首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
We here describe the first example of the replacement of an autosome by two ring chromosomes originating from the missing chromosome, presented in a patient with a single chromosome 18 and two additional ring chromosomes. Detailed fluorescence in situ hybridization (FISH) analysis revealed the chromosome 18 origin of both ring chromosomes and characterized the small and the large ring chromosome as derivatives of the short and long arm of chromosome 18, respectively. The loss of subtelomeric regions of the short and the long arm of chromosome 18 in the ring chromosomes was confirmed by FISH studies. Molecular studies showed the exclusive presence of the paternal alleles for microsatellite markers located distal to the short and long arm loci D18S843 and D18S474, respectively. This indicates the maternal origin of both rings and provides evidence for substantial deletions of the distal parts of both arms of chromosome 18 in the ring chromosomes. The dysmorphic features of the patient can be explained by these deletions in both chromosome arms, as the clinical findings partly overlap with observations in 18p- and 18q-syndrome and are similar to some cases of ring chromosome 18. Centromere misdivision is suggested as one mechanism involved in the formation of the ring chromosomes.  相似文献   

2.
Summary The data of the chromosome abnormalities in 15 colorectal tumors are presented. Rearrangements of the short arm of chromosome 17, leading to deletions of this arm or its part were noted in 12 tumors; in 2 other cases, one of the homologs of pair 17 was lost. The losses of at least one homolog of other chromosomal pairs were also found: chromosome 18, in 12 out of 13 cases with fully identified numerical abnormalities; chromosome 5, in 6 tumors; chromosome 21, in 5 cases; chromosomes 4, 15, and 22, in 4 cases each. Additional homologs of pair 20 were observed in 6 tumors, extra 8q was found in 5 tumors, and extra 13q in 6 cases. Rearrangements of the short arm of chromosome 1 and the long arm of chromosome 11 characterized 6 tumors each. The data recorded in our series differ from the data of other authors in two respects: the high incidence of the loss of sex chromosomes and the rearrangements of the long arm of chromosome 9. X chromosomes were missing in 4 out of 7 tumors in females, and Y chromosomes were absent in 5 out of 8 tumors in males. The long arm of chromosome 9 was rearranged in 8 cases, in 5 of them the breakpoint being at 9q22. Cytological manifestations of gene amplification (double minutes or multiple microchromosomes) were noted in 6 tumors.  相似文献   

3.
The apple rootstock,A106(Malus sieboldii),had 17 bivalents in pollen mother cells at meiotic metaphase 1,and 17 chromosomes in a haploid pollen cell.Karyotypes were prepared from root-tip cells with 2n=34 chromosomes,Seven out of 82 karyotypes(8.5%) showed one pari of satellites at the end of the short arm of chromosome 3.C-bands were shown on 6 pairs of chromosomes 2,4,6,8,14,and 16 near the telomeric regions of short arms.Probes for three ripening-related genes from Malus x domestica:endopolygalacturonase(EPG,0.6kb),ACC oxidase(1.2kb),and ACC synthase(2kb)were hybridized in situ to metaphase chromosomes of A106.Hybridization sites for the EPG gene were observed on the long arm of chromosome 14 in 15 out of 16 replicate spreads and proximal to the centromere of chromosomes 6 and 11.For the ACC oxidase gene,hylridization sites were observed in the telomeric region of the short arm of chromosomes 5 and 11 in 87% and 81% of 16 spreads respectively,proxiaml to the centromere of chromosome 1 in 81% of the spreads,and on the long arm of chromosome 13 in 50% of the spreads. Physical mapping of three fruit ripening genes in an apple rootstock A106.Twenty five spreads were studied for the ACC synthase gene and hybridization sites were observed in the telomeric region of the short arm of chromosome 12 in 96% of the spreads.chromosomes 9 and 10 in 76% of the spreads,and chromosome 17 in 56% of the spreads.  相似文献   

4.
18-26S rDNA在4种重楼属植物中的定位   总被引:4,自引:0,他引:4  
为探讨rDNA在重楼属Paris L.中的分布规律,利用荧光原位杂交(FISH)对4种重楼属植物 的18-26S rDNA进行了定位。所有植物均为二倍体,基因组由A、B、C、D和 E5条染色体构成。(1)滇重楼P.polyphylla var.yunnanensis:2n=10=6m+4t,C和D染色体的 短臂上各有1个18-26S rDNA位点;(2)长柱重楼P.forrestii:2n=10=6m+4t,B染色体的长臂 、C和D染色体的短臂上各有1个位点;(3)五指莲P.axialis:2n=10=6m(2sat)+4t(2sat) +1-2B,C和D染色体的短臂上各有1个位点;在有1个B染色体的细胞中,B染色体没有信号点, 而有2个B染色体的细胞中,只有1个B染色体上有信号点,表明B染色体上有基因存在且其分裂 不均等;(4)大理重楼P.daliensis:2n=10=4m+2sm+2st+2t,C染色体的短臂上有1个位点。1 8-26S rDNA位点不仅出现在染色体的次缢痕上,也出现在非次缢痕位点。另外,4个种中C染 色体短臂末端均有18-26S rDNA。  相似文献   

5.
Previous studies of follicular thyroid tumors have shown loss of heterozygosity (LOH) on the short arm of chromosome 3 in carcinomas, and on chromosome 10 in atypical adenomas and carcinomas, but not in common adenomas. We studied LOH on these chromosomal arms in 15 follicular thyroid carcinomas, 19 atypical follicular adenomas and 6 anaplastic (undifferentiated) carcinomas. Deletion mapping of chromosome 10 using 15 polymorphic markers showed that 15 (37.5%) of the tumors displayed LOH somewhere along the long arm. Thirteen of these tumors showed deletions involving the telomeric part of chromosome 10q, distal to D1OS 187. LOH on chromosome 3p was found in 8 (20%) cases. Seven of these also showed LOH on chromosome 10q. In eight cases LOH was seen on chromosome 10q but not 3p. In comparison, the retinoblastoma gene locus at chromosome 13q showed LOH in 22% of the tumors. Most of these also had deletions on chromosome 10q. The results indicate that a region at the telomeric part of 10q may be involved in progression of follicular thyroid tumors.  相似文献   

6.
To identify the loci associated with progression of cervical carcinoma, chromosome 6 regions were tested for loss of heterozygosity. Detailed analysis with 28 microsatellite markers revealed a high frequency of allelic deletions for several loci of the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16-21, 6q23-24, 6q25, 6q27) arms of chromosome 6. Examination of 37 microdissected carcinoma and 22 cervical dysplasia specimens revealed allelic deletions from the HLA class I-III genes (6p22-21.3) and subtelomeric locus 6p25 were found in more than 40% dysplasia specimens. With multiple microdissection of cryosections, genetic heterogeneity of squamous cervical carcinoma was analyzed, and clonal and subclonal allelic deletions from chromosome 6 were identified. Half of the tumors had clonal allelic deletion of D6S273 (6p21.3), which is in a Ly6G6D (MEGT1) intron in the HLA class III gene locus. The frequency of allelic deletions from the chromosome 6 long arm was no more than 20% in dysplasias. Allelic deletions from two loci, 6q14 and 6q16-21, were for the first time associated with invasion and metastasis in cervical carcinoma.  相似文献   

7.
18-26S rDNA loci were mapped on chromosomes in four species of Par is,and the num-ber and position of rDNA sites in these species were compared f or analysis of the distribution of the sites. All the plants were diploids,and t he genome consisted of five chromosomes,A,B,C,D and E. (1)P. polyphylla var. yunnanensis,2n=10=6m+4t. Two18-26S rDNA loci were de-tected on the short arms o f C and D chromosomes;(2)P. forrestii,2n=10=6m+4t. One locus was detected on th e long arm of B chromosome,and also two loci on the short arms of C and D chromosomes;(3)P. axialis. 2n=10=6m(2sat)+4t(2sat)+1-2B. Two loci were detected o n the short arms of C and D chromosomes. One locus was detected in the cell with t wo B-chromosomes(B),but none was detected in that with only one B chromosome, indicating that rRNA gene existed on B chromsome,and an unequal division occurr ed during mitotic cycle of B-chromosomes. (4)P. daliensis,2n=10=4m+2sm+2st+2t. O ne locus was detected on the short arm of D chromo-some. The signals of18-26S rD NA appeared not only in the second constriction but also in the other regions of chromosome. It is noteworthy that one locus was detected in the terminal region o n the short arm of C chromosome in all the four species studied.  相似文献   

8.
A 5.5-kilobase (kb) single sequence DNA fragment (G8) reveals the DNA polymorphic locus D4S10 on Southern blot analysis. This locus is closely linked to Huntington disease and has been mapped to chromosome 4 short arm using human-mouse somatic cell hybrids, and specifically to chromosome 4 band p16 using DNA from individuals with deletions of chromosome 4 short arm who exhibit Wolf-Hirschhorn syndrome. With in situ hybridization techniques, we have confirmed the location of D4S10 on chromosome 4 and further localized it within band p16 utilizing five patients, four with overlapping chromosome 4 short-arm aberrations. The DNA segment G8 was hybridized to the mataphase chromosomes of the five patients. Two of them have different interstitial deletions of one of the chromosome 4 short arms (TA and BA), two have different chromosome 4 short-arm terminal deletions (RG and DQ), and one has a normal male karyotype. By noting the presence or absence of hybridization to the partially deleted chromosomes with known precise breakpoints, we were able to more accurately localize probe G8 to the distal half of band p16.1 of chromosome 4.  相似文献   

9.
An Aegilops cylindrica chromosome induces terminal deletions of chromosomes in wheat as identified by C-banding. We are constructing high-density physical maps of wheat chromosomes and have detected additional chromosome rearrangements. Among 63 lines with chromosomal subarm deletions in group 7 chromosomes, 7 lines (11.1%) were shown to harbor additional chromosome rearrangements. Two other lines were also omitted from the physical mapping because of the nature of the breakpoint calculations. The presence or absence of chromosome-specific restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) markers indicated that additional interstitial deletions are present in 3 lines (4.8%) with deletions in the short chromosome arms and in 4 lines (6.3%) with deletions in the long chromosome arms. We also used chromosome pairing analysis of F1 plants of deletion lines with double ditelosomic lines of Chinese Spring wheat to detect small terminal deletions. The deletion of the most distal 1% of chromosome arm 7AL was associated with a pairing reduction of 60%.  相似文献   

10.
We have established a series of 20 colorectal cancer cell lines and performed cytogenetic and RFLP analyses to show that the recurrent genetic abnormalities of chromosomes 1, 5, 17 and 18 associated with multistep tumorigenesis in colorectal cancer, and frequently detected as recurrent abnormalities in primary tumours, are also retained in long-term established cell lines. Earlier studies by us and other investigators showed that allelic losses of chromosomes 1 and 17 in primary colorectal cancers predicted poorer survival for the patients (P = 0.03). We utilized the cell lines to identify specific chromosomal sites or gene(s) on chromosomes 1 and 17 which confer more aggressive phenotype. Cytogenetic deletions of chromosome 1p were detected in 14 out of the 20 (70%) cell lines, whereas allelic deletions for 1p using polymorphic markers were detected in 13 out of 18 (72%) informative cell lines for at least one polymorphic marker. We have performed Northern blotting, immunohistochemical staining (p53 mRNA, protein) and RFLP analysis using several probes including p53 and nm23. RFLP analysis using a total of seven polymorphic markers located on 17p and 17q arms showed allelic losses aroundthe p53 locus in 16 out of the 20 cell lines (80%), four of which were losses of thep53 locus itself. In addition, seven cell lines (out of nine informative cases) also showed losses of thenm23 gene, four with concurrent losses of thep53 locus, while the remaining three were homozygous. In addition, five out of seven cell lines withnm23 deletions were derived from hepatic metastatic tumours, and one cell line was obtained from recurrent tumour. A comparison between allelic deletions of 1p and functional loss ofnm23 gene revealed a close association between these two events in cell lines derived from hepatic metastasis. Following immunohistochemical staining, nine out of the twenty cell lines showed high levels (25–80%) of mutant p53, four showed intermediate levels (>20%), and seven had undetectable levels of the protein. Of these seven, four showed complete absence of mRNA. Of the remaining three cell lines one showed aberrant mRNA due to germline rearrangement of thep53 gene, whereas in two cell lines normal levels of mRNA were present. Nineteen of the 20 cell lines had normal germline configurations for thep53 gene, while one showed a rearrangement. These data suggest that functional loss ofp53 andnm23 genes accomplished by a variety of mechanisms may be associated with poor prognosis and survival. In addition, concurrent deletions of chromosome regions 17p, 17q and 1p were closely associated with high-stage hepatic metastatic disease. These cell lines with well-characterized genetic alterations and known clinical history provide an invaluable source of material for various biological and clinical studies relating to multistep colorectal tumorigenesis.  相似文献   

11.
M. S. Ramanna 《Genetica》1969,40(1):279-288
Six aneuploid tomato plants with 2n–1=23 chromosomes were observed in populations grown from the seedlings treated with thermal neutrons and from seeds treated with X-rays. Four of the aneuploids were tertiary monosomics in which, as a result of centromeric interchanges between two different chromosomes, two whole arms were missing from the complement and two arms connected at the centromere. In one aneuploid, as a result of centromeric breakage, the two short arms of a homologous pair were missing from the complement and the two long arms connected to the long arm and the short arm respectively of another chromosome in which breakage had occurred also at the centromere. In one aneuploid, the interchange has occurred in the arms, and not in the centromere. Here the aneuploid condition is due to the loss of an arm with a centromere and a short piece of the other arm.In most of the tertiary monosomics the missing arms were either the short arms of sub-metacentric chromosomes or any of the arms of metacentric chromosomes. However, in one case the long arms of two submetacentric chromosomes were lost from the complement. That in spite of such large chromosomal deletions the sporophyte can survive, may be due to the fact that the aberrant plants are mostly chimeras.This study was part of a project resulting from a contract between the Association Euratom-I.T.A.L., and the Agricultural University of Wageningen.  相似文献   

12.
Summary Seven complete chromosomes and nine telocentric chromosomes in telotrisomics of barley (Hordeum vulgare L.) were identified and designated by an improved Giemsa N-banding technique. Karyotype analysis and Giemsa N-banding patterns of complete and telocentric chromosomes at somatic late prophase, prometaphase and metaphase have shown the following results: Chromosome 1 is a median chromosome with a long arm (Telo 1L) carrying a centromeric band, while short arm (Telo 1S) has a centromeric band and two intercalary bands. Chromosome 2 is the longest in the barley chromosome complement. Both arms show a centromeric band, an intercalary band and two faint dots on each chromatid at middle to distal regions. The banding pattern of Telo 2L (a centromeric and an intercalary band) and Telo 2S (a centromeric, two intercalary and a terminal band) corresponded to the banding pattern of the long and short arm of chromosome 2. Chromosome 3 is a submedian chromosome and its long arm is the second longest in the barley chromosome complement. Telo 3L has a centromeric (fainter than Telo 3S) and an intercalary band. It also shows a faint dot on each chromatid at distal region. Telo 3S shows a dark centromeric band only. Chromosome 4 is the most heavily banded one in barley chromosome complement. Both arms showed a dark centromeric band. Three dark intercalary bands and faint telomeric dot were observed in the long arm (4L), while two dark intercalary bands in the short arm (4S) were arranged very close to each other and appeared as a single large band in metaphase chromosomes. A faint dot was observed in each chromatid at the distal region in the 4S. Chromosome 5 is the smallest chromosome, which carries a centromeric band and an intercalary band on the long arm. Telo 5L, with a faint centromeric band and an intercalary band, is similar to the long arm. Chromosomes 6 and 7 are satellited chromosomes showing mainly centromeric bands. Telo 6S is identical to the short arm of chromosome 6 with a centromeric band. Telo 3L and Telo 4L were previously designated as Telo 3S and Telo 4S based on the genetic/linkage analysis. However, from the Giemsa banding pattern it is evident that these telocentric chromosomes are not correctly identified and the linkage map for chromosome 3 and 4 should be reversed. One out of ten triple 2S plants studied showed about 50% deficiency in the distal portion of the short arm. Telo 4L also showed a deletion of the distal euchromatic region of the long arm. This deletion (32%) may complicate genetic analysis, as genes located on the deficient segment would show a disomic ratio. It has been clearly demonstrated that the telocentric chromosomes of barley carry half of the centromere. Banding pattern polymorphism was attributed, at least partly, to the mitotic stages and differences in techniques.Contribution from the Department of Agronomy and published with the approval of the Director of the Colorado State University Experiment Station as Scientific Series Paper No. 2730. This research was supported in part by the USDA/SEA Competitive Research Grant 5901-0410-9-0334-0, USDA/ SEA-CSU Cooperative Research Grant 12-14-5001-265 and Colorado State University Hatch Project. This paper was presented partly at the Fourth International Barley Genetics Symposium, Edinburgh, Scotland, July 22–29, 1981  相似文献   

13.
A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.  相似文献   

14.
Summary A 36-month-old boy presented with short stature, short neck, shield-shaped chest, and mental retardation. Chromosome analysis showed trisomy for the short arm and the proximal portion of the long arm of chromosome 13 [47,XY,+der(13),t(13;22)(q12;q13)mat]. The patient's mother has a balanced translocation between the long arms of chromosomes 13 and 22 [46,XX,t(13;22)(q12;q13)]. The patient's neutrophils showed an elevated number of nuclear projections and his fetal hemoglobin level was undetectable.  相似文献   

15.
The genus Nothoscordum Kunth comprises approximately 20 species native to South America. Karyologically, the genus is remarkable for its large chromosomes and Robertsonian translocations. Variation in chromosome number has been recorded in a few polyploid species and it is unknown among diploids. This study presents the chromosome number and morphology of 53 individuals of seven populations of N. arenarium Herter (2n = 10). In addition, karyotype analyses after C-banding, staining with CMA and DAPI, and in situ hybridization with 5S and 45S rDNA probes were performed in six individuals from one population. All individuals exhibited 2n = 10 (6M + 4A), except for one tetraploid (2n = 20, 12M + 8A) and one triploid (2n = 15, 9M + 6A) plant. C-banding revealed the presence of CMA(+) /DAPI (-) heterochromatin in the short arm and in the proximal region of the long arm of all acrocentric chromosomes. The 45S rDNA sites co-localized with the CMA (+) regions of the acrocentrics short arms, while the 5S rDNA probe only hybridized with the subterminal region of a pair of metacentric chromosomes. A change in the pattern of CMA bands and rDNA sites was observed in only one individual bearing a reciprocal translocation involving the long arm of a metacentric and the long arm of an acrocentric chromosome. These data suggest that, despite isolated cases of polyploidy and translocation, the karyotype of N. arenarium is very stable and the karyotypic instability described for other species may be associated with their polyploid condition.  相似文献   

16.
The complete DNA replication sequence of the entire complement of chromosomes in the Chinese hamster may be studied by using the method of continuous H3-thymidine labeling and the method of 5-fluorodeoxyuridine block with H3-thymidine pulse labeling as relief. Many chromosomes start DNA synthesis simultaneously at multiple sites, but the sex chromosomes (the Y and the long arm of the X) begin DNA replication approximately 4.5 hours later and are the last members of the complement to finish replication. Generally, chromosomes or segments of chromosomes that begin replication early complete it early, and those which begin late, complete it late. Many chromosomes bear characteristically late replicating regions. During the last hour of the S phase, the entire Y, the long arm of the X, and chromosomes 10 and 11 are heavily labeled. The short arm of chromosome 1, long arm of chromosome 2, distal portion of chromosome 6, and short arms of chromosomes 7, 8, and 9 are moderately labeled. The long arm of chromosome 1 and the short arm of chromosome 2 also have late replicating zones or bands. The centromeres of chromosomes 4 and 5, and occasionally a band on the short arm of the X are lightly labeled.  相似文献   

17.
Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.  相似文献   

18.
Karyotypes of Tago's brown frog Rana tagoi from the Chausu mountains in Minamishinshu of Nagano Prefecture were examined by conventional Giemsa staining, C-banding and late replication (LR)-banding. Chromosome number was 2n = 28 in all cases. The 28 chromosomes consisted of four pairs (1-4) of large biarmed chromosomes, two pairs (5-6) of telocentric chromosomes and eight pairs (7-14) of small biarmed chromosomes. Chromosome pair 11 had a secondary constriction on the long arm. In females, the C-band on the long arm of chromosome pair 6 was detected in both homologs, but was absent from the arms of the homologs of chromosome pairs 5 and 9. In males, C-bands were found in the long arms of both homologs of chromosome pairs 5 and 6, were present only in one homolog of chromosome pair 5 for certain male specimens and found in only one homolog of chromosome pair 9. Specimens of R. tagoi (2n = 28) should thus have two pairs of telocentric chromosomes to provide the same number of chromosome arms, these originating quite likely from chromosome pair 1 in the 26-chromosome specimens by centric fission. Heteromorphic sex chromosomes of the XX-XY type in R. tagoi (2n = 28) in the Chausu mountains were identified. Karyotypes of tail-tip cells from a hybrid tadpole between female R. tagoi (2n = 26) from the Hinohara village in Tokyo and male R. tagoi (2n = 28) from the Chausu mountain population were examined by squash preparation. Chromosome number was 2n = 27 in all tadpoles. The 27 chromosomes consisted of one chromosome set of R. tagoi (2n = 28) and one of R. tagoi (2n = 26).  相似文献   

19.
The objective of this study was molecular characterization of a set of deletion stocks and other aneuploids for use in chromosome bin mapping of ESTs in wheat. Wheat aneuploid stocks including 21 nullisomic-tetrasomic (NT), 24 ditelosomic (Dt), and 101 deletion (del) lines were screened with 526 EST clones. A total of 1,951 loci were detected by 493 informative EST clones and tagged 150 of the 159 deletion intervals or chromosome bins. Previously described deletion lines del1AS-4, del6AL-2, del6BS-6, and del7DS-6 were found to have normal chromosome constitution. The short arm deletion in del3AS-3 may be translocated from an unknown chromosome as this stock is nullisomic for the 3AS arm. Thirty-five new deletions were detected in 26 lines. Most of the new deletions occurred in terminal regions of chromosomes and probably resulted from the loss of very small terminal fragments that were difficult to detect cytologically. Eleven chromosome aberrations were also detected in two NT and five Dt lines. Overall, the chromosome bin map provides a resolution of around 28 Mb for an anchor map of a basic set of seven chromosomes of the Triticeae. Any target gene can be allocated to a specific 28-Mb bin and associated ESTs, anchored to the other Triticeae/grass maps including rice and, therefore, amenable to molecular cloning by comparative and wheat-based positional cloning methods. Electronic Publication  相似文献   

20.
Wu J  Jenkins JN  McCarty JC  Saha S 《Genetica》2010,138(11-12):1171-1179
Determination of chromosomes or chromosome arms with desirable genes in different inbred lines and/or crosses should provide useful genetic information for crop improvement. In this study, we applied a modified additive-dominance model to analyze a data set of 13 cotton chromosome substitution lines and their recurrent parent TM-1, five commercial cultivars, and their 70 F(2) hybrids. The chromosome additive and dominance variance components for eight agronomic and fiber traits were determined. On average, each chromosome or chromosome arm was associated with 6.5 traits in terms of additive and/or dominance effects. The chromosomes or chromosome arms, which contributed significant additive variances for the traits investigated, included 2, 16, 18, 25, 5sh (short arm), 14sh, 15sh, 22sh, and 22Lo (long arm). Chromosome additive effects were also predicted in this study. The results showed that CS-B 25 was favorably associated with several fiber traits, while FM966 was favorably associated with both yield and fiber traits with alleles on multiple chromosomes or chromosome arms. Thus, this study should provide valuable genetic information on pure line development for several improved traits such as yield and fiber quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号