首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 359 毫秒
1.
磁选育浸矿菌种新方法的研究--磁泳分离菌种   总被引:3,自引:3,他引:0  
世界无处不有磁,磁场对整个世界产生着重大的影响。本文通过大量镜检工作,观察到从酸性矿坑水中初步分离培养得到的部分细菌对外加磁场均有微弱的趋磁性。基于菌种的这种特性,设计了磁泳装置用不同的磁场梯度分离细菌,磁泳分离的方法可以初步分离出近磁、远磁菌,这两个菌群的生理特性有着很大的差异,主要体现在其对亚铁氧化和对金属离子的浸出上,远磁菌亚铁氧化活性比近磁菌高将近50%,远磁菌对铜离子的浸出效果也比近磁菌好。近磁菌在强磁性矿物培养基中生长情况较好,而远磁菌在弱磁性矿物培养基中生长情况较好。而且,在近磁菌的纯培养菌体中分离到磁性颗粒。实验结果证明,采用磁泳用于分离体内含有磁性颗粒的细菌是可行并且有效的,这一分离技术和工艺的结合也将大大促进我国生物冶金的步伐。  相似文献   

2.
磁选育浸矿菌种新方法的研究——磁泳分离菌种   总被引:4,自引:1,他引:3  
世界无处不有磁,磁场对整个世界产生着重大的影响。本文通过大量镜检工作,观察到从酸性矿坑水中初步分离培养得到的部分细菌对外加磁场均有微弱的趋磁性。基于菌种的这种特性,设计了磁泳装置用不同的磁场梯度分离细菌,磁泳分离的方法可以初步分离出近磁、远磁茼,这两个菌群的生理特性有着很大的差异,主要体现在其对亚铁氧化和对金属高于的浸出上,远磁菌亚铁氧化活性比近磁菌高将近50%,远磁菌对铜离子的浸出效果也比近磁茼好。近磁菌在强磁性矿物培养基中生长情况较好,而远磁茼在弱磁性矿物培养基中生长情况较好。而且,在近磁茼的纯培养茼体中分离到磁性颗粒。实验结果证明。采用磁泳用于分离体内舍有磁性颗粒的细菌是可行并且有效的,这一分离技术和工艺的结合也将大大促进我国生物冶金的步伐。  相似文献   

3.
固体平板磁泳分离细菌新方法的研究   总被引:3,自引:1,他引:2  
氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)能够在胞内形成电子致密的磁性颗粒,它的这种特性使利用氧化亚铁硫杆菌合成生物纳米磁性材料成为了可能。本课题组为了筛选出合成磁性颗粒能力强的菌株,对原有的液体磁泳进行了改进,采用了新的固体平板磁泳方法来筛选纯化目的菌株。经过磁泳分离后,细菌中含磁性颗粒的细胞比例由原始菌群的30%上升到90%,胞内含有的磁颗粒数目也由1~2颗增加至2~5颗,筛选得到的细菌在人工磁场下会进行趋磁运动。实验结果表明,氧化亚铁硫杆菌具有较弱的趋磁性,在人工磁场下会进行趋磁运动,但仅在地磁场作用下不能定向运动,利用固体平板磁泳筛选纯化含有磁性颗粒的氧化亚铁硫杆菌的方法是切实可行的,磁泳分离技术的进一步完善和改进为传统的微生物菌种分离提供了新的途径,为研究纯氧化亚铁硫杆菌菌株胞内磁性颗粒的形成条件及机理提供了前提条件,也为今后从浸矿细菌中分离筛选更多的含有磁性颗粒的菌株打下基础。  相似文献   

4.
磁性细菌胞内可以产生磁性颗粒,因此具有趋磁性,基于这种特性,利用磁分离的原理,本研究开发了一种磁性细菌分离仪,提供了一种分离磁性细菌的新方法。以氧化亚铁硫杆菌为例,使用磁性细菌分离仪进行分离,可以得到强磁菌和弱磁菌。利用透射电镜观察,强磁菌胞内磁性颗粒明显多于弱磁菌;半固体平板磁泳实验也表明强磁菌趋磁性明显强于弱磁菌。各项实验结果表明磁性细菌分离仪可以有效地分离磁性细菌,这是一种分离磁性细菌的新方法,将促进磁性细菌分离培养的研究。  相似文献   

5.
Acidthiobacillus ferrooxidans中磁小体的提取   总被引:1,自引:0,他引:1  
At.f和趋磁细菌在生理特性和生长环境有一定的相似性,而且镜检发现At.f具有趋磁性,所以本文采用了趋磁细菌中磁小体的提取方法尝试提取At.f中的磁小体,用超声波破碎At.f后,以磁铁吸取其体内的磁性颗粒,经过检测,发现其体内确实存在含铁元素的磁性颗粒。提取粗样品经过电镜分析,证实其体内存在着少量由脂质包裹的磁小体。磁小体悬浮液经过蔗糖密度梯度离心纯化后,对其作透射电镜,可以清晰的看到磁小体。实验结果表明,At.f体内存在少量的磁小体,正是由于磁小体的存在,才使得At.f在外加磁场作用下发生磁生物效应。这是首次发现从酸性矿坑水分离的At.f具有趋磁性,并从中提取到了磁小体,可以利用At.f的趋磁性将其按照不同磁性进行分离,从而获得活性高的、对不同磁性矿物有特异性的高效浸矿菌种。  相似文献   

6.
近年来,趋磁细菌及其生物自身合成的磁小体由于良好的生物安全性逐渐被人们所认识,并被用于生物工程和医学应用研究。与人工化学合成磁性纳米颗粒相比,从趋磁细菌中提取的磁小体具有生物膜包被、生物相容性高、粒径均一及磁性高等优势。趋磁细菌因磁小体在其胞内呈链状排列,具有沿磁场方向泳动的能力,也被应用于各种应用研究。因此,综述了趋磁细菌及磁小体特性,并就最近的研究进展重点综述趋磁细菌和磁小体在生物工程及医学应用等领域的最新研究进展。  相似文献   

7.
何世颖  顾宁 《生物磁学》2006,6(1):19-21
趋磁性细菌是一种由于体内含有对磁场具有敏感性的磁小体,而能够沿着磁力线运动的特殊细菌,本文综述了趋磁细菌的分布、分类、特性、磁小体研究以及趋磁细菌在生物导航方面的研究进展.  相似文献   

8.
趋磁细菌及其应用于生物导航的研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
趋磁性细菌是一种由于体内含有对磁场具有敏感性的磁小体,而能够沿着磁力线运动的特殊细菌,本文综述了趋磁细菌的分布、分类、特性、磁小体研究以及趋磁细菌在生物导航方面的研究进展。  相似文献   

9.
趋磁性细菌的研究与应用现状   总被引:1,自引:0,他引:1  
趋磁性细菌是一类能够沿着磁力线运动的特殊细菌 ,其细胞内含有对磁场具有敏感性的磁小体 ,它起了导向的作用。国内外已对其分离培养、菌体特性、基因遗传等方面进行了大量研究 ,并探讨了其在传感技术、临床医药、废水处理等多方面的应用 ,大大推动了人类在生物磁学领域的研究进展。  相似文献   

10.
趋磁性细菌的研究与应用现状   总被引:15,自引:5,他引:10  
趋磁性细菌是一类能够沿着磁力线运动的特殊细菌,其细胞内含有对磁场具有敏感性的磁小体,它起了导向的作用。国内外已对其分离培养、菌体特性、基因遗传等方面进行了大量研究,并探讨了其在传感技术、临床医药、废水处理等多方面的应用,大大推动了人类在生物磁学领域的研究进展。  相似文献   

11.
氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)的生物控制矿化作用可以使其在胞内形成黑色电子致密颗粒—磁小体。本研究利用生物信息学方法对氧化亚铁硫杆菌标准菌株ATCC 23270的全基因组进行分析, 并通过Real-time PCR技术研究氧化亚铁硫杆菌中与磁小体形成相关的mpsA、magA、thy和mamB四个基因在不同亚铁浓度刺激下的差异表达, 结果发现它们在转录层面的表达量受亚铁浓度的影响, 当亚铁浓度达到150~200 mmol/L范围内达到最高表达,这对进一步深入研究氧化亚铁硫杆菌中磁小体的形成机理有积极的意义。  相似文献   

12.
氧化亚铁硫杆菌是一个具有很强生物浸矿能力的细菌,本文对3株分离得到的氧化亚铁硫杆菌及一株来自菌种中心(Acidithiobacillus ferrooxidans A.f)的铁氧化活性及其这些菌株对低品位黄铜矿浸出速率进行了研究。结果显示,在所有的4株A.f菌中,菌株CMS—F1和F10—ATCCC23270的铁氧化活性较高,其对黄铜矿生物浸出速率也高。进一步分析亚铁氧化活性对生物浸矿效率的影响时发现,在A.f菌中,氧化活性高的菌株,其对低品位黄铜矿的生物浸出效果也高。  相似文献   

13.
Magnetotactic bacteria have the unique capacity of synthesizing intracellular single-domain magnetic particles called magnetosomes. The magnetosomes are usually organized in a chain that allows the bacteria to align and swim along geomagnetic field lines, a behavior called magnetotaxis. Two mechanisms of magnetotaxis have been described. Axial magnetotactic cells swim in both directions along magnetic field lines. In contrast, polar magnetotactic cells swim either parallel to the geomagnetic field lines toward the North Pole (north seeking) or antiparallel toward the South Pole (south seeking). In this study, we used a magnetospectrophotometry (MSP) assay to characterize both the axial magnetotaxis of “Magnetospirillum magneticum” strain AMB-1 and the polar magnetotaxis of magneto-ovoid strain MO-1. Two pairs of Helmholtz coils were mounted onto the cuvette holder of a common laboratory spectrophotometer to generate two mutually perpendicular homogeneous magnetic fields parallel or perpendicular to the light beam. The application of magnetic fields allowed measurements of the change in light scattering resulting from cell alignment in a magnetic field or in absorbance due to bacteria swimming across the light beam. Our results showed that MSP is a powerful tool for the determination of bacterial magnetism and the analysis of alignment and swimming of magnetotactic bacteria in magnetic fields. Moreover, this assay allowed us to characterize south-seeking derivatives and non-magnetosome-bearing strains obtained from north-seeking MO-1 cultures. Our results suggest that oxygen is a determinant factor that controls magnetotactic behavior.Magnetotactic bacteria are morphologically, metabolically, and phylogenetically diverse prokaryotes (1, 11). They synthesize unique intracellular organelles, the magnetosomes, which are single-domain magnetic crystals of the mineral magnetite or greigite enveloped by membranes. Magnetosomes are usually organized in a chain(s) within the cell and cause the cell to align along geomagnetic field lines while it swims. The highest numbers of magnetotactic bacteria are generally found at, or just below, the oxic-anoxic transition zone (OATZ) or redoxocline in aquatic habitats (1). Early studies showed that Northern Hemisphere magnetotactic bacteria swim preferentially northward in parallel with the geomagnetic field lines (north seeking [NS]) (2) and that those from the Southern Hemisphere swim preferentially antiparallel to the geomagnetic field lines to the magnetic South Pole (south seeking [SS]) (4). The geomagnetic field is inclined downward from horizontal in the Northern Hemisphere and upward in the Southern Hemisphere, with the inclination magnitude increasing from the equator to the poles. Therefore, magnetotaxis might guide cells in each hemisphere downward to less-oxygenated regions of aquatic habitats, where they would presumably stop swimming until conditions change (1). A recent study reported the coexistence of both NS and SS magnetotactic bacteria in the Northern Hemisphere, which conflicts with the prevalent model of the adaptive value of magnetotaxis (14).Under laboratory conditions, magnetotactic bacteria form microaerophilic bands of cells in oxygen-gradient medium. In fact, magnetotaxis and aerotaxis work together in these bacteria, and the behavior observed has been referred to as “magnetoaerotaxis.” Two different magnetoaerotactic mechanisms, termed polar and axial, are found in different bacterial species (6). The magnetotactic bacteria, principally the magnetotactic cocci, that swim persistently in one direction along the magnetic field (NS or SS) are polar magnetoaerotactic. Magnetotactic bacteria, especially the freshwater spirilla, that swim in either direction along the magnetic field lines with frequent, spontaneous reversals of swimming direction without turning around are axial magnetoaerotactic. For polar magnetotactic bacteria, the magnetic field provides an axis and a direction for motility, whereas for axial magnetotactic bacteria, the magnetic field provides only an axis of motility. The two mechanisms can best be seen in flattened capillary tubes containing suspensions of cells in reduced medium in a magnetic field oriented parallel to the capillary. An oxygen gradient forms along the tube, beginning at the ends of the capillary, with one oriented parallel and the other antiparallel to the magnetic field (1). Band formation by axial magnetoaerotactic cells, such as Magnetospirillum magnetotacticum cells, occurs at both ends of the capillary. Rotation of the magnetic field by 180° after the formation of the bands causes the cells in both bands to rotate 180°, but the bands remain intact. In contrast, band formation by polar magnetoaerotactic cells, such as the marine cocci, occurs only at the end of the capillary for which the magnetic field and the oxygen concentration gradient are oriented opposite to each other. Rotation of the magnetic field by 180° after the formation of the band causes the cells in the band to rotate 180° and swim away, resulting in the dispersal of the band (1). In this study, we developed a magnetospectrophotometry (MSP) assay that provides an alternative method for the quantitative and versatile characterization of the two magnetotactic mechanisms. Using this assay, we demonstrated the effect of artificial magnetic fields on the generation of homogeneous NS or SS magnetotactic bacterial populations.  相似文献   

14.
Magnetotactic bacteria are microorganisms that orient and migrate along magnetic field lines. The classical model of polar magnetotaxis predicts that the field-parallel migration velocity of magnetotactic bacteria increases monotonically with the strength of an applied magnetic field. We here test this model experimentally on magnetotactic coccoid bacteria that swim along helical trajectories. It turns out that the contribution of the field-parallel migration velocity decreases with increasing field strength from 0.1 to 1.5 mT. This unexpected observation can be explained and reproduced in a mathematical model under the assumption that the magnetosome chain is inclined with respect to the flagellar propulsion axis. The magnetic disadvantage, however, becomes apparent only in stronger than geomagnetic fields, which suggests that magnetotaxis is optimized under geomagnetic field conditions. It is therefore not beneficial for these bacteria to increase their intracellular magnetic dipole moment beyond the value needed to overcome Brownian motion in geomagnetic field conditions.  相似文献   

15.
[目的]获得可用于浸矿的菌株,对其培养条件进行优化.[方法]从成都热电厂采集土样中分离得到一株菌株,分析该菌株的形态学特征、培养特征及16S rDNA序列,确定菌株的分类地位.利用Design-Expert软件中的Box-Behnken法设计实验,通过响应面分析对初始pH值、温度、接种量和装液量4个因素进行优化,确定其最适培养条件.[结果]获得菌株Z1,该菌为革兰氏阴性菌,短杆状,经16S rDNA鉴定为嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称At.f).确定菌株最适培养条件为:pH 1.8、温度30℃、接种量14%、装液量250 mL摇瓶装60 mL培养液.在此条件下,Z1的亚铁氧化率可达99.7%.[结论]Z1菌株适合于生物浸矿的应用.  相似文献   

16.
三种浸矿细菌协同作用的回顾及展望   总被引:1,自引:0,他引:1  
朱宏飞  李辉  刘东奇 《微生物学通报》2016,43(12):2730-2737
生物浸矿技术相比于传统的矿物加工技术具有成本低、易操作和污染小的特点,可以用来处理金精矿、低品位金矿、难处理金矿或者是高硫煤炭。为了更好地利用多种浸矿细菌的协同作用,本文综合阐述了生物浸矿的协同作用优势和存在的一些问题,对今后协同浸矿的发展做了预测。本文首先分析了3种主要浸矿细菌,包括氧化亚铁硫杆菌、氧化亚铁钩端螺旋菌和氧化硫硫杆菌等各自的生物学特性,接着重点分析了国内外近些年来浸矿细菌的协同作用研究进展情况和作用机制,最后展望了未来二十年内浸矿技术研究的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号