首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model. Therefore, we quantified time-dependent alterations in the ventricular morphology and function in two models of hypertrophy and heart failure and we studied the relationship between RV and LV function during the transition from hypertrophy to heart failure.

Methods

MRI was used to quantify RV and LV function and morphology in healthy (n = 4) and sham operated (n = 3) C57BL/6 mice, and animals with a mild (n = 5) and a severe aortic constriction (n = 10).

Results

Mice subjected to a mild constriction showed increased LV mass (P<0.01) and depressed LV ejection fraction (EF) (P<0.05) as compared to controls, but had similar RVEF (P>0.05). Animals with a severe constriction progressively developed LV hypertrophy (P<0.001), depressed LVEF (P<0.001), followed by a declining RVEF (P<0.001) and the development of pulmonary remodeling, as compared to controls during a 10-week follow-up. Myocardial strain, as a measure for local cardiac function, decreased in mice with a severe constriction compared to controls (P<0.05).

Conclusions

Relevant changes in mouse RV and LV function following an aortic constriction could be quantified using MRI. The well-controlled models described here open opportunities to assess the added value of new MRI techniques for the diagnosis of heart failure and to study the impact of new therapeutic strategies on disease progression and symptom occurrence.  相似文献   

2.

Aims

The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice.

Methods and Results

Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility) using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV) and right ventricular (RV) systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy.

Conclusions

MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.  相似文献   

3.

Purpose

To determine whether 3.0-T magnetic resonance imaging (MRI) could assess right ventricular (RV) function in patients with hypertrophic cardiomyopathy (HCM), and if this assessment is correlated with the New York Heart Function Assessment (NYHA) classification.

Materials and Methods

Forty-six patients with HCM and 23 normal individuals were recruited. Left and right ventricular function parameters including end-diastolic and end-systolic volumes (EDV, ESV), stroke volume (SV) and ejection fraction (EF) and dimensions were measured and compared using 3.0-T MRI. RV function parameters between HCM patients and controls were compared using independent sample t tests. A one way ANOVA test with Bonferroni correction was used to determine significant differences among different NYHA groups. Receiver operating characteristic analyses calculated the sensitivity and specificity of RV dysfunction on MRI for the prediction of HCM severity.

Results

Statistical analysis revealed significant differences of left ventricular (LV) and RV volumetric values and masses between the HCM patients and controls (all p<0.05). Within the HCM group, the simultaneously decreased maximum RVEDD correlated well with the LVEDD (r = 0.53; p<0.001). The function and dimension parameters among Class I to III were not determined to be significantly different (all p>0.05). However, significant differences between the Class IV and I-III groups (all P<0.0167) indicated that the diastolic and systolic function in both the RV and LV were impaired in Class IV patients. ROC analyses identified the EDV, ESV and EDD of both the LV and RV with a high sensitivity cutoff value to predict the HCM patients with severe heart failure (Class IV) with high sensitivity and specificity.

Conclusions

RV involvements were comparable to those of LV global function impairments in patients with HCM. The presence of RV dysfunction and decreased dimension on the MRI helped to predict the severe symptomatic HCM with high sensitivity and specificity.  相似文献   

4.
Persistent pulmonary hypertension of the newborn (PPHN) results in right ventricular (RV) hypertrophy followed by right heart failure and an associated mitochondrial dysfunction. The phospholipid cardiolipin plays a key role in maintaining mitochondrial respiratory and cardiac function via modulation of the activities of enzymes involved in oxidative phosphorylation. In this study, changes in cardiolipin and cardiolipin metabolism were investigated during the development of right heart failure. Newborn piglets (<24 h old) were exposed to a hypoxic (10% O(2)) environment for 3 days, resulting in the induction of PPHN. Two sets of control piglets were used: 1) newborn or 2) exposed to a normoxic (21% O(2)) environment for 3 days. Cardiolipin biosynthetic and remodeling enzymes, mitochondrial complex II + III activity, incorporation of [1-(14)C]linoleoyl-CoA into cardiolipin precursors, and the tetralinoleoyl-cardiolipin pool size were determined in both the RV and left ventricle (LV). PPHN resulted in an increased heart-to-body weight ratio, RV-to-LV plus septum weight ratio, and expression of brain naturetic peptide in RV. In addition, PPHN reduced cardiolipin biosynthesis and remodeling in the RV and LV, which resulted in decreased tetralinoleoyl-cardiolipin levels and reduced complex II + III activity and protein levels of mitochondrial complexes II, III, and IV in the RV. This is the first study to examine the pattern of cardiolipin metabolism during the early development of both the RV and LV of the newborn piglet and to demonstrate that PPHN-induced alterations in cardiolipin biosynthetic and remodeling enzymes contribute to reduced tetralinoleoyl-cardiolipin and mitochondrial respiratory chain function during the development of RV hypertrophy. These defects in cardiolipin may play an important role in the rapid development of RV dysfunction and right heart failure in PPHN.  相似文献   

5.

Background

Pulmonary hypertension and subsequent right ventricular (RV) failure are associated with high morbidity and mortality. Prognosis is determined by occurrence of RV failure. Currently, adequate treatment for RV failure is lacking. Further research into the molecular basis for the development of RV failure as well as the development of better murine models of RV failure are therefore imperative. We hypothesize that adding a low-copper diet to chronic hypoxia in mice reinforces their individual effect and that the combination of mild pulmonary vascular remodeling and capillary rarefaction, induces RV failure.

Methods

Six week old mice were subjected to normoxia (N; 21% O2) or hypoxia (H; 10% O2) during a period of 8 weeks and received either a normal diet (Cu+) or a copper depleted diet (Cu-). Cardiac function was assessed by echocardiography and MRI analysis.

Results and Conclusion

Here, we characterized a mouse model of chronic hypoxia combined with a copper depleted diet and demonstrate that eight weeks of chronic hypoxia (10%) is sufficient to induce RV hypertrophy and subsequent RV failure. Addition of a low copper diet to hypoxia did not have any further deleterious effects on right ventricular remodeling.  相似文献   

6.
MicroRNAs (miRs) are small, noncoding RNAs that are emerging as crucial regulators of cardiac remodeling in left ventricular hypertrophy (LVH) and failure (LVF). However, there are no data on their role in right ventricular hypertrophy (RVH) and failure (RVF). This is a critical question given that the RV is uniquely at risk in patients with congenital right-sided obstructive lesions and in those with systemic RVs. We have developed a murine model of RVH and RVF using pulmonary artery constriction (PAC). miR microarray analysis of RV from PAC vs. control demonstrates altered miR expression with gene targets associated with cardiomyocyte survival and growth during hypertrophy (miR 199a-3p) and reactivation of the fetal gene program during heart failure (miR-208b). The transition from hypertrophy to heart failure is characterized by apoptosis and fibrosis (miRs-34, 21, 1). Most are similar to LVH/LVF. However, there are several key differences between RV and LV: four miRs (34a, 28, 148a, and 93) were upregulated in RVH/RVF that are downregulated or unchanged in LVH/LVF. Furthermore, there is a corresponding downregulation of their putative target genes involving cell survival, proliferation, metabolism, extracellular matrix turnover, and impaired proteosomal function. The current study demonstrates, for the first time, alterations in miRs during the process of RV remodeling and the gene regulatory pathways leading to RVH and RVF. Many of these alterations are similar to those in the afterload-stressed LV. miRs differentially regulated between the RV and LV may contribute to the RVs increased susceptibility to heart failure.  相似文献   

7.
We characterized hemodynamics and systolic and diastolic right ventricular (RV) function in relation to structural changes in the rat model of monocrotaline (MCT)-induced pulmonary hypertension. Rats were treated with MCT at 30 mg/kg body wt (MCT30, n = 15) and 80 mg/kg body wt (MCT80, n = 16) to induce compensated RV hypertrophy and RV failure, respectively. Saline-treated rats served as control (Cont, n = 13). After 4 wk, a pressure-conductance catheter was introduced into the RV to assess pressure-volume relations. Subsequently, rats were killed, hearts and lungs were rapidly dissected, and RV, left ventricle (LV), and interventricular septum (IVS) were weighed and analyzed histochemically. RV-to-(LV + IVS) weight ratio was 0.29 +/- 0.05 in Cont, 0.35 +/- 0.05 in MCT30, and 0.49 +/- 0.10 in MCT80 (P < 0.001 vs. Cont and MCT30) rats, confirming MCT-induced RV hypertrophy. RV ejection fraction was 49 +/- 6% in Cont, 40 +/- 12% in MCT30 (P < 0.05 vs. Cont), and 26 +/- 6% in MCT80 (P < 0.05 vs. Cont and MCT30) rats. In MCT30 rats, cardiac output was maintained, but RV volumes and filling pressures were significantly increased compared with Cont (all P < 0.05), indicating RV remodeling. In MCT80 rats, RV systolic pressure, volumes, and peak wall stress were further increased, and cardiac output was significantly decreased (all P < 0.05). However, RV end-systolic and end-diastolic stiffness were unchanged, consistent with the absence of interstitial fibrosis. MCT-induced pressure overload was associated with a dose-dependent development of RV hypertrophy. The most pronounced response to MCT was an overload-dependent increase of RV end-systolic and end-diastolic volumes, even under nonfailing conditions.  相似文献   

8.
Tetracycline is a powerful tool for controlling the expression of specific transgenes (TGs) in various tissues, including heart. In these mouse systems, TG expression is repressed/enhanced by adding doxycycline (Dox) to the diet. However, Dox has been shown to attenuate matrix metalloproteinase (MMP) expression and activity in various tissues, and MMP inactivation mitigates left ventricular (LV) remodeling in animal models of heart failure. Therefore, we examined the influence of Dox on LV remodeling and MMP expression in mice after transverse aortic constriction (TAC). One month after TAC, cardiac hypertrophy (99% vs. 67%) and the proportion of mice exhibiting congestive heart failure (CHF, 74% vs. 32%) were higher in the TAC + Dox group than in the TAC group (P < 0.05). These differences were no longer seen 2 mo after TAC, although LV was more severely dilated in TAC + Dox mice than in TAC mice (P < 0.05). One month after TAC, the increase in brain natriuretic peptide and beta-myosin heavy chain mRNA levels was 1.6 and 1.7 times higher, respectively, in TAC + Dox mice than in TAC mice (P < 0.01). MMP-2 gelatin zymographic activity increased 1.9- and 2.4-fold in TAC and TAC + Dox mice, respectively (P < 0.01 and P < 0.05 relative to respective sham-operated animals), but the difference between TAC + Dox and TAC mice did not reach statistical significance. Dox did not significantly alter TAC-associated perivascular and interstitial myocardial fibrosis. These findings demonstrate that Dox accelerates the onset of cardiac hypertrophy and the progression to CHF following TAC in mice. Accordingly, care should be taken when designing and interpreting studies based on TG mouse models of LV hypertrophy using the tetracycline-regulated (tet)-on/tet-off system.  相似文献   

9.
Although different experimental and clinical studies have revealed varying degrees of defects in beta-adrenoceptors (beta-ARs) during the development of heart failure, the mechanisms for differences in beta-AR signal transduction between the left (LV) and right ventricle (RV) are not understood. Because biochemical alterations in the myocardium depend on the stage of heart disease, this study was undertaken to assess the status of beta-ARs in the LV and RV at different stages of heart failure. Myocardial infarction was induced in rats by occluding the left coronary artery for 8 and 24 weeks. The beta-AR signal transduction was monitored by measuring beta1-AR density, the isoproterenol-induced positive inotropic effect, the increase in [Ca2+]i in cardiomyocytes, and the activation of adenylyl cyclase. The beta-AR signal transduction parameters in the 8- and 24-week failing LV were depressed, whereas the RV showed upregulation at 8 weeks and downregulation at 24 weeks of these mechanisms. These results suggest that beta-AR-mediated signal transduction in the LV and RV are differentially regulated and are dependent upon the stage of development of congestive heart failure due to myocardial infarction.  相似文献   

10.
11.
Right ventricular (RV) failure is a major cause of mortality in acute or chronic lung disease and left heart failure. The objective of this study was to demonstrate a percutaneous approach to study biventricular hemodynamics in murine models of primary and secondary RV pressure overload (RVPO) and further explore biventricular expression of two key proteins that regulate cardiac remodeling: calcineurin and transforming growth factor beta 1 (TGFβ1).

Methods

Adult, male mice underwent constriction of the pulmonary artery or thoracic aorta as models of primary and secondary RVPO, respectively. Conductance catheterization was performed followed by tissue analysis for changes in myocyte hypertrophy and fibrosis.

Results

Both primary and secondary RVPO decreased biventricular stroke work however RV instantaneous peak pressure (dP/dtmax) and end-systolic elastance (Ees) were preserved in both groups compared to controls. In contrast, left ventricular (LV) dP/dtmax and LV-Ees were unchanged by primary, but reduced in the secondary RVPO group. The ratio of RV:LV ventriculo-arterial coupling was increased in primary and reduced in secondary RVPO. Primary and secondary RVPO increased RV mass, while LV mass decreased in primary and increased in the secondary RVPO groups. RV fibrosis and hypertrophy were increased in both groups, while LV fibrosis and hypertrophy were increased in secondary RVPO only. RV calcineurin expression was increased in both groups, while LV expression increased in secondary RVPO only. Biventricular TGFβ1 expression was increased in both groups.

Conclusion

These data identify distinct effects of primary and secondary RVPO on biventricular structure, function, and expression of key remodeling pathways.  相似文献   

12.
Right ventricular (RV) dysfunction is a common cause of heart failure in patients with congenital heart defects and often leads to impaired functional capacity and premature death. Myocardial tissue regeneration techniques are being developed for the potential that viable myocardium may be regenerated to replace scar tissues in the heart or used as patch material in heart surgery. 3D computational RV/LV/Patch models with fluid-structure interactions (FSI) were constructed based on data from a healthy dog heart to obtain local fluid dynamics and structural stress/strain information and identify optimal conditions under which tissue regeneration techniques could achieve best outcome. RV/LV/Patch geometry and blood pressure data were obtained from a dog following established procedures. Four FSI models were used to quantify the influence of different patch materials (Dacron scaffold, treated pericardium) on local environment around the patch area, especially focusing on the thickness and stiffness of the patch. Our results indicated that changes in patch stiffness had little impact on the ejection fraction of the right ventricle because the total patch area was small. However, patch stiffness had huge impact on local RV maximum principal stress (Stress-P1) and strain (Strain-P1) around the patch area. Compared to the no-patch model, patch models had increased Stress-P1 and decreased Strain-P1 values in the patch area. Softer patches were associated with greater stress/strain variations. Thinner patch led to complex local flow environment which may have impact on myocytes seeding and RV remodeling. Our multi-physics RV/LV/Patch FSI model can serve as a useful tool to investigate cellular biology and tissue regeneration under localized flow and structural stress environment.  相似文献   

13.
Increased right atrial (RA) and ventricular (RV) chamber volumes are a late maladaptive response to chronic pulmonary hypertension. The purpose of the current investigation was to characterize the early compensatory changes that occur in the right heart during chronic RV pressure overload before the development of chamber dilation. Magnetic resonance imaging with radiofrequency tissue tagging was performed on dogs at baseline and after 10 wk of pulmonary artery banding to yield either mild RV pressure overload (36% rise in RV pressure; n = 5) or severe overload (250% rise in RV pressure; n = 4). The RV free wall was divided into three segments within a midventricular plane, and circumferential myocardial strain was calculated for each segment, the septum, and the left ventricle. Chamber volumes were calculated from stacked MRI images, and RA mechanics were characterized by calculating the RA reservoir, conduit, and pump contribution to RV filling. With mild RV overload, there were no changes in RV strain or RA function. With severe RV overload, RV circumferential strain diminished by 62% anterior (P = 0.04), 42% inferior (P = 0.03), and 50% in the septum (P = 0.02), with no change in the left ventricle (P = 0.12). RV filling became more dependent on RA conduit function, which increased from 30 ± 9 to 43 ± 13% (P = 0.01), than on RA reservoir function, which decreased from 47 ± 6 to 33 ± 4% (P = 0.04), with no change in RA pump function (P = 0.94). RA and RV volumes and RV ejection fraction were unchanged from baseline during either mild (P > 0.10) or severe RV pressure overload (P > 0.53). In response to severe RV pressure overload, RV myocardial strain is segmentally diminished and RV filling becomes more dependent on RA conduit rather than reservoir function. These compensatory mechanisms of the right heart occur early in chronic RV pressure overload before chamber dilation develops.  相似文献   

14.
Cardiovascular transgenic mouse models with an early phenotype or even premature death require noninvasive imaging methods that allow for accurate visualization of cardiac morphology and function. Thus the purpose of our study was to assess the feasibility of magnetic resonance imaging (MRI) to characterize cardiac function and mass in newborn, juvenile, and adult mice. Forty-five C57bl/6 mice from seven age groups (3 days to 4 mo after birth) were studied by MRI under isoflurane anesthesia. Electrocardiogram-gated cine MRI was performed with an in-plane resolution of (78-117 microm)(2). Temporal resolution per cine frame was 8.6 ms. MRI revealed cardiac anatomy in mice from all age groups with high temporal and spatial resolution. There was close correlation between MRI- and autopsy-determined left ventricular (LV) mass (r = 0.95, SE of estimate = 9.5 mg). The increase of LV mass (range 9.6-101.3 mg), cardiac output (range 1.1-14.3 ml/min), and stroke volume (range 3. 2-40.2 microl) with age could be quantified by MRI measurements. Ejection fraction and cardiac index did not change with aging. However, LV mass index decreased with increasing age (P < 0.01). High-resolution MRI allows for accurate in vivo assessment of cardiac function in neonatal, juvenile, and adult mice. This method should be useful when applied in transgenic mouse models.  相似文献   

15.
Pulmonary hypertension frequently complicates interstitial lung disease, where it is associated with a high mortality. Patients with this dual diagnosis often fare worse than those with pulmonary arterial hypertension (PAH) alone and respond poorly to standard PAH therapy, often dying of right ventricular (RV) failure. We hypothesize that nitric oxide synthase (NOS) uncoupling is important in the pathogenesis of interstitial lung disease-associated pulmonary hypertension, and this process can be abrogated by phosphodiesterase type 5 (PDE5) inhibition to improve pulmonary vascular remodeling and right ventricular function. Intratracheal bleomycin (4 U/kg) or saline control was administered to C57/BL6 mice after anesthesia. After recovery, animals were fed a diet of sildenafil (100 mg.kg(-1).day(-1)) or vehicle for 2 wk when they underwent hemodynamic measurements, and tissues were harvested. Survival was reduced in animals treated with bleomycin compared with controls and was improved with sildenafil (100.0 vs. 73.7 vs. 84.2%, P < 0.05). RV/LV+S ratio was higher in bleomycin-alone mice with improvement in ratio when sildenafil was administered (33.00 +/- 0.01% vs. 20.98 +/- 0.01% P < 0.05). Histology showed less pulmonary vascular and RV fibrosis in the group cotreated with sildenafil. Bleomycin was associated with a marked increase in superoxide generation by DHE histological staining and luminol activity in both heart and lung. Treatment with sildenafil resulted in a concomitant reduction in superoxide levels in both heart and lung. These data demonstrate that PDE5 inhibition ameliorates RV hypertrophy and pulmonary fibrosis associated with intratracheal bleomycin in a manner that is associated with improved NOS coupling and a reduction in reactive oxygen species signaling.  相似文献   

16.
Right ventricular (RV) weight increases dependent on time after myocardial infarction (MI) and on MI size. The sequential changes in RV volume and hemodynamics and their relations to left ventricular (LV) remodeling after MI are unknown. We therefore examined the time course of RV remodeling in rats with LV MI. MI was produced by left coronary artery ligation. Four, eight, and sixteen weeks later, LV and RV hemodynamic measurements were performed and pressure-volume curves were obtained. For serial measurement of RV volumes and performance, cine-MRI was performed 2 and 8 wk after MI. The ratios of beta-myosin heavy chain (MHC) to alpha-MHC and skeletal to cardiac alpha-actin were determined for the RV and LV after large MI or sham operation. RV weight increased in rats with MI, as did RV volume. RV pressure-volume curves were shifted toward larger volumes 16 wk after large MI. RV systolic pressure increased gradually over time; however, the gain in RV weight was always in excess of RV systolic pressure. The ratios of skeletal to cardiac alpha-actin and beta-MHC to alpha-MHC were increased after MI in both ventricles in a similar fashion. Because RV wall stress was not increased after infarction, mechanical factors may not conclusively explain hypertrophy, which maintained balanced loading conditions for the RV even after large LV infarction.  相似文献   

17.
The total heart volume variation (THVV) during systole has been proposed to be caused by radial function of the ventricles, but definitive data for both ventricles have not been presented. Furthermore, the right ventricle (RV) has been suggested to have a greater longitudinal pumping component than the left ventricle (LV). Therefore, we aimed to compare the stroke volume (SV) generated by radial function to the volume variation of the left, right, and total heart. To do this, we also needed to develop a new method for measuring the contribution of the longitudinal atrioventricular plane displacement (AVPD) to the RVSV (RVSV(AVPD)). For our study, 11 volunteers underwent cine MRI in the short- and long-axis planes and MRI flow measurement in all vessels leading to and from the heart. The left, right, and total heart showed correlations between volume variation from flow measurements and radial function calculated as SV minus the longitudinal function (r = 0.81, P < 0.01; r = 0.80, P < 0.01; and r = 0.92, P < 0.001, respectively). Compared with the LV, the RV had a greater AVPD (23.4 +/- 0.8 vs. 16.4 +/- 0.5 mm), center of volume movement (13.0 +/- 0.7 vs. 7.8 +/- 0.4 mm), and, RVSV(AVPD) (82 +/- 2% vs. 60 +/- 2%) (P < 0.001 for all). We found that THVV is predominantly caused by radial function of the ventricles. Longitudinal AVPD accounts for approximately 80% of the RVSV, compared with approximately 60% for the LVSV. This difference explains the larger portion of THVV found on the left side of the heart.  相似文献   

18.
This study was conducted to determine the effects of chronic combined pulmonary stenosis and pulmonary insufficiency (PSPI) on right (RV) and left ventricular (LV) function in young, growing swine. Six pigs with combined PSPI were studied, and data were compared with previously published data of animals with isolated pulmonary insufficiency and controls. Indexes of systolic function (stroke volume, ejection fraction, and cardiac functional reserve), myocardial contractility (slope of the end-systolic pressure-volume and change in pressure over time-end-diastolic volume relationship), and diastolic compliance were assessed within 2 days of intervention and 3 mo later. Magnetic resonance imaging was used to quantify pulmonary insufficiency and ventricular volumes. The conductance catheter was used to obtain indexes of the cardiac functional reserve, diastolic compliance, and myocardial contractility from pressure-volume relations acquired at rest and under dobutamine infusion. In the PSPI group, the pulmonary regurgitant fraction was 34.3 +/- 5.8%, the pressure gradient across the site of pulmonary stenosis was 20.9 +/- 20 mmHg, and the average RV peak systolic pressure was 70% systemic at 12 wk follow-up. Biventricular resting cardiac outputs and cardiac functional reserves were significantly limited (P < 0.05), LV diastolic compliance significantly decreased (P < 0.05), but RV myocardial contractility significantly enhanced (P < 0.05) compared with control animals at 3-mo follow-up. In the young, developing heart, chronic combined PSPI impairs biventricular systolic pump function and diastolic compliance but preserves RV myocardial contractility.  相似文献   

19.
The right ventricle (RV) of the heart is responsible for pumping blood to the lungs. Its kinematics are not as well understood as that of the left ventricle (LV) due to its thin wall and asymmetric geometry. In this study, the combination of tagged MRI and three-dimensional (3-D) image-processing techniques was used to reconstruct 3-D RV-LV motion and deformation. The reconstructed models were used to quantify the 3-D global and local deformation of the ventricles in a set of normal subjects. When compared with the LV, the RV exhibited a similar twisting pattern, a more longitudinal strain pattern, and a greater amount of displacement.  相似文献   

20.
Induction of heat shock protein (Hsp) 72 in the right ventricular muscle of the rat with heart failure following acute myocardial infarction (AMI) was examined. AMI was induced by the left coronary artery ligation (CAL). The animals at the 8th, but not 2nd, week after CAL revealed a decrease in cardiac output index (COI), suggesting that heart failure had developed by 8 weeks after CAL. Increases in the right ventricular developed pressure and the ratios of right ventricle/body weight and lung/body weight at the 2nd and 8th weeks showed the development of the right ventricular hypertrophy. After measurement of hemodynamic parameters, the hearts isolated from animals at the 2nd and 8th weeks after CAL (2w- and 8w-CAL hearts, respectively) were perfused and subjected to heat shock (at 42 degrees C, for 15 min) followed by 6-h perfusion. At the end of perfusion, Hsp72 content in the left ventricle without infarct area (viable LV) and the right ventricle (RV) was determined by the Western immunoblotting method. The production of myocardial Hsp72 in the viable LV and RV of the 2w-CAL heart increased after an exposure to heat shock. In contrast, induction of Hsp72 in the viable LV and RV of the 8w-CAL heart was blunted. The results suggest that the development of heart failure following AMI may result in a decrease in the ability for Hsp72 induction not only in the viable LV but also in the RV, leading to contractile dysfunction of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号