μm-tributyltin completely inhibited respiration supported by α-glycerophosphate in either the presence or absence of added ADP. The data suggest that tributyltin can inhibit Ca2+ transport in Lucilia flight-muscle mitochondria other than by facilitating a Cl/OH exchange or producing an oligomycin-like effect.  相似文献   

2.
1. The hormonal control of glycogen breakdown was studied in hepatocytes isolated from livers of fed rats. 2. Glucose release was stimulated by [8-arginine]vasopressin (10pm–10nm), oxytocin (1nm–1μm), and angiotensin II (1nm–0.1μm). These responses are all at least as sensitive to hormone as is glucose output in the perfused rat liver. 3. The effect of these three hormones on glucose release was critically dependent on extracellular Ca2+, unlike that of glucagon. Half-maximal restoration of the vasopressin response occurred if 0.3mm-Ca2+ was added back to the incubation medium. 4. Glycogen breakdown was more than sufficient to account for the glucose released into the medium, in the absence or presence of hormones. Lactate release by hepatocytes was not affected by vasopressin, but was inhibited by glucagon. 5. If Ca2+ was omitted from the extracellular medium, vasopressin stimulated glycogenolysis, but not glucose release. 6. The phosphorylase a content of hepatocytes was increased by vasopressin, oxytocin and angiotensin II; minimum effective concentrations were 0.1pm, 0.1nm and 10pm respectively. This response was also dependent on Ca2+. 7. These results demonstrate that hepatocytes can respond to low concentrations of vasopressin and angiotensin II, i.e. these effects are likely to be relevant in the intact animal. The role of extracellular Ca2+ in the effects of these hormones on hepatic glycogenolysis and glucose release is discussed.  相似文献   

3.
Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002. These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis.  相似文献   

4.
Both cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase were recovered mainly from the supernatant fractions of guinea-pig pancreas, but a higher proportion of the activity of the former was associated with the pellet fractions. The activities in the supernatant were not separated by gel filtration, but were clearly separated by subsequent chromatography on an anion-exchange resin. The activities of cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase had high-affinity (Km 6.5±1.1μm and 31.9±3.9μm respectively) and low-affinity (Km 0.56±0.05mm and 0.32±0.03mm respectively) components. The activity of neither enzyme was affected by the pancreatic secretogens, cholecystokinin-pancreozymin, secretin and carbachol. Removal of ions by gel filtration resulted in a marked reduction in cyclic nucleotide phosphodiesterase activity, which could be restored by addition of Mg2+. Mn2+ (3mm) was as effective as Mg2+ (3mm) in the case of cyclic AMP phosphodiesterase, but was less than half as effective in the case of cyclic GMP phosphodiesterase. The metal-ion chelators, EDTA and EGTA, also decreased activity. Ca2+ (1mm) did not affect the activity of cyclic nucleotide phosphodiesterase when the concentration of Mg2+ was 3mm. At concentrations of Mg2+ between 0.1 and 1mm, 1mm-Ca2+ was activatory, and at concentrations of Mg2+ below 0.1mm, 1mm-Ca2+ was inhibitory. These results are discussed in terms of the possible significance of cyclic nucleotide phosphodiesterase in the physiological control of cyclic nucleotide concentrations during stimulus–secretion coupling.  相似文献   

5.
1. Rat-liver mitochondria showed a decrease in amino acid production after preparation in 0·25m-sucrose containing EDTA (1mm), but an increase in water content. When EDTA was replaced by Mn2+ (1mm) or succinate (1mm), both amino acid production and water content were lowered, whereas preparation in 0·9% potassium chloride caused an increase in both. 2. Amino acid production by rat-liver homogenates prepared in 0·9% potassium chloride or 0·25m-sucrose was similar (qamino acid 0·047 and 0·042 respectively aerobically). After freezing-and-thawing qamino acid values were approximately doubled, and approached that of a homogenate prepared in water. 3. All cations tested inhibited amino acid production by mitochondria, Hg2+ and Zn2+ being the most effective in tris–hydrochloric acid buffer. In phosphate buffer Mg2+ and Mn2+ had no effect. Of the anions tested only pyrophosphate and arsenate had any inhibitory effect at final concn. 1mm. 4. Iodosobenzoate (1mm) and p-chloromercuribenzenesulphonate (1mm) inhibited mitochondrial amino acid production by 70–80%, whereas soya-bean trypsin inhibitor, EDTA and di-isopropyl phosphorofluoridate inhibited by a maximum of 30%. Respiratory inhibitors had no effect. 5. Rat-liver homogenate and subcellular fractions each showed an individual pattern of inhibition when a series of inhibitors was tested. 6. Amino acid production by mitochondria was decreased by up to 50% in the presence of oxidizable substrate, apart from α-glycerophosphate and palmitate, which had no effect. CoA stimulated amino acid production in tris–hydrochloric acid but not in phosphate buffer, α-oxoglutarate abolishing the stimulation. 7. Cysteine and glutathione stimulated amino acid production by whole mitochondria by 30%, but only reduced glutathione stimulated production in broken mitochondria. 8. Adrenocorticotrophic hormone and growth hormone stimulated mitochondrial amino acid production by 21–24%, whereas insulin inhibited production by 25%. 9. Coupled oxidative phosphorylation increased amino acid production by up to 154% at 25° and 40°. The increase was abolished by 2,4-dinitrophenol. 10. Amino acid incorporation in mitochondria was accompanied by an increase in amino acid production, both being decreased by chloramphenicol. 11. Mitochondrial production of ninhydrin-positive material was increased in the presence of albumin. The biggest increase was noted for the soluble fraction of broken mitochondria. No increase was found in the presence of 14C-labelled algal protein or denatured mitochondrial protein.  相似文献   

6.
1. A method is described using trypsin/formic acid cleavage for unambiguously measuring occupancies of phosphorylation sites in rat heart pyruvate dehydrogenase [32P]phosphate complexes. 2. In mitochondria oxidizing 2-oxoglutarate+l-malate relative initial rates of phosphorylation were site 1>site 2>site 3. 3. Dephosphorylation and reactivation of fully phosphorylated complex was initiated in mitochondria by inhibiting the kinase reaction. Using dichloroacetate relative rates of dephosphorylation were site 2>(1=3). Using sodium dithionite or sodium pyruvate or uncouplers+sodium arsenite or steady state turnover (31P replacing 32P in inactive complex) relative rates were site 2>site 1>site 3. With dithionite reactivation was faster than site 3 dephosphorylation, i.e. site 3 is apparently not inactivating. 4. The steady state proportion of inactive complex was varied (92–48%) in mitochondria oxidizing 2-oxoglutarate/l-malate by increasing extramitochondrial Ca2+ (0–2.6μm). This action of Ca2+ induced dephosphorylation (site 3>site 2>site 1). These experiments enable prediction of site occupancies in vivo for given steady state proportions of inactive complexes. 5. The proportion of inactive complex was related linearly to occupancy of site 1. 6. Sodium dithionite (10mm) and Ca2+ (0.5μm) together resulted in faster dephosphorylations of each site than either agent alone; relative rates were site 2>(1=3). 7. Dephosphorylation and possibly phosphorylation of sites 1 and 2 was not purely sequential as shown by detection of complexes phosphorylated in site 2 but not in site 1. Estimates of the contribution of site 2 phosphorylation to inactivation ranged from 0.7 to 6.4%. 8. It is concluded that the primary function of site 1 phosphorylation is inactivation, phosphorylation of site 2 is not primarily concerned with inactivation and that phosphorylation of site 3 is non-inactivating.  相似文献   

7.
Mutations in otoferlin, a C2 domain-containing ferlin family protein, cause non-syndromic hearing loss in humans (DFNB9 deafness). Furthermore, transmitter secretion of cochlear inner hair cells is compromised in mice lacking otoferlin. In the present study, we show that the C2F domain of otoferlin directly binds calcium (KD = 267 μm) with diminished binding in a pachanga (D1767G) C2F mouse mutation. Calcium was found to differentially regulate binding of otoferlin C2 domains to target SNARE (t-SNARE) proteins and phospholipids. C2D–F domains interact with the syntaxin-1 t-SNARE motif with maximum binding within the range of 20–50 μm Ca2+. At 20 μm Ca2+, the dissociation rate was substantially lower, indicating increased binding (KD = ∼10−9) compared with 0 μm Ca2+ (KD = ∼10−8), suggesting a calcium-mediated stabilization of the C2 domain·t-SNARE complex. C2A and C2B interactions with t-SNAREs were insensitive to calcium. The C2F domain directly binds the t-SNARE SNAP-25 maximally at 100 μm and with reduction at 0 μm Ca2+, a pattern repeated for C2F domain interactions with phosphatidylinositol 4,5-bisphosphate. In contrast, C2F did not bind the vesicle SNARE protein synaptobrevin-1 (VAMP-1). Moreover, an antibody targeting otoferlin immunoprecipitated syntaxin-1 and SNAP-25 but not synaptobrevin-1. As opposed to an increase in binding with increased calcium, interactions between otoferlin C2F domain and intramolecular C2 domains occurred in the absence of calcium, consistent with intra-C2 domain interactions forming a “closed” tertiary structure at low calcium that “opens” as calcium increases. These results suggest a direct role for otoferlin in exocytosis and modulation of calcium-dependent membrane fusion.  相似文献   

8.
The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner.  相似文献   

9.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

10.
Polyphosphoinositide-specific phospholipase C activity was present in plasma membranes isolated from different tissues of several higher plants. Phospholipase C activities against added phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) were further characterized in plasma membrane fractions isolated from shoots and roots of dark-grown wheat (Triticum aestivum L. cv Drabant) seedlings. In right-side-out (70-80% apoplastic side out) plasma membrane vesicles, the activities were increased 3 to 5 times upon addition of 0.01 to 0.025% (w/v) sodium deoxycholate, whereas in fractions enriched in inside-out (70-80% cytoplasmic side out) vesicles, the activities were only slightly increased by detergent. Furthermore, the activities of inside-out vesicles in the absence of detergent were very close to those of right-side-out vesicles in the presence of optimal detergent concentration. This verifies the general assumption that polyphosphoinositide phospholipase C activity is located at the cytoplasmic surface of the plasma membrane. PIP and PIP2 phospholipase C was dependent on Ca2+ with maximum activity at 10 to 100 μm free Ca2+ and half-maximal activation at 0.1 to 1 μm free Ca2+. In the presence of 10 μm Ca2+, 1 to 2 mm MgCl2 or MgSO4 further stimulated the enzyme activity. The other divalent chloride salts tested (1.5 mm Ba2+, Co2+, Cu2+, Mn2+, Ni2+, and Zn2+) inhibited the enzyme activity. The stimulatory effect by Mg2+ was observed also when 35 mm NaCl was included. Thus, the PIP and PIP2 phospholipase C exhibited maximum in vitro activity at physiologically relevant ion concentrations. The plant plasma membrane also possessed a phospholipase C activity against phosphatidylinositol that was 40 times lower than that observed with PIP or PIP2 as substrate. The phosphatidylinositol phospholipase C activity was dependent on Ca2+, with maximum activity at 1 mm CaCl2, and could not be further stimulated by Mg2+.  相似文献   

11.
1. The `30s' and `50s' ribosomes from ribonuclease-active (Escherichia coli B) and -inactive (Pseudomonas fluorescens and Escherichia coli MRE600) bacteria have been studied in the ultracentrifuge. Charge anomalies were largely overcome by using sodium chloride–magnesium chloride solution, I 0·16, made 0–50mm with respect to Mg2+. 2. Differentiation of enzymic and physical breakdown at Mg2+ concentrations less than 5mm was made by comparing the properties of E. coli B and P. fluorescens ribosomes. 3. Ribonuclease-active ribosomes alone showed a transformation of `50s' into 40–43s components. This was combined with the release of a small amount of `5s' material which may be covalently bound soluble RNA. Other transformations of the `50s' into 34–37s components were observed in both ribonuclease-active and -inactive ribosomes at 1·0–2·5mm-Mg2+, and also with E. coli MRE600 when EDTA (0·2mm) was added to a solution in 0·16m-sodium chloride. 4. Degradation of ribonuclease-active E. coli B ribosomes at Mg2+ concentration 0·25mm or less was coincident with the formation of 16s and 21s ribonucleoprotein in P. fluorescens, and this suggested that complete dissociation of RNA from protein was not an essential prelude to breakdown of the RNA by the enzyme. 5. As high Cs+/Mg2+ ratios cause ribosomal degradation great care is necessary in the interpretation of equilibrium-density-gradient experiments in which high concentrations of caesium chloride or similar salts are used. 6. The importance of the RNA moiety in understanding the response of ribosomes to their ionic environment is discussed.  相似文献   

12.
The association of myosin light chains with heavy chains, i.e. the intact oligomeric structure, profoundly affects the Ca2+-binding properties of the light chains. The Ca2+-binding affinity of the light chains is more than two magnitudes higher in the presence of heavy chains than in its absence. Modification of the reactive SH2 thiol of myosin results in an alteration in the conformation of heavy chains of the molecule that influences the Ca2+-binding properties of light chains and generation of tension. When the SH2 moiety is blocked with N-ethylmaleimide the influence of the heavy chains on the Ca2+-binding properties of light chain LC2 is lost; under these conditions the Ca2+-binding affinity value of SH2-N-ethylmaleimide-blocked myosin (3.3×104m−1) decreases to near that expressed with the dissociated light chain LC2 (0.7×104m−1). Conversely, the presence of actin, nucleotides or modification of either the reactive lysyl residue or SH2 thiol does not affect Ca2+ binding. The native secondary and tertiary structure of myosin seem to be required for Ca2+ binding; binding does not occur in the presence of 6m-urea with either native myosin or the dissociated light chains. With SH2-N-ethylmaleimide-blocked myosin normal Ca2+- and (Mg2++actin)-stimulated ATPase activities are expressed; however, there is a loss in K+-stimulated ATPase activity and the synthetic actomyosin threads of such myosin express no isometric tension. There are also variances in the binding of Ca2+ with alterations in pH values. In the absence of Ca2+/EGTA buffer the biphasic Ca2+-binding affinity of myosin is twice as high at pH7.4 (site one: 1.2×106m−1 and site two: 0.4×106m−1) as compared with values obtained at pH6.5 (site one: 0.64×106m−1 and site two: 0.2×106m−1). The Ca2+-binding affinity of light chain LC2 and S1, where the (S-1)–(S-2) junction was absent, were not influenced by changes in pH values. Both expressed a low Ca2+-binding affinity, approx. 0.7×104m−1, whereas heavy meromyosin, where both (S-1) and (S-2) myosin subfragments were present, expressed a Ca2+-binding affinity value similar to that of native myosin, but was not biphasic. However, it is important to point out than in preparation of S1 myosin subfragment light chain LC2 was lost and thus was added back to the purified S1 fraction. Light chain LC2 was not, however, added to the heavy meromyosin fraction because it was not lost during preparation of the heavy meromyosin subfragment. In conclusion, it appears that the (S-1)–(S-2) junction is needed for the positioning of light chain LC2 and thus influences its essential conformation for Ca2+ binding.  相似文献   

13.
PI(4,5)P2 localizes to sites of dense core vesicle exocytosis in neuroendocrine cells and is required for Ca2+-triggered vesicle exocytosis, but the impact of local PI(4,5)P2 hydrolysis on exocytosis is poorly understood. Previously, we reported that Ca2+-dependent activation of phospholipase Cη2 (PLCη2) catalyzes PI(4,5)P2 hydrolysis, which affected vesicle exocytosis by regulating the activities of the lipid-dependent priming factors CAPS (also known as CADPS) and ubiquitous Munc13-2 in PC12 cells. Here we describe an additional role for PLCη2 in vesicle exocytosis as a Ca2+-dependent regulator of the actin cytoskeleton. Depolarization of neuroendocrine PC12 cells with 56 or 95 mm KCl buffers increased peak Ca2+ levels to ∼400 or ∼800 nm, respectively, but elicited similar numbers of vesicle exocytic events. However, 56 mm K+ preferentially elicited the exocytosis of plasma membrane-resident vesicles, whereas 95 mm K+ preferentially elicited the exocytosis of cytoplasmic vesicles arriving during stimulation. Depolarization with 95 mm K+ but not with 56 mm K+ activated PLCη2 to catalyze PI(4,5)P2 hydrolysis. The decrease in PI(4,5)P2 promoted F-actin disassembly, which increased exocytosis of newly arriving vesicles. Consistent with its role as a Ca2+-dependent regulator of the cortical actin cytoskeleton, PLCη2 localized with F-actin filaments. The results highlight the importance of PI(4,5)P2 for coordinating cytoskeletal dynamics with vesicle exocytosis and reveal a new role for PLCη2 as a Ca2+-dependent regulator of F-actin dynamics and vesicle trafficking.  相似文献   

14.
In eukaryotic Na+/Ca2+ exchangers (NCX) the Ca2+ binding CBD1 and CBD2 domains form a two-domain regulatory tandem (CBD12). An allosteric Ca2+ sensor (Ca3–Ca4 sites) is located on CBD1, whereas CBD2 contains a splice-variant segment. Recently, a Ca2+-driven interdomain switch has been described, albeit how it couples Ca2+ binding with signal propagation remains unclear. To resolve the dynamic features of Ca2+-induced conformational transitions we analyze here distinct splice variants and mutants of isolated CBD12 at varying temperatures by using small angle x-ray scattering (SAXS) and equilibrium 45Ca2+ binding assays. The ensemble optimization method SAXS analysis demonstrates that the apo and Mg2+-bound forms of CBD12 are highly flexible, whereas Ca2+ binding to the Ca3–Ca4 sites results in a population shift of conformational landscape to more rigidified states. Population shift occurs even under conditions in which no effect of Ca2+ is observed on the globally derived Dmax (maximal interatomic distance), although under comparable conditions a normal [Ca2+]-dependent allosteric regulation occurs. Low affinity sites (Ca1–Ca2) of CBD1 do not contribute to Ca2+-induced population shift, but the occupancy of these sites by 1 mm Mg2+ shifts the Ca2+ affinity (Kd) at the neighboring Ca3–Ca4 sites from ∼ 50 nm to ∼ 200 nm and thus, keeps the primary Ca2+ sensor (Ca3–Ca4 sites) within a physiological range. Thus, Ca2+ binding to the Ca3–Ca4 sites results in a population shift, where more constraint conformational states become highly populated at dynamic equilibrium in the absence of global conformational transitions in CBD alignment.  相似文献   

15.
Analysis of NaCl toxicity in Chlorella sorokiniana showed decreased growth rates, increased dry weight per cell, increased intracellular Na+ and Cl, more total chlorophyll per cell, a decreased chlorophyll a to chlorophyll b ratio, increased rates of O2 evolution, and decreased rates of CO2 fixation when the extracellular concentration of NaCl was increased from zero to 0.3 m. Cultures did not grow at concentrations greater than 0.3 m NaCl unless 10 mm calcium salts were present. Inclusion of that concentration of Ca2+ extended the tolerance to 0.5 m NaCl before growth stopped. Increasing the light intensity from 1.2 to 9.4 mw/cm2 increased growth rates for cultures in 0.10 to 0.45 m NaCl. At 14 mw/cm2 added Ca2+ reduced growth rates of cultures in 0.3 m NaCl compared to controls without added Ca2+. Maximal growth rates for cultures in NaCl media were achieved by addition of 10 mm CaSO4 and maintenance of the light intensity at 9.4 mw/cm2. The maximal growth rate of the organism was 9.6 doublings/day achieved at 2.7 mw/cm2 for control cultures. In 0.3 m NaCl the growth rate was 4.3 doublings/day at 2.7 mw/cm2 and 8.2 doublings/day at 9.4 mw/cm2 with 10 mm CaSO4 added.  相似文献   

16.
1. Cholesteryl 3β-sulphate is oxidized in vitro by preparations of bovine adrenal-cortex mitochondria to pregnenolone sulphate and isocaproic acid (4-methyl-pentanoic acid) without hydrolysis of the ester linkage. 2. Free cholesterol is the preferred substrate for adrenal-cortex cholesterol oxidase; the apparent Km for cholesteryl sulphate is 500μm and for free cholesterol 50μm under the same conditions. 3. Cholesteryl 3β-acetate is hydrolysed by bovine adrenal-cortex mitochondria in vitro to free cholesterol, which is subsequently oxidized to more polar steroids and isocaproic acid. Evidence was obtained that other cholesterol esters behave similarly. Cholesterol esters may thus act as precursors of steroid hormones. 4. Cholest-4-en-3-one is only poorly oxidized to isocaproic acid and more polar steroids and thus is probably not a significant precursor of steroid hormones. 5. Cholesteryl esters inhibit the oxidation of cholesterol competitively (Ki for cholesteryl phosphate 28μm, for cholesteryl sulphate 110μm, for cholesteryl acetate 65μm) but pregnenolone esters do not inhibit this system. 6. Pregnenolone and 20α-hydroxycholesterol (both metabolites of cholesterol in this system) inhibit the oxidation of cholesterol non-competitively. Ki for pregnenolone is 130μm and Ki for 20α-hydroxycholesterol is 17μm. 7. 25-Oxo-27-norcholesterol inhibits cholesterol oxidation non-competitively (Ki16μm). A number of other Δ5-3β-hydroxy steroids inhibit cholesterol oxidation and evidence was obtained that the 3β-hydroxyl group was necessary for inhibitory activity. 8. Pregnenolone, 20α-hydroxycholesterol and 25-oxo-27-norcholesterol inhibit oxidation of cholesteryl sulphate by this system but their sulphates do not. 9. 3β-Hydroxychol-5-enoic acid, 3α-hydroxy-5β-cholanic acid and 3β-hydroxy-22,23-bisnorchol-5-enoic acid stimulated formation of isocaproic acid from cholesterol. 10. No evidence was obtained that phosphorylation or sulphation are obligatory steps in cholesterol oxidation by adrenal-cortex mitochondria. 11. The cholesteryl 3β-sulphate sulphatase of bovine adrenal cortex was found mostly in the microsomal fraction and was inhibited by inorganic phosphate.  相似文献   

17.
1. Phosphomevalonate kinase and 5-pyrophosphomevalonate decarboxylase have been purified from the freeze-dried latex serum of the commercial rubber tree Hevea brasiliensis. 2. The phosphomevalonate kinase was acid- and heat-labile and required the presence of a thiol to maintain activity. 3. The 5-pyrophosphomevalonate decarboxylase was relatively acid-stable and more heat-stable than the phosphokinase. 4. Maximum activity of the phosphokinase was achieved at pH 7.2 with 0.2mm-5-phosphomevalonate (Km 0.042mm), 2.0mm-ATP (Km 0.19mm) and 8mm-Mg2+ at 40°C. The apparent activation energy was 14.8kcal/mol. 5. Maximum activity of 5-pyrophosphomevalonate decarboxylase was achieved at pH5.5–6.5 with 0.1mm-5-pyrophosphomevalonate (Km 0.004mm), 1.5mm-ATP (Km 0.12mm) and 2mm-Mg2+. The apparent activation energy was 13.7kcal/mol. The enzyme was somewhat sensitive to inhibition by its products, isopentenyl pyrophosphate and ADP.  相似文献   

18.
The existence of a Na+-dependent mechanism for Ca2+ efflux from isolated rat liver mitochondria was confirmed. The activity of this system is decreased by 60% in mitochondria isolated from perfused livers. The Na+-dependent activity is fully restored by infusion of either 1μm-adrenaline or 1μm-isoprenaline, but the α-adrenergic agonist phenylephrine is ineffective.  相似文献   

19.
1. Mitochondria isolated from rat liver by centrifugation of the homogenate in buffered iso-osmotic sucrose at between 4000 and 8000g-min, 1h after the administration in vivo of 30μg of glucagon/100g body wt., retain Ca2+ for over 45min after its addition at 100nmol/mg of mitochondrial protein in the presence of 2mm-Pi. In similar experiments, but after the administration of saline (0.9% NaCl) in place of glucagon, Ca2+ is retained for 6–8min. The ability of glucagon to enhance Ca2+ retention is completely prevented by co-administration of 4.2mg of puromycin/100g body wt. 2. The resting rate of respiration after Ca2+ accumulation by mitochondria from glucagon-treated rats remains low by contrast with that from saline-treated rats. Respiration in the latter mitochondria increased markedly after the Ca2+ accumulation, reflecting the uncoupling action of the ion. 3. Concomitant with the enhanced retention of Ca2+ and low rates of resting respiration by mitochondria from glucagon-treated rats was an increased ability to retain endogenous adenine nucleotides. 4. An investigation of properties of mitochondria known to influence Ca2+ transport revealed a significantly higher concentration of adenine nucleotides but not of Pi in those from glucagon-treated rats. The membrane potential remained unchanged, but the transmembrane pH gradient increased by approx. 10mV, indicating increased alkalinity of the matrix space. 5. Depletion of endogenous adenine nucleotides by Pi treatment in mitochondria from both glucagon-treated and saline-treated rats led to a marked diminution in ability to retain Ca2+. The activity of the adenine nucleotide translocase was unaffected by glucagon treatment of rats in vivo. 6. Although the data are consistent with the argument that the Ca2+-translocation cycle in rat liver mitochondria is a target for glucagon action in vivo, they do not permit conclusions to be drawn about the molecular mechanisms involved in the glucagon-induced alteration to this cycle.  相似文献   

20.
C-reactive protein (CRP) is an acute phase protein of the pentraxin family that binds ligands in a Ca2+-dependent manner, and activates complement. Knowledge of its oligomeric state in solution and at surfaces is essential for functional studies. Analytical ultracentrifugation showed that CRP in 2 mm Ca2+ exhibits a rapid pentamer-decamer equilibrium. The proportion of decamer decreased with an increase in NaCl concentration. The sedimentation coefficients s20,w0 of pentameric and decameric CRP were 6.4 S and in excess of 7.6 S, respectively. In the absence of Ca2+, CRP partially dissociates into its protomers and the NaCl concentration dependence of the pentamer-decamer equilibrium is much reduced. By x-ray scattering, the radius of gyration RG values ranged from 3.7 nm for the pentamer to above 4.0 nm for the decamer. An averaged KD value of 21 μm in solution (140 mm NaCl, 2 mm Ca2+) was determined by x-ray scattering and modeling based on crystal structures for the pentamer and decamer. Surface plasmon resonance showed that CRP self-associates on a surface with immobilized CRP with a similar KD value of 23 μm (140 mm NaCl, 2 mm Ca2+), whereas CRP aggregates in low salt. It is concluded that CRP is reproducibly observed in a pentamer-decamer equilibrium in physiologically relevant concentrations both in solution and on surfaces. Both 2 mm Ca2+ and 140 mm NaCl are essential for the integrity of CRP in functional studies and understanding the role of CRP in the acute phase response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号