首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiated in vitro from several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.  相似文献   

2.
In the adult mammalian brain, the ability to minimize secondary cell death after injury, and to repair nervous tissue through generation of new neurons, is severely compromised. By contrast, certain taxa of non-mammalian vertebrates possess an enormous potential for regeneration. Examination of one of these taxa, teleost fish, has revealed a close link between this phenomenon and constitutive adult neurogenesis. Key factors mediating successful regeneration appear to be: elimination of damaged cells by apoptosis, instead of necrosis; activation of mechanisms that prevent the occurrence of secondary cell death; increased production of new neurons that replace neurons lost to injury; and activation of developmental mechanisms that mediate directed migration of the new cells to the site of injury, the differentiation of the young cells, and their integration into the existing neural network. Comparative analysis has suggested that constitutive adult neurogenesis is a primitive vertebrate trait, the main function of which has been to ensure a numerical matching between muscle fibers/sensory receptor cells and central elements involved in motor control/processing of sensory information associated with these peripheral elements. It is hypothesized that, when in the course of the evolution of mammals a major shift in the growth pattern from hyperplasia to hypertrophy took place, the number of neurogenic brain regions and new neurons markedly decreased. As a consequence, the potential for neuronal regeneration was greatly reduced, but remnants of neurogenic areas have persisted in the adult mammalian brain in form of quiescent stem cells. It is likely that the study of regeneration-competent taxa will provide important information on how to activate intrinsic mechanisms for successful brain regeneration in humans.  相似文献   

3.
Fish are distinctive in their enormous potential to continuously produce new neurons in the adult brain, whereas in mammals adult neurogenesis is restricted to the olfactory bulb and the hippocampus. In fish new neurons are not only generated in structures homologous to those two regions, but also in dozens of other brain areas. In some regions of the fish brain, such as the optic tectum, the new cells remain near the proliferation zones in the course of their further development. In others, as in most subdivisions of the cerebellum, they migrate, often guided by radial glial fibers, to specific target areas. Approximately 50% of the young cells undergo apoptotic cell death, whereas the others survive for the rest of the fish’s life. A large number of the surviving cells differentiate into neurons. Two key factors enabling highly efficient brain repair in fish after injuries involve the elimination of damaged cells by apoptosis (instead of necrosis, the dominant type of cell death in mammals) and the replacement of cells lost to injury by newly generated ones. Proteome analysis has suggested well over 100 proteins, including two dozen identified ones, to be involved in the individual steps of this phenomenon of neuronal regeneration.  相似文献   

4.
Signaling in adult neurogenesis: from stem cell niche to neuronal networks   总被引:1,自引:0,他引:1  
The mechanisms that determine why neurogenesis is restricted to few regions of the adult brain in mammals, in contrast to its more widespread nature in other vertebrates such as zebrafish, remain to be fully understood. The local environment must provide key signals that instruct stem cell and neurogenic fate, because non-neurogenic progenitors can be instructed towards neurogenesis in this environment. Here, we discuss the recent progress in understanding key factors in the local stem cell niche of the adult mammalian brain, including surprising sources of new signals such as endothelial cells, complement factors and microglia. Moreover, new insights have been gained into how neuronal diversity is instructed in adult neurogenesis, prompting a new view of stem and progenitor cell heterogeneity in the adult mammalian brain.  相似文献   

5.
Presumably, the 'hard-wired' neuronal circuitry of the adult brain dissuades addition of new neurons, which could potentially disrupt existing circuits. This is borne out by the fact that, in general, new neurons are not produced in the mature brain. However, recent studies have established that the adult brain does maintain discrete regions of neurogenesis from which new neurons migrate and become incorporated into the functional circuitry of the brain. These neurogenic zones appear to be vestiges of the original developmental program that initiates brain formation. The largest of these germinal regions in the adult brain is the subventricular zone (SVZ), which lines the lateral walls of the lateral ventricles. Neural stem cells produce neuroblasts that migrate from the SVZ along a discrete pathway, the rostral migratory stream, into the olfactory bulb where they form mature neurons involved in the sense of smell. The subgranular layer (SGL) of the hippocampal dentate gyrus is another neurogenic region; new SGL neurons migrate only a short distance and differentiate into hippocampal granule cells. Here, we discuss the surprising finding of neural stem cells in the adult brain and the molecular mechanisms that regulate adult neurogenesis.  相似文献   

6.
In contrast to mammals, salamanders and teleost fishes can efficiently repair the adult brain. It has been hypothesised that constitutively active neurogenic niches are a prerequisite for extensive neuronal regeneration capacity. Here, we show that the highly regenerative salamander, the red spotted newt, displays an unexpectedly similar distribution of active germinal niches with mammals under normal physiological conditions. Proliferation zones in the adult newt brain are restricted to the forebrain, whereas all other regions are essentially quiescent. However, ablation of midbrain dopamine neurons in newts induced ependymoglia cells in the normally quiescent midbrain to proliferate and to undertake full dopamine neuron regeneration. Using oligonucleotide microarrays, we have catalogued a set of differentially expressed genes in these activated ependymoglia cells. This strategy identified hedgehog signalling as a key component of adult dopamine neuron regeneration. These data show that brain regeneration can occur by activation of neurogenesis in quiescent brain regions.  相似文献   

7.
Neural stem cells continually generate new neurons in very limited regions of the adult mammalian central nervous system. In the neurogenic regions there are unique and highly specialized microenvironments (niches) that tightly regulate the neuronal development of adult neural stem cells. Emerging evidence suggests that glia, particularly astrocytes, have key roles in controlling multiple steps of adult neurogenesis within the niches, from proliferation and fate specification of neural progenitors to migration and integration of the neuronal progeny into pre-existing neuronal circuits in the adult brain. Identification of specific niche signals that regulate these sequential steps during adult neurogenesis might lead to strategies to induce functional neurogenesis in other brain regions after injury or degenerative neurological diseases.  相似文献   

8.
Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ) reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.  相似文献   

9.
At birth or after hatching from the egg, vertebrate brains still contain neural stem cells which reside in specialized niches. In some cases, these stem cells are deployed for further postnatal development of parts of the brain until the final structure is reached. In other cases, postnatal neurogenesis continues as constitutive neurogenesis into adulthood leading to a net increase of the number of neurons with age. Yet, in other cases, stem cells fuel neuronal turnover. An example is protracted development of the cerebellar granular layer in mammals and birds, where neurogenesis continues for a few weeks postnatally until the granular layer has reached its definitive size and stem cells are used up. Cerebellar growth also provides an example of continued neurogenesis during adulthood in teleosts. Again, it is the granular layer that grows as neurogenesis continues and no definite adult cerebellar size is reached. Neuronal turnover is most clearly seen in the telencephalon of male canaries, where projection neurons are replaced in nucleus high vocal centre each year before the start of a new mating season—circuitry reconstruction to achieve changes of the song repertoire in these birds? In this review, we describe these and other examples of adult neurogenesis in different vertebrate taxa. We also compare the structure of the stem cell niches to find common themes in their organization despite different functions adult neurogenesis serves in different species. Finally, we report on regeneration of the zebrafish telencephalon after injury to highlight similarities and differences of constitutive neurogenesis and neuronal regeneration.  相似文献   

10.
Adult neurogenesis, the generation of new neurons in the adult central nervous system, is a reported feature of all examined vertebrate species. However, a dramatic decline in the rates of cell proliferation and neuronal differentiation occurs in mammals, typically starting near the onset of sexual maturation. In the present study, we examined possible age‐related changes associated with adult neurogenesis in the brain of brown ghost knifefish (Apteronotus leptorhynchus), a teleost fish distinguished by its enormous neurogenic potential. Contrary to the well‐established alterations in the mammalian brain during aging, in the brain of this teleostean species we could not find evidence for any significant age‐related decline in the absolute levels of stem/progenitor cell proliferation, neuronal and glial differentiation, or long‐term survival of newly generated cells. Moreover, there was no indication that the amount of glial fibrillary acidic protein or the number of apoptotic cells in the brain was altered significantly over the course of adult life. We hypothesize that this first demonstration of negligible cellular senescence in the vertebrate brain is related to the continued growth of this species and to the lack of reproductive senescence during adulthood. The establishment of the adult brain of this species as a novel model of negligible senescence provides new opportunities for the advancement of our understanding of the biology of aging and the fundamental mechanisms that underlie senescence in the brain. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 514–530, 2014  相似文献   

11.
12.
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.  相似文献   

13.
14.
For the long run: maintaining germinal niches in the adult brain   总被引:43,自引:0,他引:43  
Alvarez-Buylla A  Lim DA 《Neuron》2004,41(5):683-686
The adult mammalian brain retains neural stem cells that continually generate new neurons within two restricted regions: the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus subgranular zone (SGZ) of the hippocampus. Though these cellular populations are spatially isolated and subserve different brain systems, common themes begin to define adult neurogenic niches: (1) astrocytes serve as both stem cell and niche cell, (2) a basal lamina and concomitant vasculogenesis may be essential components of the niche, and (3) "embryonic" molecular morphogens and signals persist in these niches and play critical roles for adult neurogenesis. The adult neurogenic niches can be viewed as "displaced" neuroepithelium, pockets of cells and local signals that preserve enough embryonic character to maintain neurogenesis for life.  相似文献   

15.
16.
The social environment is known to modulate adult neurogenesis. Studies in mammals and birds have shown a strong correlation between social isolation and decreases in neurogenesis, whereas time spent in an enriched environment has been shown to restore these deficits and enhance neurogenesis. These data suggest that there exists a common adaptive response among neurogenic niches to each extreme of the social environment. We sought to further test this hypothesis in zebrafish, a social species with distinct neurogenic niches within primary sensory structures and telencephalic nuclei of the brain. By examining stages of adult neurogenesis, including the proliferating stem/progenitor population, their surviving cohort, and the resulting newly differentiated neuronal population, we show that niches residing in sensory structures are most sensitive to changes in the social context, and that social isolation or novelty are both capable of decreasing the number of proliferating cells while increasing the number of newborn neurons within a single niche. Contrary to observations in rodents, we demonstrate that social novelty, a form of enrichment, does not consistently rescue deficits in cell proliferation following social isolation, and that cortisol levels do not negatively regulate changes in adult neurogenesis, but are correlated with the social context. We propose that enhancement or suppression of adult neurogenesis in the zebrafish brain under different social contexts depends largely on the type of niche (sensory or telencephalic), experience from the preceding social environment, and occurs independently of changes in cortisol levels. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1053–1077, 2014  相似文献   

17.
The zebrafish brain can continue to produce new neurons in widespread neurogenic brain regions throughout life. In contrast, neurogenesis in the adult mammalian brain is restricted to the subventricular zone (SVZ) and dentate gyrus (DG). In neurogenic regions in the adult brain, radial glial cells (RGCs) are considered to function as neural stem cells (NSCs). We generated a Tg(gfap:Gal4FF) transgenic zebrafish line, which enabled us to express specific genes in RGCs. To study the function of RGCs in neurogenesis in the adult zebrafish brain, we also generated a Tg(gfap: Gal4FF; UAS:nfsB‐mcherry) transgenic zebrafish line, which allowed us to induce cell death exclusively within RGCs upon addition of metronidazole (Mtz) to the media. RGCs expressing nitroreductase were specifically ablated by the Mtz treatment, decreasing the number of proliferative RGCs. Using the Tg(gfap:Gal4FF; UAS:nfsB‐mcherry) transgenic zebrafish line, we found that RGCs were specifically ablated in the adult zebrafish telencephalon. The Tg(gfap:Gal4FF) line could be useful to study the function of RGCs. genesis 53:431–439, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Adult neurogenesis has been described in dozens of brain regions in teleost fish, with the largest number of new neurons being generated in the cerebellum. Here, we characterized the cerebellar neural stem/progenitor cells (NSPCs) in the brown ghost knifefish (Apteronotus leptorhynchus), an established model system of adult neurogenesis. The majority of the new cerebellar cells arise from neurogenic niches located medially, at the interface of the dorsal/ventral molecular layers and the granular layer. NSPCs within these niches give rise to transit‐amplifying progenitors which populate the molecular layer, where they continue to proliferate during their migration toward target areas in the granular layer. At any given time, the majority of proliferating cells are located in the molecular layer. Immunohistochemical staining revealed that the stem cell markers Sox2, Meis1/2/3, Islet1, and, to a lesser extent, Pax6, are widely expressed in all regions of the adult cerebellum. A large subpopulation of these NSPCs coexpress S100, GFAP, and/or vimentin, indicating astrocytic identity. This is further supported by the specific effect of the gliotoxin l ‐methionine sulfoximine, which leads to a targeted decrease in the number of GFAP+ cells that coexpress Sox2 or the proliferation marker PCNA. Pulse‐chase analysis of the label size associated with new cells after administration of 5‐bromo‐2′‐deoxyuridine demonstrated that, on average, two additional cell divisions occur after completion of the initial mitotic cycle. Overall numbers of NSPCs in the cerebellum niches increase consistently over time, presumably in parallel with the continuous growth of the brain. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 39–65, 2015  相似文献   

19.
20.
Neurodegenerative diseases such as Alzheimer’s and Parkinson’s currently affect ∼25 million people worldwide. The global incidence of traumatic brain injury (TBI) is estimated at ∼70 million/year. Both neurodegenerative diseases and TBI remain without effective treatments. We are utilizing adult Drosophila melanogaster to investigate the mechanisms of brain regeneration with the long-term goal of identifying targets for neural regenerative therapies. We specifically focused on neurogenesis, i.e., the generation of new cells, as opposed to the regrowth of specific subcellular structures such as axons. Like mammals, Drosophila have few proliferating cells in the adult brain. Nonetheless, within 24 hours of a penetrating traumatic brain injury (PTBI) to the central brain, there is a significant increase in the number of proliferating cells. We subsequently detect both new glia and new neurons and the formation of new axon tracts that target appropriate brain regions. Glial cells divide rapidly upon injury to give rise to new glial cells. Other cells near the injury site upregulate neural progenitor genes including asense and deadpan and later give rise to the new neurons. Locomotor abnormalities observed after PTBI are reversed within 2 weeks of injury, supporting the idea that there is functional recovery. Together, these data indicate that adult Drosophila brains are capable of neuronal repair. We anticipate that this paradigm will facilitate the dissection of the mechanisms of neural regeneration and that these processes will be relevant to human brain repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号