首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Mechanism of simvastatin on induction of heat shock protein in osteoblasts   总被引:6,自引:0,他引:6  
It has recently been reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) stimulate bone formation. However, the mechanism of stimulation of bone metabolism by statins is not precisely clarified. In this study, we investigated whether simvastatin induces heat shock protein (HSP) 27, HSP70, and HSP90 in osteoblast-like MC3T3-E1 cells. Simvastatin increased the levels of HSP27 while having little effect on the levels of HSP70 or HSP90. The effect of simvastatin on HSP27 accumulation was dose dependent. Cycloheximide reduced the accumulation. Simvastatin induced an increase in the levels of mRNA for HSP27. Actinomycin D suppressed the mRNA levels. Simvastatin induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase among the MAP kinase superfamily. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the HSP27 accumulation by simvastatin while SB202474, a negative control of p38 MAP kinase inhibitor, had no effect. SB203580 reduced the simvastatin-increased mRNA levels for HSP27. Lovastatin, another statin, also induced the HSP27 accumulation and SB203580 suppressed the HSP27 accumulation. These results strongly suggest that statins such as simvastatin do not stimulate the induction of HSP70 and HSP90, but do stimulate the induction of HSP27 in osteoblasts and that p38 MAP kinase plays a role in this induction.  相似文献   

2.
It has been shown that anesthetics have effects of cardiac preconditioning. Heat shock proteins (HSPs) function as molecular chaperone. Among them, HSP27, a low-molecular-weight HSP, abundantly exist in heart. However, the relationship between anesthetics and HSP27 in heart is not yet clarified. We investigated whether thrombin induces or phosphorylates HSP27 in primary cultured mouse myocytes and the effect of midazolam on the thrombin-stimulated HSP27 phosphorylation and the mechanism behind it. Thrombin time dependently phosphorylated HSP27 at Ser-15 and Ser-85 while having no effect on the levels of HSP27. Midazolam markedly suppressed the thrombin-induced phosphorylation of HSP27 at both Ser-15 and Ser-85. Thrombin induced the phosphorylation of p44/p42 MAP kinase and p38 MAP kinase without affecting stress-activated protein kinase/c-Jun N-terminal kinase. In addition, midazolam attenuated the phosphorylation of thrombin-induced p38 MAP kinase but not that of p44/p42 MAP kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the thrombin-induced phosphorylation of HSP27 at both Ser-15 and Ser-85. These results strongly suggest that thrombin induces the HSP27 phosphorylation at least through the p38 MAP kinase activation in cardiac myocytes and that midazolam inhibits the thrombin-induced HSP27 phosphorylation via suppression of p38 MAP kinase activation.  相似文献   

3.
It is generally recognized that osteoporosis is a common complication of patients with glucocorticoid excess and that glucocorticoid receptor is associated with heat shock protein (HSP) 70 and HSP90 in a heterocomplex. In the present study, we investigated whether glucocorticoid induces HSP27, HSP70, and HSP90 in osteoblast-like MC3T3-E1 cells. Dexamethasone time-dependently increased the levels of HSP27, while having no effect on the levels of HSP70 or HSP90. The effect of dexamethasone was dose-dependent in the range between 0.1 nM and 0.1 microM. Dexamethasone induced an increase of the levels of mRNA for HSP27. Dexamethasone induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the HSP27 accumulation by dexamethasone. In addition, SB203580 reduced the dexamethasone-stimulated increase of the mRNA levels for HSP27. The dexamethasone-induced phosphorylation of p38 MAP kinase was reduced by SB203580. These results strongly suggest that glucocorticoid stimulates the induction of neither HSP70 nor HSP90, but HSP27 in osteoblasts, and that p38 MAP kinase is involved in the induction of HSP27.  相似文献   

4.
We investigated whether transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. TGF-beta increased the level of HSP27 but had no effect on the HSP70 level. TGF-beta stimulated the accumulation of HSP27 dose-dependently, and induced an increase in the level of mRNA for HSP27. TGF-beta induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by TGF-beta was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. PD98059 and SB203580 suppressed the TGF-beta-stimulated increase in the level of mRNA for HSP27. Retinoic acid, a vitamin A (retinol) metabolite, which alone had little effect on the HSP27 level, markedly enhanced the HSP27 accumulation stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-induced increase of mRNA for HSP27. The amplification of TGF-beta-stimulated HSP27 accumulation by retinoic acid was reduced by PD98059 or SB203580. Retinoic acid failed to affect the TGF-beta-induced phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. These results strongly suggest that p44/p42 MAP kinase and p38 MAP kinase take part in the pathways of the TGF-beta-stimulated HSP27 induction in osteoblasts, and that retinoic acid upregulates the TGF-beta-stimulated HSP27 induction at a point downstream from p44/p42 MAP kinase and p38 MAP kinase.  相似文献   

5.
Esophageal (ESO) circular muscle contraction and lower esophageal sphincter (LES) tone are PKC dependent. Because MAPKs may be involved in PKC-dependent contraction, we examined ERK1/ERK2 and p38 MAPKs in ESO and LES. In permeabilized LES muscle cells, ERK1/2 antibodies reduced 1,2-dioctanoylglycerol (DG)- and threshold ACh-induced contraction, which are PKC dependent, but not maximal ACh, which is calmodulin dependent. LES tone was reduced by the ERK1/2 kinase inhibitor PD-98059 and by the p38 MAPK inhibitor SB-203580. In permeable ESO cells, ACh contraction was reduced by ERK1/ERK2 and p38 MAPK antibodies and by PD-98059 and SB-203580. ACh increased MAPK activity and phosphorylation of MAPK and of p38 MAPK. The 27-kDa heat shock protein (HSP27) antibodies reduced ACh contraction. HSP27 and p38 MAPK antibodies together caused no greater inhibition than either one alone. p38 MAPK and HSP27 coprecipitated after ACh stimulation, suggesting that HSP27 is linked to p38 MAPK. These data suggest that PKC-dependent contraction in ESO and LES is mediated by the following two distinct MAPK pathways: ERK1/2 and HSP27-linked p38 MAPK.  相似文献   

6.
We previously reported that p70 S6 kinase takes part in bone morphogenetic protein-4 (BMP-4)-stimulated vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. Recently, we showed that BMP-4-induced osteocalcin synthesis is regulated by p44/p42 MAP kinase and p38 MAP kinase in these cells. In the present study, we investigated whether the MAP kinases are involved in the BMP-4-stimulated synthesis of VEGF in MC3T3-E1 cells. PD-98059 and U-0126, inhibitors of the upstream kinase of p44/p42 MAP kinase, failed to affect BMP-4-stimulated VEGF synthesis. SB-203580 and PD-169316, inhibitors of p38 MAP kinase, significantly reduced VEGF synthesis, whereas SB-202474, a negative control for p38 MAP kinase inhibitor, had little effect on VEGF synthesis. The BMP-4-stimulated phosphorylation of p38 MAP kinase was not affected by rapamycin, an inhibitor of p70 S6 kinase. On the contrary, SB-203580 and PD-169316 reduced the BMP-4-stimulated phosphorylation of p70 S6 kinase. In addition, anisomycin, an activator of p38 MAP kinase, phosphorylates p70 S6 kinase, and the phosphorylation was suppressed by SB-203580. LY-294002, an inhibitor of phosphatidylinositol 3-kinase, failed to suppress the phosphorylation of p38 MAP kinase induced by BMP-4. Not BMP-4 but anisomycin weakly induced the phosphorylation of phosphoinositide-dependent kinase-1. However, anisomycin had little effect on phosphorylation of either Akt or the mammalian target of rapamycin. Taken together, our results suggest that p38 MAP kinase functions in BMP-4-stimulated VEGF synthesis as a positive regulator at a point upstream from p70 S6 kinase in osteoblasts.  相似文献   

7.
8.
We previously showed that prostaglandin D(2) (PGD(2)) stimulates activation of protein kinase C (PKC). We investigated whether PGD(2) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. PGD(2) increased the levels of HSP27 while having little effect on HSP70 levels. PGD(2) stimulated the accumulation of HSP27 dose dependently in the range between 10 nM and 10 microM. PGD(2) induced an increase in the levels of mRNA for HSP27. The PGD(2)-stimulated accumulation of HSP27 was reduced by staurosporine or calphostin C, inhibitors of PKC. PGD(2) induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by PGD(2) was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. Calphostin C suppressed the PGD(2)-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase. PD98059 or SB203580 suppressed the PGD(2)-increased levels of mRNA for HSP27. These results strongly suggest that PGD(2) stimulates HSP27 induction through p44/p42 MAP kinase activation and p38 MAP kinase activation in osteoblasts and that PKC acts at a point upstream from both the MAP kinases.  相似文献   

9.
Mitogen-activated protein (MAP) kinases signal to proteins that could modify smooth muscle contraction. Caldesmon is a substrate for extracellular signal-related kinases (ERK) and p38 MAP kinases in vitro and has been suggested to modulate actin-myosin interaction and contraction. Heat shock protein 27 (HSP27) is downstream of p38 MAP kinases presumably participating in the sustained phase of muscle contraction. We tested the role of caldesmon and HSP27 phosphorylation in the contractile response of vascular smooth muscle by using inhibitors of both MAP kinase pathways. In intact smooth muscle, PD-098059 abolished endothelin-1 (ET-1)-stimulated phosphorylation of ERK MAP kinases and caldesmon, but p38 MAP kinase activation and contractile response remained unaffected. SB-203580 reduced muscle contraction and inhibited p38 MAP kinase and HSP27 phosphorylation but had no effect on ERK MAP kinase and caldesmon phosphorylation. In permeabilized muscle fibers, SB-203580 and a polyclonal anti-HSP27 antibody attenuated ET-1-dependent contraction, whereas PD-098059 had no effect. These results suggest that ERK MAP kinases phosphorylate caldesmon in vivo but that activation of this pathway is unnecessary for force development. The generation of maximal force may be modulated by the p38 MAP kinase/HSP27 pathway.  相似文献   

10.
p38 mitogen-activated protein kinase (MAPK) activates a number of heat shock proteins (HSPs), including HSP27 and alpha(B)-crystallin, in response to stress. Activation of HSP27 or alpha(B)-crystallin is known to protect organs/cells by increasing the stability of actin microfilaments. Although our previous studies showed that 17beta-estradiol (E(2)) improves cardiovascular function after trauma-hemorrhage, whether the salutary effects of E(2) under those conditions are mediated via p38 MAPK remains unknown. Male rats (275-325 g body wt) were subjected to soft tissue trauma and hemorrhage (35-40 mmHg mean blood pressure for approximately 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were injected intravenously with vehicle, E(2) (1 mg/kg body wt), E(2) + the p38 MAPK inhibitor SB-203580 (2 mg/kg body wt), or SB-203580 alone, and various parameters were measured 2 h thereafter. Cardiac functions that were depressed after trauma-hemorrhage were returned to normal levels by E(2) administration, and phosphorylation of cardiac p38 MAPK, HSP27, and alpha(B)-crystallin was increased. The E(2)-mediated improvement of cardiac function and increase in p38 MAPK, HSP27, and alpha(B)-crystallin phosphorylation were abolished with coadministration of SB-203580. These results suggest that the salutary effect of E(2) on cardiac function after trauma-hemorrhage is in part mediated via upregulation of p38 MAPK and subsequent phosphorylation of HSP27 and alpha(B)-crystallin.  相似文献   

11.
Administration of arginine vasopressin (AVP) time-dependently induced the phosphorylation of heat shock protein 27 (HSP27) at Ser-15 and Ser-85 in smooth muscle of aorta in vivo. The AVP-induced phosphorylation of HSP27 at Ser-15 and Ser-85 was inhibited by a V1a receptor antagonist but not by a V2 receptor antagonist. In cultured aortic smooth muscle A10 cells, AVP markedly stimulated the phosphorylation of HSP27 at Ser-15 and Ser-85. The AVP-induced phosphorylation of HSP27 was attenuated by SB203580 and PD169316, inhibitors of p38 mitogen-activated protein (MAP) kinase, but not by PD98059, a MEK inhibitor. These results strongly suggest that AVP phosphorylates HSP27 via p38 MAP kinase in aortic smooth muscle cells.  相似文献   

12.
We previously reported that p38 MAP kinase takes part in thrombin-induced HSP27 phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether Akt is involved in the phosphorylation of HSP27 and the role of adenylyl cyclase-cAMP system. Thrombin time-dependently induced the phosphorylation of heat shock protein 27 (HSP27) and Akt in aortic smooth muscle A10 cells. SB203580, a p38 MAP kinase inhibitor, significantly suppressed the thrombin-induced phosphorylation of Akt and the Akt inhibitor suppressed the phosphorylation of HSP27. Furthermore, the thrombin-induced phosphorylation of HSP27, p38 MAP kinase and Akt were decreased by dibutyryl-cAMP (DBcAMP). These results strongly suggest that Akt functions the thrombin-induced phosphorylation of HSP27 at a point downstream from p38 MAP kinase in aortic smooth muscle cells and the adenylyl cyclase-cAMP system is upstream regulator of the HSP27 phosphorylation in these cells.  相似文献   

13.
The mechanisms through which p38 mitogen-activated protein kinase (p38 MAPK) is involved in smooth muscle contraction remain largely unresolved. We examined the role of p38 MAPK in prostaglandin F(2alpha) (PGF(2alpha))-induced vasoconstriction and in hypoxic pulmonary vasoconstriction (HPV) of rat small intrapulmonary arteries (IPA). The p38 MAPK inhibitors SB-203580 and SB-202190 strongly inhibited PGF(2alpha)-induced vasoconstriction, with IC(50)s of 1.6 and 1.2 microM, whereas the inactive analog SB-202474 was approximately 30-fold less potent. Both transient and sustained phases of HPV were suppressed by SB-203580, but not by SB-202474 (both 2 microM). Western blot analysis revealed that PGF(2alpha) (20 microM) increased phosphorylation of p38 MAPK and of heat shock protein 27 (HSP27), and this was abolished by SB-203580 but not by SB-202474 (both 2 microM). Endothelial denudation or blockade of endothelial nitric oxide (NO) synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly suppressed the relaxation of PGF(2alpha)-constricted IPA by SB-203580, but not by SB-202474. Similarly, the inhibition of HPV by SB-203580 was prevented by prior treatment with L-NAME. SB-203580 (2 microM), but not SB-202474, enhanced relaxation-induced by the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in endothelium-denuded IPA constricted with PGF(2alpha). In alpha-toxin-permeabilized IPA, SB-203580-induced relaxation occurred in the presence but not the absence of the NO donor sodium nitroprusside (SNP); SB-202474 was without effect even in the presence of SNP. In intact IPA, neither PGF(2alpha)- nor SNAP-mediated changes in cytosolic free Ca(2+) were affected by SB-203580. We conclude that p38 MAPK contributes to PGF(2alpha)- and hypoxia-induced constriction of rat IPA primarily by antagonizing the underlying Ca(2+)-desensitizing actions of NO.  相似文献   

14.
We previously reported that thrombin stimulates the induction of heat shock protein (HSP) 27 via p38 mitogen-activated protein (MAP) kinase activation in aortic smooth muscle A10 cells. In the present study, we investigated the effect of the adenylyl cyclase-cAMP system on the thrombin-stimulated induction of HSP27 in A10 cells. Forskolin, a direct activator of adenylyl cyclase, reduced the thrombin-induced p38 MAP kinase phosphorylation, and significantly suppressed the thrombin-stimulated accumulation of HSP27. However, dideoxyforskolin, a forskolin derivative that does not activate cAMP, failed to suppress the HSP27 accumulation. Furthermore, dibutyryl-cAMP (DBcAMP), a permeable analog of cAMP, significantly suppressed the accumulation of HSP27. On the other hand, calphostin C, an inhibitor of protein kinase C (PKC), reduced the thrombin-induced p38 MAP kinase phosphorylation, and significantly suppressed the thrombin-stimulated accumulation of HSP27. Moreover, forskolin reduced the p38 MAP kinase phosphorylation induced by the 12-O-tetradecanoylphorbol-13-acetate (TPA), a PKC-activating phorbol ester, and significantly suppressed the TPA-stimulated accumulation of HSP27. These results indicate that adenylyl cyclase-cAMP system has an inhibitory role in thrombin-stimulated HSP27 induction in aortic smooth muscle cells, and the effect seems to be exerted on the thrombin-induced PKC- p38 MAP kinase signaling pathway.  相似文献   

15.
We have recently reported that attenuated phosphorylation of heat shock protein (HSP) 27 correlates with tumor progression in patients with hepatocellular carcinoma (HCC). In the present study, we investigated what kind of kinase regulates phosphorylation of HSP27 in human HCC-derived HuH7 cells. 12-O-tetradecanoylphorbol-13-acetate (TPA) and 1-oleoyl-2-acetylglycerol, direct activators of protein kinase C (PKC), markedly strengthened the phosphorylation of HSP27. Bisindorylmaleimide I, an inhibitor of PKC, suppressed the TPA-induced levels of HSP27 phosphorylation in addition to its basal levels. Knock down of PKCdelta suppressed HSP27 phosphorylation, as well as p38 mitogen-activated protein kinase (MAPK) phosphorylation. SB203580, an inhibitor of p38 MAPK, suppressed the TPA-induced HSP27 phosphorylation. Our results strongly suggest that activation of PKCdelta regulates the phosphorylation of HSP27 via p38 MAPK in human HCC.  相似文献   

16.
We previously reported that p38 mitogen-activated protein (MAP) kinase takes a part in arginine vasopressin (AVP)-induced heat shock protein 27 (HSP27) phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the phosphorylation of HSP27 in these cells. AVP time-dependently induced the phosphorylation of PI3K and Akt. Akt inhibitor, 1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, partially suppressed the phosphorylation of HSP27. The AVP-induced HSP27 phosphorylation was attenuated by LY294002, a PI3K inhibitor. The combination of Akt inhibitor and SB203580, a p38 MAP kinase inhibitor, completely suppressed the AVP-induced phosphorylation of HSP27. Furthermore, LY294002 or Akt inhibitor did not affect the AVP-induced phosphorylation of p38 MAP kinase and SB203580 did not affect the phosphorylation of PI3K or Akt. These results suggest that PI3K/Akt plays a part in the AVP-induced phosphorylation of HSP27, maybe independently of p38 MAP kinase, in aortic smooth muscle A10 cells.  相似文献   

17.
Thrombin-stimulated endothelium synthesizes numerous adhesion molecules to recruit leukocytes; however, it is unknown which intracellular pathways are responsible for this event. A recent report from our laboratory has shown that thrombin induces E-selectin expression and that blocking nuclear factor-kappa B (NF-kappa B) activity partially blocked both E-selectin expression (60%) and leukocyte recruitment. In this study, we systematically assessed the importance of p38 MAPK in thrombin-induced NF-kappa B activation and E-selectin-dependent leukocyte recruitment. Thrombin caused phosphorylation of p38 MAPK, its substrate ATF-2, and JNK MAPK, but not ERK MAPK. The p38 MAPK inhibitors, SKF86002 and SB-203580 only reduced ATF-2 activity. We treated human umbilical vein endothelial cells with SKF86002, 1 h before thrombin stimulation, and noted inhibition of NF-kappa B mobilization and complete inhibition of leukocyte rolling and adhesion in a laminar flow chamber. Significant inhibition of leukocyte recruitment and E-selectin expression was also observed with SB-203580. SKF86002 did not affect other systems, including tumor necrosis factor-alpha-induced E-selectin-dependent leukocyte recruitment. Moreover, thrombin-induced rapid mobilization of P-selectin from Weibel Palade bodies was not p38 MAPK dependent. These data suggest that thrombin induces p38 MAPK activation, which leads to NF-kappa B mobilization to the nucleus and causes the upregulation of E-selectin and subsequent leukocyte recruitment.  相似文献   

18.
We have previously shown that thrombin induces endothelial cell barrier dysfunction via cytoskeleton activation and contraction and have determined the important role of endothelial cell myosin light chain kinase (MLCK) in this process. In the present study we explored p38 MAP kinase as a potentially important enzyme in thrombin-mediated endothelial cell contractile response and permeability. Thrombin induces significant p38 MAP kinase activation in a time-dependent manner with maximal effect at 30 min, which correlates with increased phosphorylation of actin- and myosin-binding protein, caldesmon. Both SB-203580 and dominant negative p38 adenoviral vector significantly attenuated thrombin-induced declines in transendothelial electrical resistance. Consistent with these data SB-203580 decreased actin stress fiber formation produced by thrombin in endothelium. In addition, dominant negative p38 had no effect on thrombin-induced myosin light chain diphosphorylation. Thrombin-induced total and site-specific caldesmon phosphorylation (Ser789) as well as dissociation of caldesmon-myosin complex were attenuated by SB-203580 pretreatment. These results suggest the involvement of p38 MAP kinase activities and caldesmon phosphorylation in the MLCK-independent regulation of thrombin-induced endothelial cell permeability.  相似文献   

19.
In an aortic smooth muscle cell line, A10 cells, we investigated the effect of sphingosine 1-phosphate on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein. Sphingosine 1-phosphate significantly induced the accumulation of HSP27 in a pertussis toxin-sensitive manner. The effect was dose-dependent in the range between 0.1 and 30 microM. Sphingosine 1-phosphate stimulated an increase in the levels of mRNA for HSP27. Sphingosine 1-phosphate stimulated both p42/p44 mitogen-activated protein (MAP) kinase and p38 MAP kinase activation. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, did not affect sphingosine 1-phosphate-stimulated HSP27 induction. In contrast, SB203580, an inhibitor of p38 MAP kinase, reduced sphingosine 1-phosphate-induced HSP27 induction. SB203580 reduced the levels of mRNA for HSP27 induced by sphingosine 1-phosphate. These results indicate that sphingosine 1-phosphate stimulates the induction of HSP27 via p38 MAP kinase activation in aortic smooth muscle cells.  相似文献   

20.
Adenosine diphosphate (ADP) plays a crucial role in hemostasis and thrombosis by activating platelets. ADP has been reported to induce heat-shock protein (HSP) 27 phosphorylation in human platelets. However, the exact role of HSP27 phosphorylation in human platelets has not yet been clarified. In the present study, we investigated the mechanisms and the roles of ADP-induced HSP27 phosphorylation in human platelets. We showed for the first time that both of decreased phosphorylation levels of HSP27 by PD98059, a MEK1/2 inhibitor and SB203580, a p38 MAPK inhibitor were correlated with the suppressed levels of platelet granule secretion but not with platelet aggregation. Furthermore, the inhibition of either the p44/p42 MAPK or p38 MAPK pathways had no effect on ADP-induced platelet aggregation. These results strongly suggest that the ADP-induced phosphorylation of HSP27 via p44/p42 MAPK and/or p38 MAPK is therefore sufficient for platelet granule secretion but not for platelet aggregation in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号