首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of BSA on strongly basic chitosan: Equilibria   总被引:1,自引:0,他引:1  
Equilibrium isotherms for adsorption of bovine serum albumin (BSA) on a new adsorbent, a strongly basic crosslinked chitosan (Chitopearl 2503), which is hard and is not compressed by pressure in a column, have been presented and compared with diethylaminoethyl (DEAE) Sepharose Fast Flow (hard gel). In Chitopearl 2503, when only buffer existed in the BSA solution, the isotherm was not affected by the initial concentration of BSA but it was affected by pH considerably. The isotherm was favorable when pH >/= pl ( congruent with 4.8). When NaCl existed in the BSA solution, the amount of BSA absorbed on the resin decreased with increasing concentration of NaCl. When the concentration of NaCl was 200 mol/m(3), the resin did not adsorb BSA at all. The equilibrium data were correlated by the Langmuir equation reasonably well. The BSA may be adsorbed mainly by electrostatic attraction between negatively charged BSA and positively charged quanternary ammonium groups at pH > pl and by protonation reaction of the primary ammonium groups by weak acid groups of BSA at pH = pl. These are confirmed by measuring the amount of inorganic ion exchanged for BSA. In DEAE Sepharose Fast Flow, the isotherm was favorable when pH > pl but unfavorable ar pH = pl. The saturation capacity of BSA on Chitopearl 2503 is about 1.3 to 2.2 times larger than that on DEAE Sepharose Fast Flow. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
X Zhou  B Xue  Y Sun 《Biotechnology progress》2001,17(6):1093-1098
A macroporous poly(glycidyl methacrylate-triallyl isocyanurate-divinylbenzene) resin was synthesized and modified with diethylamine to yield an anion-exchange resin suitable for protein adsorption. Efforts were made to enhance protein ion exchange capacity of the resin by investigating the copolymer composition. Different synthesis recipes were attempted, and the resultant resins were characterized by measuring the specific surface area and the adsorption ability using bovine serum albumin (BSA) as a model protein. The intraparticle pore size distribution measured by mercury porosimetry showed that the pores in the range of 40-120 nm took 75% of the total pore volume, indicating that the ion exchanger was favorable for protein adsorption. BSA capacity obtained with an appropriate recipe was as high as 78.6 mg/g wet resin or 50 mg/mL packed volume, which was higher than the capacities of some commercially available ion exchangers. Moreover, by using a pore diffusion model, the effective pore diffusivity of BSA was found to be 5.5 x 10(-12) m(2)/s, similar to those in the commercial ion exchangers.  相似文献   

3.
L-Theanine, a bioactive compound in tea, was isolated from tea solution using cation exchange resin no.732. The adsorption of L-theanine by cation exchange resin no.732 fit the Langmuir isotherm model and was a monolayer molecular interaction process. Thermodynamic studies revealed that the adsorption of L-theanine by resin no.732 was an exothermic and spontaneous physically driven process. The adsorption capacity was influenced by temperature, initial concentration, and pH. The L-theanine adsorption capacity under conditions at room temperature, pH 4.73, and initial L-theanine concentration 18 g/L was 241.731 ± 3.679 mg/g. The Thomas model was fit to describe the column adsorption data at different flow rates and initial concentrations. The L-theanine adsorbed by resin no.732 could be desorbed by 0.134 mol/L Na2HPO4 aqueous solution with a recovery rate of 84.96%. These findings indicate that resin no.732 was a promising material for isolating L-theanine from tea solution.  相似文献   

4.
This paper presents the evaluation of some important parameters for the purification of phycocyanin using ion exchange chromatography. The influences of pH and temperature on the equilibrium partition coefficient were investigated to establish the best conditions for phycocyanin adsorption. The equilibrium isotherm for the phycocyanin-resin system was also determined. The separation of phycocyanin using the Q-Sepharose ion exchange resin was evaluated in terms of the pH and elution volume that improved the increase in purity and recovery. The highest partition coefficients were obtained in the pH range from 7.5 to 8.0 at 25 degrees C. Under these conditions the equilibrium isotherm for phycocyanin adsorption was well described by the Langmuir model, attaining a Q (m) of 22.7 mg/mL and K (d) of 3.1 x 10(-2) mg/mL. The best conditions for phycocyanin purification using the ion exchange column were at pH 7.5 with an elution volume of 36 mL, obtaining 77.3% recovery and a 3.4-fold increase in purity.  相似文献   

5.
Activated carbon (AC) prepared from waste Parthenium was used to eliminate Ni(lI) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out, by varying contact time, metal ion concentration, carbon concentration, pH and desorption to assess kinetic and equilibrium parameters. They allowed initial adsorption coefficient, adsorption rate constant and maximum adsorption capacities to be computed. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 54.35 mg Ni(II)/g of AC at initial pH of 5.0 and 20 degrees C, for the particle size 250-500 microm. Increase in pH from 2 to 10 increased percent removal of metal ion. The regeneration by HCl of Ni(II)-saturated carbon by HCl, allowed suggestion of an adsorption mechanism by ion-exchange between metal ion and H+ ions on the AC surfaces. Quantitative recovery of Ni(II) was possible with HCl.  相似文献   

6.
Batch ethanol fermentation by cells of Zymomomas mobilis ATCC 29191, ionically adsorbed on a DEAE-cellulose ion exchanger, was investigated in a stirred fermentor. Adsorption isotherms in different media were determined and used to interpret the effects of the environment on cell immobilization. Other factors affecting cell immobilization during an actual fermentation were studied. Mechanical agitation was found to cause detachment of cells from the ion exchange particles. The results suggest that the amount of cells adsorbed during a fermentation process is different from that found from adsorption isotherm data. Consequently, application of equilibrium adsorption data to actual fermentations should be done with caution.  相似文献   

7.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

8.
The adsorption of iron(III), lead(II) and cadmium(II) ions onto Schizomeris leibleinii, a green alga, was studied with respect to initial pH, temperature, initial metal ion and biomass concentration to determine the optimum adsorption conditions. Optimum initial pH for iron(III), lead(II) and cadmium(II) ions were 2.5, 4.5 and 5.0 at optimum temperature 30°C, respectively. The initial adsorption rates increased with increasing initial iron(III), lead(II) and cadmium(II) ion concentrations up to 100, 100 and 150 mg l−1, respectively. The Freundlich and Langmuir adsorption isotherms were developed at various initial pH and temperature values. The adsorption of these metal ions to S. leibleinii was investigated in a two-stage mixed batch reactor. The residual metal ion concentrations (Ceq) at equilibrium at each stage for a given ‘quantity of dried algae (X0)/volume of solution containing heavy metal ion (V0)’ ratio were calculated using Freundlich and Langmuir isotherm constants. The experimental biosorption equilibrium data for iron(III), lead(II) and cadmium(II) ions were in good agreement with those calculated by both Freundlich and Langmuir models. The adsorbed iron(III), lead(II) and cadmium(II) ion concentrations increased with increasing X0/V0 ratios while the adsorbed metal quantities per unit mass of dried algae decreased.  相似文献   

9.
Biomass of a mercury-resistant strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution at pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin (100 mg Hg/g dry resin in deionized water). The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na(+) were present. Biosorption of mercury was also examined in sodium phosphate solution andphosphate-buffered saline solution (pH 7.0), containing 50mM and 150 mM of Na(+), respectively. It was found that the presence of Na(+) did not severely affect the biosorption of Hg(2+), indicating a high mercury selectivity ofthe biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg(2+)bythe biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow theLangmuir or Freundlich adsorption isotherms. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Cibacron Blue 3GA was immobilized on Sepharose CL-6B to obtain a highly substituted dye-ligand adsorbent which dye concentration was 17.4?μmol dye per gram wet gel. This adsorbent had a highly binding capacity for bovine serum albumin (BSA). The effects of ionic strength on the adsorption and desorption of BSA to the adsorbent were studied. Adsorption isotherms were expressed by the Langmuir model. The quantitative relationships between the model parameters and the ionic strength were obtained. The desorptions were performed by adding salt to the BSA solutions in which adsorption equilibria had been reached. Adding salt to the solution resulted in the desorption of the bound protein. It was found that the isotherm obtained from the desorption experiments agreed well to the isotherm obtained from the adsorption experiments at the same ionic strength. The result demonstrated that the adsorption of BSA to the highly substituted adsorbent was reversible.  相似文献   

11.
A chitosan-thioglyceraldehyde Schiff's base cross-linked magnetic resin (CSTG) was prepared and characterized using various instrumental methods. Then, the prepared resin was used for comparative studies on the removal of toxic metal ions like: Hg(2+), Cu(2+) and Zn(2+) from aqueous solutions. The effects of the initial pH value of the solution, contact time, the initial metal ion concentration and temperature on the adsorption capacity of the composite were investigated. The kinetics data were analyzed by pseudo-first order and pseudo-second order equations. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Langmuir equation. The maximum theoretical adsorption capacities of the CSTG resin for Hg(2+), Cu(2+) and Zn(2+) were found to be 98±2, 76±1 and 52±1 mg g(-1), respectively. The negative values of Gibbs free energy of adsorption (ΔG(ads°) indicated the spontaneity of the adsorption of all metal ions on the novel resin.  相似文献   

12.
In the present study, the removal of Cr(III) from aqueous solution was studied using a new chelate-resins (b-DAEG-sporopollenin and CEP-sporopollenin). Mechanisms including ion exchange, complexation and adsorption to the surface are possible in the sorption process. Adsorption analysis results obtained at various concentrations of Cr(III) showed that the adsorption pattern on the resin followed a Langmuir isotherm. Langmuir constant Gamma max and k for Cr(III) were found as 1.23, 84.84 mmol/g for b-DAEG-sporopollenin, 133.33, 10.39 mmol/g for CEP-sporopollenin at 20 +/- 1 degrees C, respectively. In addition, kinetic and thermodynamic parameters such as enthalpy (DeltaH0), free energy (DeltaG0) and entropy (DeltaS0) were calculated and these values show that adsorption of Cr(III) on b-DAEG-sporopollenin and CEP-sporopollenin was an exothermic process and the process of adsorption was favored at high temperatures. Maximum Cr(III) removal was observed near a pH of 6.  相似文献   

13.
Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water.  相似文献   

14.
Adsorption isotherms of BSA at the solid-water interfaces have been studied as a function of protein concentration, ionic strength of the medium, pH and temperature using silica, barium sulphate, carbon, alumina, chromium, ion-exchange resins and sephadex as solid interfaces. In most cases, isotherms for adsorption of BSA attained the state of adsorption saturation. In the presence of barium sulphate, carbon and alumina, two types in the isotherms are observed. Adsorption of BSA is affected by change in pH, ionic strength and temperature of the medium. In the presence of metallic chromium, adsorbed BSA molecules are either denatured or negatively adsorbed at the metallic interface. Due to the presence of pores in ion-exchange resins, adsorption of BSA is followed by preferential hydration on resin surfaces in some cases. Sometimes two steps of isotherms are also observed during adsorption of BSA on the solid resins in chloride form. Adsorption of BSA, beta-lactoglobulin, gelatin, myosin and lysozyme is negative on Sephadex surface due to the excess adsorption of water by Sephadex. The negative adsorption is significantly affected in the presence of CaCl2, KSCN, LiCl, Na2SO4, NaI, KCl and urea. The values of absolute amounts of water and protein, simultaneously adsorbed on the surface of different solids, have been evaluated in some cases on critical thermodynamic analysis. The standard free energies (delta G0) of excess positive and negative adsorption of the protein per square meter at the state of monolayer saturation have been calculated using proposed universal scale of thermodynamics. The free energy of adsorption with reference to this state is shown to be strictly comparable to each other. The magnitude of standard free energy of transfer (delta G0B) of one mole of protein or a protein mixture at any type of physiochemical condition and at any type of surface is observed to be 38.5 kJ/mole.  相似文献   

15.
Adsorption characteristics of native and cross-linked lysozyme crystals were examined using fluorescein as model adsorbate. The adsorption isotherms exhibited Langmuir or linear behavior. The affinity constant (b1) and the adsorption capacity (Qsat) for fluorescein were found to depend on the type and concentration of co-solute present in the solution. The dynamics of adsorption isotherm transition from Langmuir to linear showed that affinity of lysozyme for solutes increases in the order 2-(cyclohexylamino)ethanesulphonic acid (CHES), 4-morpholinepropanesulphonic acid (MOPS), acetate, fluorescein. Furthermore, the crystal morphology, the degree of cross-linking of the crystals, and, in particular, solution pH were identified as factors determining fluorescein adsorption by the lysozyme crystals. These factors seem to affect crystal capacity for the solute more than affinity for the solute. Adsorption of fluorescein by cross-linked tetragonal lysozyme crystals was exponentially dependent on the lysozyme net charge calculated from the final solution pH. The 3-5-fold increase in the fluorescein adsorption as a result of cross-linking is presumably due to the increasing hydrophobicity of the lysozyme crystal.  相似文献   

16.
This paper investigates the adsorption of bovine serum albumin (BSA) and bovine hemoglobin (BHb) model proteins onto novel thymine-functionalized polystyrene (PS-VBT) microspheres, in comparison with polystyrene (PS) microspheres. Maximum adsorption was obtained for both proteins near their corresponding isoelectric points (pI at pH = 4.7 for BSA and 7.1 for BHb). FTIR and adsorption isotherm analysis demonstrated that, although both proteins were physisorbed onto PS through nonspecific hydrophobic interactions, adsorption onto the functionalized copolymers occurred by both physisorption and chemisorption via hydrogen bonding. FTIR analysis also indicated conformational changes in the secondary structure of BSA and BHb adsorbed onto PS, whereas little or no conformation change was seen in the case of adsorption onto PS-VBT. Atomic force microscopy (AFM), consistent with the isotherm results, also demonstrated monolayer adsorption for both proteins. AFM images of BSA adsorbed onto copolymers with 20 mol % surface VBT loading showed exclusively end-on orientation. Adsorption onto copolymers with lower functionality showed mixed end-on and side-on orientation modes of BSA, and only the side-on orientation was observed on PS. The AFM results agreed well with theoretically calculated and experimentally obtained adsorption capacities. AFM together with calculated and observed adsorption capacity data for BHb indicated that this protein might be highly compressed on the copolymer surface. Adsorption from a binary mixture of BSA and BHb onto PS-VBT showed good separation at pH=7.0; approximately 90% of the adsorbed protein was BHb. The novel copolymers have potential applications in biotechnology.  相似文献   

17.
Varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature carried out the potential feasibility of thermally activated coir pith carbon prepared from coconut husk for removal of methylene blue. Greater percentage of dye was removed with decrease in the initial concentration of dye and increase in amount of adsorbent used. Kinetic study showed that the adsorption of dye on coir pith carbon was a gradual process. Lagergren first-order, second-order, intra particle diffusion model and Bangham were used to fit the experimental data. Equilibrium isotherms were analysed by Langmuir, Freundlich, Dubnin-Radushkevich, and Tempkin isotherm. The adsorption capacity was found to be 5.87 mg/g by Langmuir isotherm for the particle size 250-500 microm. The equilibrium time was found to be 30 and 60 min for 10 and 20 mg/L and 100 min for 30, 40 mg/L dye concentrations, respectively. A maximum removal of 97% was obtained at natural pH 6.9 for an adsorbent dose of 100 mg/50 mL and 100% removal was obtained for an adsorbent dose of 600 mg/50 mL of 10 mg/L dye concentration. The pH effect and desorption studies suggest that chemisorption might be the major mode of the adsorption process. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of coir pith carbon was estimated as 117.20 J/mol/K and 30.88 kJ/mol, respectively. The high negative value of change in Gibbs free energy indicates the feasible and spontaneous adsorption of methylene blue on coir pith carbon.  相似文献   

18.
Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics.  相似文献   

19.
Decontamination of lead ions from aqueous media has been investigated using cross linked xanthated chitosan (CMC) as an adsorbent. Various physico-chemical parameters such as contact time, amount of adsorbent, concentration of adsorbate were optimized to simulate the best conditions which can be used to decontaminate lead from aqueous media using CMC as an adsorbent. The atomic absorption spectrometric technique was used to determine the distribution of lead. Maximum adsorption was observed at both pH 4 and 5. The adsorption data followed both Freundlich and Langmuir isotherms. Langmuir isotherm gave a saturated capacity of 322.6+/-1.2mg/g at pH 4. From the FTIR spectra analysis, it was concluded that xanthate and amino group participate in the adsorption process. The developed procedure was successfully applied for the removal of lead ions from real battery wastewater samples.  相似文献   

20.
The shell of the seed of Chrysophyllum albidum carbon was used to adsorb lead (Pb) from aqueous solution, the sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration, and particle size on adsorption were also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The first-order rate equation by Lagergren was tested on the kinetic data and the adsorption process followed first-order rate kinetics. Isotherm data were analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms; the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 72.1 mg Pb (II) g- 1 at initial pH of 5.0 at 30°C for the particle size of 1.00 to 1.25 mm with the use of 2.0 g/100 ml adsorbent mass. The structural features of the adsorbent were characterized by Fourier transform infrared (FTIR) spectrometry; the presence of hydroxyl, carbonyl, amide, and phosphate groups confirms the potential mechanism adsorption of the adsorbent. This readily available adsorbent is efficient in the uptake of Pb (II) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号