首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
In amphibian gastrulae, the cell population of the organizer region of the marginal zone (MZ) establishes morphogenesis and patterning within itself and within surrounding regions of the MZ, presumptive neurectoderm, and archenteron roof. We have tested the effects on pattern of reducing the amount of organizer region by recombining halves of Xenopus laevis late blastulae cut at different angles from the bilateral plane. When regions within 30 degrees of the dorsal midline are excluded from recombinants, ventralized embryos develop lacking the entire anterior-posterior sequence of dorsal structures, suggesting that the organizer is only 60 degrees wide (centered on the dorsal midline) at the late blastula stage. As more and more dorsal MZ (organizer) is included in the recombinant, progressively more anterior dorsal structures are formed. In all cases, when any dorsal structures are missing they are deleted serially from the anterior end. Thus, we suggest that the amount (lateral width) of the organizer in the MZ determines the anterior extent of dorsal development.  相似文献   

2.
The origin of the signals that induce the differentiation of the central nervous system (CNS) is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE) center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early beta-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer). We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO) showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA) required Chordin (Chd), Noggin (Nog), and their upstream regulator beta-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO) into prospective neuroectoderm and Cerberus morpholino oligos (Cer-MO) into prospective endomesoderm at the 8-cell stage, we showed that both layers cooperate in CNS formation. The results suggest a model for neural induction in Xenopus in which an early blastula beta-Catenin signal predisposes the prospective neuroectoderm to neural induction by endomesodermal signals emanating from Spemann's organizer.  相似文献   

3.
4.
The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.  相似文献   

5.
The development of the vertebrate nervous system is initiated in amphibia by inductive interactions between ectoderm and a region of the embryo called the organizer. The organizer tissue in the dorsal lip of the blastopore of Xenopus and Hensen's node in chick embryos have similar neural inducing properties when transplanted into ectopic sites in their respective embryos. To begin to determine the nature of the inducing signals of the organizer and whether they are conserved across species we have examined the ability of Hensen's node to induce neural tissue in Xenopus ectoderm. We show that Hensen's node induces large amounts of neural tissue in Xenopus ectoderm. Neural induction proceeds in the absence of mesodermal differentiation and is accompanied by tissue movements which may reflect notoplate induction. The competence of the ectoderm to respond to Hensen's node extends much later in development than that to activin-A or to induction by vegetal cells, and parallels the extended competence to neural induction by axial mesoderm. The actions of activin-A and Hensen's node are further distinguished by their effects on lithium-treated ectoderm. These results suggest that neural induction can occur efficiently in response to inducing signals from organizer tissue arrested at a stage prior to gastrulation, and that such early interactions in the blastula may be an important component of neural induction in vertebrate embryos.  相似文献   

6.
Different cell types that occupy the midline of vertebrate embryos originate within the Spemann-Mangold or gastrula organizer. One such cell type is hypochord, which lies ventral to notochord in anamniote embryos. We show that hypochord precursors arise from the lateral edges of the organizer in zebrafish. During gastrulation, hypochord precursors are closely associated with no tail-expressing midline precursors and paraxial mesoderm, which expresses deltaC and deltaD. Loss-of-function experiments revealed that deltaC and deltaD were required for her4 expression in presumptive hypochord precursors and for hypochord development. Conversely, ectopic, unregulated Notch activity blocked no tail expression and promoted her4 expression. We propose that Delta signaling from paraxial mesoderm diversifies midline cell fate by inducing a subset of neighboring midline precursors to develop as hypochord, rather than as notochord.  相似文献   

7.
This review aims to propose an integrated model for dorsal-ventral and anterior-posterior development of Xenopus. Fertilized Xenopus eggs contain two determinants, a vegetal half endomesodermal determinant and a vegetal pole dorsal determinant (DD). The organizer forms in the specific intersection of the determinants, in a cell-autonomous manner. At late blastula, different combinations of the determinants form three embryonic domains, the competent animal domain, the organizer domain, and the entire vegetal half domain. These three domains cooperatively form dorsal-ventral and anterior-posterior axes: the organizer domain secrets dorsal inducing signals which induce or 'activate' the competent animal domain to form anterior-most neural tissues. The vegetal non-dorsal-marginal domain secrets posteriorizing signals, which 'transform' the anterior properties of the neural tissue to posterior properties.  相似文献   

8.
In Xenopus, one of the properties defining Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and find that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs. Our results suggest that the two BMP antagonists, noggin and chordin, may serve different functions during early stages of amniote development.  相似文献   

9.
An organizer population has been identified in the anterior end of the primitive streak of the mid-streak stage embryo, by the expression of Hnf3beta, Gsc(lacZ) and Chrd, and the ability of these cells to induce a second neural axis in the host embryo. This cell population can therefore be regarded as the mid-gastrula organizer and, together with the early-gastrula organizer and the node, constitute the organizer of the mouse embryo at successive stages of development. The profile of genetic activity and the tissue contribution by cells in the organizer change during gastrulation, suggesting that the organizer may be populated by a succession of cell populations with different fates. Fine mapping of the epiblast in the posterior region of the early-streak stage embryo reveals that although the early-gastrula organizer contains cells that give rise to the axial mesoderm, the bulk of the progenitors of the head process and the notochord are localized outside the early gastrula organizer. In the mid-gastrula organizer, early gastrula organizer derived cells that are fated for the prechordal mesoderm are joined by the progenitors of the head process that are recruited from the epiblast previously anterior to the early gastrula organizer. Cells that are fated for the head process move anteriorly from the mid-gastrula organizer in a tight column along the midline of the embryo. Other mid-gastrula organizer cells join the expanding mesodermal layer and colonize the cranial and heart mesoderm. Progenitors of the trunk notochord that are localized in the anterior primitive streak of the mid-streak stage embryo are later incorporated into the node. The gastrula organizer is therefore composed of a constantly changing population of cells that are allocated to different parts of the axial mesoderm.  相似文献   

10.
The origin of the signals that induce the differentiation of the central nervous system (CNS) is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE) center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early β-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer). We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO) showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA) required Chordin (Chd), Noggin (Nog), and their upstream regulator β-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO) into prospective neuroectoderm and Cerberus morpholino oligos (Cer-MO) into prospective endomesoderm at the 8-cell stage, we showed that both layers cooperate in CNS formation. The results suggest a model for neural induction in Xenopus in which an early blastula β-Catenin signal predisposes the prospective neuroectoderm to neural induction by endomesodermal signals emanating from Spemann's organizer.  相似文献   

11.
The origin of the signals that induce the differentiation of the central nervous system (CNS) is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE) center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early β-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer). We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO) showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA) required Chordin (Chd), Noggin (Nog), and their upstream regulator β-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO) into prospective neuroectoderm and Cerberus morpholino oligos (Cer-MO) into prospective endomesoderm at the 8-cell stage, we showed that both layers cooperate in CNS formation. The results suggest a model for neural induction in Xenopus in which an early blastula β-Catenin signal predisposes the prospective neuroectoderm to neural induction by endomesodermal signals emanating from Spemann's organizer.  相似文献   

12.
We have identified a novel frog gene, Pintallavis (the Catalan for lipstick), that is related to the fly fork head and rat HNF-3 genes. Pintallavis is expressed in the organizer region of gastrula embryos as a direct zygotic response to dorsal mesodermal induction. Subsequently, Pintallavis is expressed in axial midline cells of all three germ layers. In axial mesoderm expression is graded with highest levels posteriorly. Midline neural plate cells that give rise to the floor plate transiently express Pintallavis, apparently in response to induction by the notochord. Overexpression of Pintallavis perturbs the development of the neural axis, suppressing the differentiation of anterior and dorsal neural cell types but causing an expansion of the posterior neural tube. Our results suggest that Pintallavis functions in the induction and patterning of the neural axis.  相似文献   

13.
Spatial distribution of mRNAs for activin receptors and follistatin was studied by Northern blot hybridization using RNAs from different parts of dissected Xenopus embryos. mRNAs of two activin receptors (type IIA and IIB) occurred uniformly in pre-gastrular embryos, but occurred in larger amounts in ectoderm (in gastrulae), neural plate (in neurulae) and anterior (head) regions (in tailbud embryos) than in other embryonic regions. By contrast, follistatin mRNA appeared almost exclusively in the dorsal mesoderm including invaginating organizer region at the gastrula stage, in notochord and in dorsal ectoderm at the neurula stage, then in anterior part at the tailbud stage. The localized patterns of the distribution of these mRNAs may be due to the regionally different zygotic expression of genes in embryos at later stages. From the relatively widespread pattern of distribution of their mRNAs, we assume that both type IIA and type IIB activin receptors have broad functions in ectodermal and neural differentiation. On the other hand, follistatin mRNA showed quite a restricted pattern of expression, and therefore, we assume that follistatin may have functions more specifically related to the sites of expression of its mRNA. Thus, follistatin may be involved in the differentiation of notochord itself and/or directly be responsible for organizer functions such as neural induction and subsequent differentiation of induced neural tissues at the gastrula and later stages.  相似文献   

14.
The origin of the signals that induce the differentiation of the central nervous system (CNS) is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE) center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early β-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer). We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO) showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA) required Chordin (Chd), Noggin (Nog), and their upstream regulator β-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO) into prospective neuroectoderm and Cerberus morpholino oligos (Cer-MO) into prospective endomesoderm at the 8-cell stage, we showed that both layers cooperate in CNS formation. The results suggest a model for neural induction in Xenopus in which an early blastula β-Catenin signal predisposes the prospective neuroectoderm to neural induction by endomesodermal signals emanating from Spemann's organizer.  相似文献   

15.
Formation of the dorsal organizer (Spemann organizer) is an important process in early vertebrate development. In zebrafish, two molecular cascades—Bozozok/Dharma (Boz) and Nodal signaling—act in parallel to induce the dorsal organizer. However, the complete molecular mechanism regulating this event remains unclear. Here we report that zebrafish cell lines derived from various developmental stages can induce a secondary axis when they are implanted into the mid-blastula but not the early gastrula. The implanted cellsthemselves did not differentiate, but instead induced ectopic expression of dorsal organizer markers incells around the implanted cells and induced notochord formation in the secondary axis. These results indicate that cultured cell lines have the ability to induce a secondary axis through the initiation of dorsal organizer activity. However, ectopic expression of boz and sqt were not observed in cultured cells. In addition, implanted cell lines could induce the dorsal organizer even in maternal-zygotic one-eyed pinhead mutants, which are not responsive to Nodal signaling. Finally, the Nodal signaling pathway was not activatedfollowing implantation of cultured cells. Collectively, these data suggest that zebrafish cell lines induce the dorsal organizer independent of the boz and Nodal signaling pathways.  相似文献   

16.
The mesodermal tissue of some amphibian gastrula develops into a dorsal-to-ventral sequence of notochord, somite, pronephros, and lateral plate cell types. The cellular proportions regulate with respect to embryo size. The dorsal blastoporal lip appears to function as an organizer for the embryo. The transplantation of a donor lip to the ventral side of a host causes a second, opposed embryo to form and the system commits similar total proportions of cells as do normally developing embryos. Transplantation of donor somite to the ventral side of a host causes a reduction in the proportion of host somite developed. A modified reaction-diffusion system governing embryo development is proposed. Developmental simulations consistent with experimental observations are presented and analyzed. The results suggest that the degree of somite inhibition is positively correlated with the size of the somite transplant. Further predictions are that sufficiently large somite transplants would induce ectopic, ventral pronephros to form and ventral pronephros transplants would inhibit host pronephros development. This paper has been reproduced directly from disc using a LA-TEX system.  相似文献   

17.
Summary The effect of aging on the neural competence of the presumptive ectoderm of the early gastrula, and the effect of aged ectoderm on the differentiation of the still uninvaginated dorsal blastoporal lip at the small yolk-plug stage — representing the trunk organizer — were examined by the sandwich method inCynops pyrrhogaster.The presumptive ectoderm to be used as reaction system was taken from 0 to 36 h exogastrulae obtained by operation at the early gastrula stage and combined with trunk organizer. In the 0 to 12 h explants typical trunktail structures were formed. With further aging of the presumptive ectoderm a decrease in frequency of spinal cord, notochord, and muscle and a simultaneous increase in frequency of mesenchyme and mesothelium were observed. In the 30 and 36 h explants neural competence had largely disappeared, the frequency of notochord and muscle become very low and their differentiation very poor, whereas the frequency of mesenchyme and mesothelium reached very high levels.We infer a reciprocal relationship between the induced spinal cord and the differentiation of notochord and muscle, as well as a transformation of notochordal material into mesenchyme and mesothelium under the influence of the aged ectoderm. The mode of action of the trunk organizer in normal development is discussed.  相似文献   

18.
In early development of vertebrates, sonic hedgehog functions in dorsal-ventral patterning of dorsal tissue (nervous system and somites). In Xenopus, sonic hedgehog (Xshh) is first expressed in the Spemann organizer/notochord and floor plate. We report here the mechanism governing Xshh mRNA induction in these regions. In animal cap assays, the antagonizing BMPs signal was not sufficient to induce Xshh mRNA expression; however, it could induce Xshh mRNA expression in the presence of Xnr-1. In whole embryos, when secondary axes were induced by coexpressing noggin and Xnr-1 or follistatin and Xnr-1, Xshh mRNA expression was observed in the notochord and floor plate within the induced axes. It seems apparent that spatially restricted Xshh mRNA expression is determined as intersection of the two signals.  相似文献   

19.
20.
The formation of the amphibian organizer is evidenced by the ability of cells of the dorsal marginal zone (DMZ) to self-differentiate to form notochord and to induce the formation of other axial structures from neighboring regions of the embryo. We have attempted to determine when these abilities are acquired in the urodele, Ambystoma mexicanum (axolotl), and in the anuran, Xenopus laevis, by removing the mesodermalizing influence of the vegetal hemisphere at different stages of development and culturing the animal hemisphere isolate. This was possible, even at the 32 and 64-cell stage, through the use of embryos with rare cleavage patterns. Cultured isolates were analyzed for morphological differentiation of mesodermal and neural structures, and for biochemical differentiation of the tissue-specific enzyme, acetylcholinesterase (AChE). Large amounts of mesodermal and neural structures, and normal expression of AChE were found in isolates made as early as the 32-cell stage in both species. Only a small increase in the percentage of isolates developing mesoderm was detected when isolations were made at later cleavage or blastula stages. The amount of mesoderm formed did not depend on the stage of isolation. Mesoderm differentiation was usually limited to the notocord and muscle. The isolates rarely formed pronephros, mesothelium, or mesenchyme, derivatives of ventral mesoderm, during normal development. The results indicate that the marginal zone of the cleavage-stage embryo contains all of the information needed for the formation of the organizer. The formation of dorsal mesoderm does not require subsequent interaction with the cells of the vegetal hemisphere, although the presence of those cells is likely to play a role in normal pattern formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号