首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We report one large-insert BIBAC library and three BAC libraries for japonica rice cv Nipponbare. The BIBAC library was constructed in the HindIII site of a plant-transformation-competent binary vector (pCLD04541) and the three BAC libraries were constructed in the BamHI, HindIII and EcoRI sites of a BAC vector (pECBAC1), respectively. Each library contains 23,040 clones, has an average insert size of 130 kb, 170 kb, 150 kb and 156 kb, and covers 6.7x, 8.7x, 7.7x and 8.0 x rice haploid genomes, respectively. The combined libraries contain 92,160 clones in total, covering 31.1 x rice haploid genomes. To demonstrate their utility, we screened the libraries with 55 DNA markers mapped to chromosome 8 of the rice genetic maps and analyzed a number of clones by the restriction fingerprinting and contig assembly method. The results indicate that the libraries completely cover the rice genome and, thus, are well-suited for genome research in rice and other gramineous crops. The BIBAC library represents the first plant-transformation-competent large-insert DNA library for rice, which will streamline map-based cloning, functional analysis of the rice genome sequence and molecular breeding in rice and other grass species. These libraries are being used in the development of a whole-genome, BAC/BIBAC-based, integrated physical, genetic and sequence map of rice and in the research of genome-wide comparative genomics of grass species.  相似文献   

2.
Two plant-transformation-competent large-insert binary clone bacterial artificial chromosome (hereafter BIBAC) libraries were previously constructed for soybean cv. Forrest, using BamHI or HindIII. However, they are not well suited for clone-based genomic sequencing due to their larger ratio of vector to insert size (27.6 kbp:125 kbp). Therefore, we developed a larger-insert bacterial artificial chromosome (BAC) library for the genotype in a smaller vector (pECBAC1), using EcoRI. The BAC library contains 38,400 clones; about 99.1% of the clones have inserts; the average insert size is 157 kbp; and the ratio of vector to insert size is much smaller (7.5 kbp:157 kbp). Colony hybridization with probes derived from several chloroplast and mitochondrial genes showed that 0.89% and 0.45% of the clones were derived from the chloroplast and mitochondrial genomes, respectively. Considering these data, the library represents 5.4 haploid genomes of soybean. The library was hybridized with six RFLP marker probes, 5S rDNA and 18S-5.8S-25S rDNA, respectively. Each RFLP marker hybridized to about six clones, and the 5S and 18S-5.8S-25S rDNA probes collectively hybridized to 402 BACs—about 1.05% of the clones in the library. The BAC library complements the existing soybean Forrest BIBAC libraries by using different restriction enzymes and vector systems. Together, the BAC and BIBAC libraries encompass 13.2 haploid genomes, providing the most comprehensive clone resource for a single soybean genotype for public genome research. We show that the BAC library has enhanced the development of the soybean whole-genome physical map and use of three complementary BAC libraries improves genome physical mapping by fingerprint analysis of most of the clones of the library. The rDNA-containing clones were also fingerprinted to evaluate the feasibility of constructing contig maps of the rDNA regions. It was found that physical maps for the rDNA regions could not be readily constructed by fingerprint analysis, using one or two restriction enzymes. Additional data to fingerprints and/or different fingerprinting methods are needed to build contig maps for such highly tandem repetitive regions and thus, the physical map of the entire soybean genome.  相似文献   

3.
Recent research has shown that BIBAC (binary bacterial artificial chromosome) and TAC (transformation-competent artificial chromosome) vector systems are very useful tools for map-based cloning of agronomically important genes in plant species. We have developed a new TAC vector that is suitable for both dicot and monocot transformation. Using this new TAC vector, we constructed large-insert genomic libraries of tomato and rice. The tomato library contains 96,996 clones (28.3-38.5 kb insert size) and has 3.18 haploid genome equivalents. The rice TAC library has 32.7 kb average insert size and has 9.24 haploid genome equivalents. The quality of these two libraries was tested using PCR to verify genome coverage. Individual clones were characterized to confirm insert integrity by Southern analysis, end sequencing and genetic mapping. To investigate the potential application of these TAC libraries in map-based cloning, TAC constructs containing a 45 kb fragment were introduced into the rice genome via Agrobacterium-mediated transformation. Molecular analysis indicates that the 45 kb fragment was successfully transferred into the rice genome. Although rearrangements of the introduced DNA were detected, 50% of regenerated plants contained at least one intact copy of the 45 kb clone and associated vector sequences. These libraries provide us with a valuable resource to rapidly isolate important genes in tomato and rice.  相似文献   

4.
Bacterial artificial chromosome (BAC) libraries have been an essential tool for physical analyses of genomes of many crops. We constructed and characterized the first large-insert DNA library for Arachis hypogaea L. The HindIII BAC library contains 182,784 clones; only 5,484 (3%) had no inserts; and the average insert size is 104.05 kb. Chloroplast DNA contamination was very low, only nine clones, and r-DNA content was 1,208, 0.66% of clones. The depth of coverage is estimated to be 6.5 genome-equivalents, allowing the isolation of virtually any single-copy locus. This rate of coverage was confirmed with the application of 20 overgos, which identified 305 positive clones from the library. The identification of multiple loci by most probes in polyploids complicates anchoring of physical and genetic maps. We explored the practicality of a hybridization-based approach for determination of map locations of BAC clones in peanut by analyzing 94 clones detected by seven different overgos. The banding patterns on Southern blots were good predictors of contig composition; that is, the clones that shared the same size bands and ascribed to the same overgos usually also located in the same contigs. This BAC library has great potential to advance future research about the peanut genome.Requests for the BAC library (or subsets) should be directed to Dr. A. Paterson (paterson@uga.edu).  相似文献   

5.
Rice is an important crop and a model system for monocot genomics, and is a target for whole genome sequencing by the International Rice Genome Sequencing Project (IRGSP). The IRGSP is using a clone by clone approach to sequence rice based on minimum tiles of BAC or PAC clones. For chromosomes 10 and 3 we are using an integrated physical map based on two fingerprinted and end-sequenced BAC libraries to identifying a minimum tiling path of clones. In this study we constructed and tested two rice genomic libraries with an average insert size of 10 kb (10-kb library) to support the gap closure and finishing phases of the rice genome sequencing project. The HaeIII library contains 166,752 clones covering approximately 4.6x rice genome equivalents with an average insert size of 10.5 kb. The Sau3AI library contains 138,960 clones covering 4.2x genome equivalents with an average insert size of 11.6 kb. Both libraries were gridded in duplicate onto 11 high-density filters in a 5 x 5 pattern to facilitate screening by hybridization. The libraries contain an unbiased coverage of the rice genome with less than 5% contamination by clones containing organelle DNA or no insert. An efficient method was developed, consisting of pooled overgo hybridization, the selection of 10-kb gap spanning clones using end sequences, transposon sequencing and utilization of in silico draft sequence, to close relatively small gaps between sequenced BAC clones. Using this method we were able to close a majority of the gaps (up to approximately 50 kb) identified during the finishing phase of chromosome-10 sequencing. This method represents a useful way to close clone gaps and thus to complete the entire rice genome.  相似文献   

6.
Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector   总被引:12,自引:0,他引:12  
This is the first report of large insert genomic DNA libraries constructed in a binary-BAC (BIBAC) vector. Genomic DNA libraries containing approximately 4.6 haploid nuclear genomic equivalents were constructed for Lycopersicon esculentum (cv. Mogeor) and Lycopersicon pennellii (LA716) in the BIBAC2 vector. The L. esculentum library has an average insert size of 125 kb and is comprised of 42 272 individual colonies stored as frozen cultures in a 384-well format (108 plates). The L. pennellii library has an average insert size of 90 kb and is comprised of 53 760 individual clones (140 384-well plates). In each of the libraries, it is estimated that 90% of the colonies contain genomic DNA inserts. The composition of the L. esculentum and L. pennellii libraries was determined by analyzing a series of randomly selected clones. The L. esculentum library was surveyed for clones containing chloroplast DNA (1.4%), mitochondrial DNA (0.012%) and repetitive DNA motifs. BIBAC clones that may contain a gene of interest can be identified from these libraries by colony hybridization with homologous or heterologous probes or by PCR pooling techniques. Once identified, BIBAC genomic DNA library clones are immediately suitable for Agrobacterium tumefaciens-mediated plant transformation.  相似文献   

7.
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.  相似文献   

8.
Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4× haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3× haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp.  相似文献   

9.
Large-insert bacterial artificial chromosome (BAC) libraries, plant-transformation-competent binary BAC (BIBAC) libraries, and simple sequence repeat (SSR) markers are essential for many aspects of genomics research. We constructed a BAC library and a BIBAC library from the nuclear DNA of chickpea, Cicer arietinum L., cv. Hadas, partially digested with HindIII and BamHI, respectively. The BAC library has 14,976 clones, with an average insert size of 121 kb, and the BIBAC library consists of 23,040 clones, with an average insert size of 145 kb. The combined libraries collectively cover ca. 7.0× genomes of chickpea. We screened the BAC library with eight synthetic SSR oligos, (GA)10, (GAA)7, (AT)10, (TAA)7, (TGA)7, (CA)10, (CAA)7, and (CCA)7. Positive BACs were selected, subcloned, and sequenced for SSR marker development. Two hundred and thirty-three new chickpea SSR markers were developed and characterized by PCR, using chickpea DNA as template. These results have demonstrated that BACs are an excellent source for SSR marker development in chickpea. We also estimated the distribution of the SSR loci in the chickpea genome. The SSR motifs (TAA)n and (GA)n were much more abundant than the others, and the distribution of the SSR loci appeared non-random. The BAC and BIBAC libraries and new SSR markers will provide valuable resources for chickpea genomics research and breeding (the libraries and their filters are available to the public at ).J. Lichtenzveig and C. Scheuring contributed equally to this study.  相似文献   

10.
 Existing bacterial artificial chromosome (BAC) vectors were modified to have unique EcoRI cloning sites. This provided an additional site for generating representative libraries from genomic DNA digested with a variety of enzymes. A BAC library of lettuce was constructed following the partial digestion of genomic DNA with HindIII or EcoRI. Several experimental parameters were investigated and optimized. The BAC library of over 50,000 clones, representing one to two genome equivalents, was constructed from six ligations; average insert sizes for each ligation varied between 92.5 and 142 kb with a combined average insert size of 111 kb. The library was screened with markers linked to disease resistance genes; this identified 134 BAC clones from four regions containing resistance genes. Hybridization with low-copy genomic sequences linked to resistance genes detected fewer clones than expected from previous estimates of genome size. The lack of hybridization to chloroplast and mitochondrial sequences demonstrated that the library was predominantly composed of nuclear DNA. The unique EcoRI site in the BAC vector should allow the integration of BAC cloning with other technologies that utilize EcoRI digestion, such as AFLPTM markers and RecA-assisted restriction endonuclease (RARE) cleavage, to clone specific large EcoRI fragments from genomic DNA. Received: 5 August 1996 / Accepted: 23 August 1996  相似文献   

11.
Genome projects were initiated on grapevine (Vitis vinifera L., 2n=38, genome size 475 Mb) through the successful construction of four bacterial artificial chromosome (BAC) libraries from three major cultivars, Cabernet Sauvignon (Cabernet S), Syrah and two different clones of Pinot Noir (Pinot N). Depending on the library, the genome coverage represented 4.5–14.8 genome equivalents with clones having a mean insert size of 93–158 kb. BAC pools suitable for PCR screening were constructed for two of these BAC libraries [Cabernet S and Pinot N clone (cl) 115] and subsequently used to confirm the genome coverage of both libraries by PCR anchoring of 74 genetic markers sampled from the 19 linkage groups. For ten of these markers, two bands on separate BAC pools were differentiated that could correspond either to different alleles or to a duplication of the locus being studied. Finally, a preliminary assessment of the correspondence between genetic and physical distances was made through the anchoring of all the markers mapped along linkage group 1 of the V. vinifera genetic map. A pair of markers, 2.1 cM apart, anchored the same BAC clones, which allowed us to estimate that 1 cM corresponded in this particular region to a maximum length of 130 kb.  相似文献   

12.
Jatropha curcas L. is a potentially significant bioenergy crop in the tropics and subtropics. Here we present a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library from Jatropha cultivar YN049-4. This library was constructed with BamH in the vector pCLD04541, consists of 30,720 clones and is arrayed in 80 384-well microtiter plates. Since 92.1% (28,293) of its clones were shown to contain Jatropha DNA inserts with an average size of 131.9 kb, the library is estimated to represent approximately 8.9 haploid genome equivalents of the species, thus providing a greater than 99% probability of discovering a particular single-copy sequence in the library. High-density clone filters were made from a subset of the library and hybridized with nine pairs of overgos designed from genes involved in fatty acid metabolism. Hybridization results showed that eight overgo pairs were able to identify positive clones from the subset of the library, with an average of 5.3 clones per probe, suggesting that it is suitable for Jatropha genomics and genetics research. Because this library, to our knowledge, represents the first large-insert, plant-transformation-competent BIBAC library for Jatropha, it will provide a vital resource for advanced genomics research, including isolation and characterization of genes and quantitative trait loci, integrative physical mapping and genome sequencing.  相似文献   

13.
Rice is a leading grain crop and the staple food for over half of the world population. Rice is also an ideal species for genetic and biological studies of cereal crops and other monocotyledonous plants because of its small genome and well developed genetic system. To facilitate rice genome analysis leading to physical mapping, the identification of molecular markers closely linked to economic traits, and map-based cloning, we have constructed two rice bacterial artificial chromosome (BAC) libraries from the parents of a permanent mapping population (Lemont and Teqing) consisting of 400 F9 recombinant inbred lines (RILs). Lemont (japonica) and Teqing (indica) represent the two major genomes of cultivated rice, both are leading commercial varieties and widely used germplasm in rice breeding programs. The Lemont library contains 7296 clones with an average insert size of 150 kb, which represents 2.6 rice haploid genome equivalents. The Teqing library contains 14208 clones with an average insert size of 130 kb, which represents 4.4. rice haploid genome equivalents. Three single-copy DNA probes were used to screen the libraries and at least two overlapping BAC clones were isolated with each probe from each library, ranging from 45 to 260 kb in insert size. Hybridization of BAC clones with chloroplast DNA probes and fluorescent in situ hybridization using BAC DNA as probes demonstrated that both libraries contain very few clones of chloroplast DNA origin and are likely free of chimeric clones. These data indicate that both BAC libraries should be suitable for map-based cloning of rice genes and physical mapping of the rice genome.  相似文献   

14.
Chang YL  Chuang HW  Meksem K  Wu FC  Chang CY  Zhang M  Zhang HB 《Génome》2011,54(6):437-447
Plant-transformation-ready, large-insert binary bacterial artificial chromosome (BIBAC) libraries are of significance for functional and network analysis of large genomic regions, gene clusters, large-spanning genes, and complex loci in the post-genome era. Here, we report the characterization of a plant-transformation-ready BIBAC library of the sequenced Arabidopsis genome for which such a library is not available to the public, the transformation of a large-insert BIBAC of the library into tobacco by biolistic bombardment, and the expression analysis of its containing genes in transgenic plants. The BIBAC library was constructed from nuclear DNA partially digested with BamHI in the BIBAC vector pCLD04541. It contains 6144 clones and has a mean insert size of 108?kb, representing 5.2× equivalents of the Arabidopsis genome or a probability of greater than 99% of obtaining at least one positive clone from the library using a single-copy sequence as a probe. The transformation of the large-insert BIBAC and analyses of the transgenic plants showed that not only did transgenic plants have intact BIBAC DNA, but also could the BIBAC be transmitted stably into progenies and its containing genes be expressed actively. These results suggest that the large-insert BIBAC library, combined with the biolistic bombardment transformation method, could provide a useful tool for large-scale functional analysis of the Arabidopsis genome sequence and applications in plant-molecular breeding.  相似文献   

15.
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.  相似文献   

16.
A bacterial artificial chromosome library for sugarcane   总被引:10,自引:0,他引:10  
Modern cultivated sugarcane is a complex aneuploid polyploid with an estimated genome size of 3000 Mb. Although most traits in sugarcane show complex inheritance, a rust locus showing monogenic inheritance has been documented. In order to facilitate cloning of the rust locus, we have constructed a bacterial artificial chromosome (BAC) library for the cultivar R570. The library contains 103,296 clones providing 4.5 sugarcane genome equivalents. A random sampling of 240 clones indicated an average insert size of 130 kb allowing a 98% probability of recovering any specific sequence of interest. High-density filters were gridded robotically using a Genetix Q-BOT in a 4 × 4 double-spotted array on 22.5-cm2 filters. Each set of five filters provides a genome coverage of 4x with 18,432 clones represented per filter. Screening of the library with three different barley chloroplast gene probes indicated an exceptionally low chloroplast DNA content of less than 1%. To demonstrate the library’s potential for map-based cloning, single-copy RFLP sugarcane mapping probes anchored to nine different linkage groups and three different gene probes were used to screen the library. The number of positive hybridization signals resulting from each probe ranged from 8 to 60. After determining addresses of the signals, clones were evaluated for insert size and HindIII-fingerprinted. The fingerprints were then used to determine clone relationships and assemble contigs. For comparison with other monocot genomes, sugarcane RFLP probes were also used to screen a Sorghum bicolor BAC library and two rice BAC libraries. The rice and sorghum BAC clones were characterized for insert size and fingerprinted, and the results compared to sugarcane. The library was screened with a rust resistance RFLP marker and candidate BAC clones were subjected to RFLP fragment matching to identify those corresponding to the same genomic region as the rust gene. Received: 12 September 1998 / Accepted: 12 March 1999  相似文献   

17.
To facilitate gene discovery in the Rosaceae, a bacterial artificial chromosome (BAC) library was constructed using high-molecular-weight (HMW) DNA from apricot leaves ( Prunus armeniaca L.). The library contains 101,376 clones (264, 384-well plates) with an average insert size of 64 kb, equivalent to 22-fold genome coverage. In the first application of this library, high-density filters were screened for self-incompatibility genes using apricot DNA probes. Eight positive BAC clones were detected and fingerprinted to determine clone relationships and assemble contigs. These results demonstrate the suitability of this library for gene identification and physical mapping of the apricot genome.Communicated by R. Hagemann  相似文献   

18.
A human bacterial artificial chromosome (BAC) library was constructed with high molecular weight DNA extracted from the blood of a male Korean. This Korean BAC library contains 100,224 clones of insert size ranging from 70 to 150 kb, with an average size of 86 kb, corresponding to a 2.9-fold redundancy of the genome. The average insert size was determined from 288 randomly selected BAC clones that were well distributed among all the chromosomes. We developed a pooling system and three-step PCR screen for the Korean BAC library to isolate desired BAC clones, and we confirmed its utility using primer pairs designed for one of the clones. The Korean BAC library and screening pools will allow PCR-based screening of the Korean genome for any gene of interest. We also determined the allele types of HLA-DRA and HLA-DRB3 of clone KB55453, located in the HLA class II region on chromosome 6p21.3. The HLA-DRA and DRB3 genes in this clone were identified as the DRA*010202 and DRB3*01010201 types, respectively. The haplotype found in this library will provide useful information in future human disease studies.  相似文献   

19.
以细菌人工染色体pECBAC1为载体,构建了野生一粒小麦(Triticum boeoticum B oiss)的基因组BAC文库.该文库共包含约17万个克隆,平均插入片段长度为104 kb,按野生一粒小麦基因组为5 600 Mb计算,文库覆盖了约3倍的该物种基因组.用大麦叶绿体psb A基因和玉米线粒体atp6基因作混合探针,检测发现该文库中含细胞器基因组同源序列的克隆数小于1% .该文库的建成,为小麦基因的克隆及基因组学研究提供了技术平台.  相似文献   

20.
A plant transformation-competent binary bacterial artificial chromosome (BIBAC) library was constructed from Musa acuminata cv. Tuu Gia (AA), a black Sigatoka-resistant diploid banana. After digestion of high-molecular-weight banana DNA by HindIII, several methods of DNA size selection were tested, followed by ligation, using a vector/insert molar ratio of 4:1. The library consists of 30,700 clones stored in 80 384-well microtiter plates. The mean insert size was estimated to be 100 kb, and the frequency of inserts with internal NotI sites was 61%. The majority of insert sizes fell into the range of 100±20 kb, making them suitable for Agrobacterium-mediated transformation. Only 1% and 0.9% of the clones contain chloroplast and mitochondrial DNA, respectively. This is the first BIBAC library for banana, estimated to represent five times its haploid genome (600 Mbp). It was demonstrated by hybridization that the library contains typical members of resistance gene and defense gene families that can be used for transformation of disease susceptible banana cultivars for banana genetic improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号