首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Foxtail millet ( Setaria italica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02–0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.  相似文献   

2.
Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei''s average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.  相似文献   

3.
Gupta S  Kumari K  Das J  Lata C  Puranik S  Prasad M 《Génome》2011,54(7):586-602
Introns are noncoding sequences in a gene that are transcribed to precursor mRNA but spliced out during mRNA maturation and are abundant in eukaryotic genomes. The availability of codominant molecular markers and saturated genetic linkage maps have been limited in foxtail millet (Setaria italica (L.) P. Beauv.). Here, we describe the development of 98 novel intron length polymorphic (ILP) markers in foxtail millet using sequence information of the model plant rice. A total of 575 nonredundant expressed sequence tag (EST) sequences were obtained, of which 327 and 248 unique sequences were from dehydration- and salinity-stressed suppression subtractive hybridization libraries, respectively. The BLAST analysis of 98 EST sequences suggests a nearly defined function for about 64% of them, and they were grouped into 11 different functional categories. All 98 ILP primer pairs showed a high level of cross-species amplification in two millets and two nonmillets species ranging from 90% to 100%, with a mean of ~97%. The mean observed heterozygosity and Nei's average gene diversity 0.016 and 0.171, respectively, established the efficiency of the ILP markers for distinguishing the foxtail millet accessions. Based on 26 ILP markers, a reasonable dendrogram of 45 foxtail millet accessions was constructed, demonstrating the utility of ILP markers in germplasm characterizations and genomic relationships in millets and nonmillets species.  相似文献   

4.
SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F2 population, i.e. “B100” of cultivated S. italica and “A10” of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces’ grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
 A foxtail millet-rice comparative genetic map was constructed using mapped rice RFLP markers and wheat genomic and cDNA clones with known map position in rice. About 74% and 37% of the cDNA and genomic clones, respectively, were transferable to foxtail millet, confirming that conservation at the DNA level is greatest in genic regions. A high degree of conserved colinearity was observed between the two genomes. Five entire foxtail millet chromosomes appear to be colinear with five entire rice chromosomes. The remaining four foxtail millet linkage groups each show colinearity with segments of two rice chromosomes. The rearrangements of rice chromosomes 3 and 10 to form foxtail millet chromosome IX, and 7 and 9 to form chromosome II are very similar to those required to form maize chromosomes 1 and 7 and sorghum linkage groups C and B, indicating Setaria’s clear taxonomic position within the subfamily of the Panicoideae. Received: 18 December 1996 / Accepted: 4 August 1997  相似文献   

6.
So far only very few simple sequence repeat (SSR) markers developed from grass species have had their primer sequences published. To make more markers available to the scientific community, we isolated and sequenced 256 microsatellite‐containing clones from four genome libraries of a Lolium multiflorum×Festuca glaucescens F1 hybrid following enrichment in (TC)n, (TG)n, or both repeats. In this work, we report the primer sequences of 60 SSRs including preliminary results of polymorphism for mapping.  相似文献   

7.
We attempted genetic analysis and mapping of a gene responsible for the trait “spikelet-tipped bristles” (stb) in foxtail millet, Setaria italica (L.) P.Beauv., as the first step in positional cloning of the gene. This trait is important not only in grain yield such as grain number per panicle of this millet but also in the evolutionary development of the “bristle grass” clade including genera Setaria, Pennisetum and Cenchrus in subfamily Panicoideae. First of all, we confirmed that this trait is controlled by a single recessive gene, using two populations of F2 plants; one was a cross combination between two Taiwanese landraces and the other was a combination between a Taiwanese landrace and a Japanese landrace. Using the latter of the two F2 populations, with transposon display (TD) markers and simple sequence repeat (SSR) markers developed previously, we constructed a genetic map with 13 linkage groups and mapped the responsible gene (stb1) on chromosome 2. We also developed novel SSR markers by using foxtail millet genome sequence information, and we finally constructed nine linkage groups corresponding to nine chromosomes with a total length of 1287.5 cM, and mapped stb1 more precisely on chromosome 2. This work suggests that the foxtail millet genome sequences recently published are useful for developing genome-wide SSR markers for constructing linkage maps and mapping genes in this millet.  相似文献   

8.
Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends   总被引:15,自引:3,他引:12  
Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala ‘Maxxa’, 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9% of the coverage was located on the A subgenome while 39.7% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
10.
We have isolated more than 12,000 clones containing microsatellite sequences, mainly consisting of (CA)n dinucleotide repeats, using genomic DNA from the BN strain of laboratory rat. Data trimming yielded 9636 non-redundant microsatellite sequences, and we designed oligonucleotide primer pairs to amplify 8189 of these. PCR amplification of genomic DNA from five different rat strains yielded clean amplification products for 7040 of these simple-sequence-length-polymorphism (SSLP) markers; 3019 markers had been mapped previously by radiation hybrid (RH) mapping methods (Nat Genet 22, 27–36, 1998). Here we report the characterization of these newly developed microsatellite markers as well as the release of previously unpublished microsatellite marker information. In addition, we have constructed a genome-wide linkage map of 515 markers, 204 of which are derived from our new collection, by genotyping 48 F2 progeny of (OLETFxBN)F2 crosses. This map spans 1830.9 cM, with an average spacing of 3.56 cM. Together with our ongoing project of preparing a whole-genome radiation hybrid map for the rat, this dense linkage map should provide a valuable resource for genetic studies in this model species. Received: 8 July 1999 / Accepted: 3 December 1999  相似文献   

11.
We carried out genetic analysis and mapping of a gene for the tip-branched panicle (Nekode or Neko-ashi in Japanese) in foxtail millet. We revealed that this trait is controlled by a single dominant gene by using two F2 populations and designated the gene as NEKODE1. By using an F2 population between closely related Taiwanese landraces with a new method based on next-generation sequencing (NGS), QTL-seq, we successfully and rapidly mapped the responsible gene (NEKODE1) on chromosome 9. We also mapped the gene by using SSR markers to verify that this gene is located at the position on chromosome 9, suggested by QTL-seq, and we obtained SSR markers closely linked to the gene and found several candidate genes for this trait in a foxtail millet genome sequence database. The use of a foxtail millet genome sequence and NGS enables rapid mapping of a gene(s) by using a segregation population derived from a cross even between closely related foxtail millet landraces.  相似文献   

12.
Microsatellites (i.e., simple sequence repeats [SSRs]) are highly variable genetic markers that are widely used at an intraspecific level in population genetic studies. Here we employed an enrichment strategy for microsatellite isolation by using microsatellite oligoprobes and magnetic capture of the fragments (Fischer and Bachmann, 1998) inProsopis chilensis (Mol.) Stuntz (Fabaceae). We analyzed the obtained level of enrichment by sequencing 120 enriched genomic fragments. A total of 521 SSR motives were detected. According to specific search criteria (SSR motifs ≥3 repeat units and ≥6 bp length), 95.8% of the clones contained SSR motifs. Of these, 7.8% showed homology to chloroplast sequences and 92.2% to nuclear sequences. When regarding only nuclear SSRs with 5 or more repeat units and a minimum length of 10 bp, the level of enrichment was 30.8%. A FASTA search against the European Molecular Biology Laboratory (EMBL) database univocally revealed 4 clones in transcribed regions, 102 clones in genomic regions with unknown function, and 9 clones in chloroplast regions. Among the loci with longer repeat units (≥10 bp, ≥5 repeat units), 3 were in transcribed regions and 65 were in other genomic regions. We discuss the applicability of these markers for population genetic studies.  相似文献   

13.
Genomic microsatellite markers are capable of revealing high degree of polymorphism. Sugarcane (Saccharum sp.), having a complex polyploid genome requires more number of such informative markers for various applications in genetics and breeding. With the objective of generating a large set of microsatellite markers designated as Sugarcane Enriched Genomic MicroSatellite (SEGMS), 6,318 clones from genomic libraries of two hybrid sugarcane cultivars enriched with 18 different microsatellite repeat-motifs were sequenced to generate 4.16 Mb high-quality sequences. Microsatellites were identified in 1,261 of the 5,742 non-redundant clones that accounted for 22% enrichment of the libraries. Retro-transposon association was observed for 23.1% of the identified microsatellites. The utility of the microsatellite containing genomic sequences were demonstrated by higher primer designing potential (90%) and PCR amplification efficiency (87.4%). A total of 1,315 markers including 567 class I microsatellite markers were designed and placed in the public domain for unrestricted use. The level of polymorphism detected by these markers among sugarcane species, genera, and varieties was 88.6%, while cross-transferability rate was 93.2% within Saccharum complex and 25% to cereals. Cloning and sequencing of size variant amplicons revealed that the variation in the number of repeat-units was the main source of SEGMS fragment length polymorphism. High level of polymorphism and wide range of genetic diversity (0.16–0.82 with an average of 0.44) assayed with the SEGMS markers suggested their usefulness in various genotyping applications in sugarcane. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A novel set of informative microsatellite markers for pepper (Capsicum annuum L.) is provided. Screening of approximately 168 000 genomic clones and 23 174 public database entries resulted in a total of 411 microsatellite-containing sequences that could be used for primer design and functional testing. A set of 154 microsatellite markers originated from short-insert genomic libraries and 257 markers originated from database sequences. Of those markers, 147 (61 from genomic libraries and 86 from database sequences) showed specific and scoreable amplification products and detected polymorphisms between at least 2 of the 33 lines of a test panel consisting of cultivated and wild Capsicum genotypes. These informative markers were subsequently surveyed for allelic variation and information content. The usefulness of the new markers for diversity and taxonomic studies was demonstrated by the construction of consistent phylogenetic trees based on the microsatellite polymorphisms. Conservation of a subset of microsatellite loci in pepper, tomato, and potato was proven by cross-species amplification and sequence comparisons. For several informative pepper microsatellite markers, homologous expressed sequence tag (EST) counterparts could be identified in these related species that also carry microsatellite motifs. Such orthologs can potentially be used as reference markers and common anchoring points on the genetic maps of different solanaceous species.  相似文献   

15.
Crop improvement is a multifaceted micro-evolutionary process, involving changes in breeding approaches, planting configurations and consumption preferences of human beings. Recent research has started to identify the specific genes or genomic regions correlate to improved agronomic traits, however, an apparent blank between the genetic structure of crop elite varieties and their improving histories in diverse modern breeding programs is still in existence. Foxtail millet (Setaria italica) was one of the earliest cereal crops to be domesticated and served as a staple crop for early civilizations in China, where it is still widely grown today. In the present trial, a panel of foxtail millet elite varieties, which were released in the last sixty years in different geographical regions of China, was characterized using microsatellite markers (SSRs). A clear separation of two subpopulations corresponding to the two eco-geographical regions of foxtail millet production in China was identified by the dataset, which also indicated that in more recently released elite varieties, large quantities of accessions have been transferred from spring-sowing to summer-sowing ecotypes, likely as a result of breeding response to planting configurations. An association mapping study was conducted to identify loci controlling traits of major agronomic interest. Furthermore, selective sweeps involved in improvement of foxtail millet were identified as multi-diverse minor effect loci controlling different agronomic traits during the long-term improvement of elite varieties. Our results highlight the effect of transition of planting configuration and breeding preference on genetic evolvement of crop species.  相似文献   

16.

Key message

Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R 2  = 18 %) with nine agronomic traits in foxtail millet.

Abstract

Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R 2 = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.  相似文献   

17.
In this study, 28 simple sequence repeat (SSR) primer sets were used to analyze the genetic diversity, population structure, and genetic relationships among 37 accessions of foxtail millet from Korea, China and Pakistan. A total of 298 alleles were detected with an average allele number of 10.6 per locus among 37 foxtail millet accessions. The number of alleles per locus ranged from 2 (b226) to 20 (b236). Of the 298 alleles, 138 alleles (46.3%) were rare (frequency < 0.05), 152 alleles (51.0%) were detected at an intermediate frequency (range, 0.05?C0.50), and eight alleles (2.7%) were abundant (frequency > 0.50), respectively. The average gene diversity values were 0.652, 0.692, and 0.491 and polymorphic information content values were 0.621, 0.653, and 0.438, for accessions from Korea, China, and Pakistan, respectively. The accessions from China showed higher SSR diversity than those from Korea and Pakistan. A phylogenetic tree constructed using the un-weighted pair group methods with arithmetic mean algorithm revealed three major groups of accessions that were not congruent with geographical distribution patterns with a few exceptions. The lack of correlation between the accession clusters and their geographic location indicates that the diffusion of foxtail millet from China to Korea might have occurred through multiple routes. Our results provide support for the origin and diffusion route of foxtail millet in East Asia. This SSR-based assessment of genetic diversity, genetic relationships, and population structure among genetic resources of foxtail millet landraces will be valuable to foxtail millet breeding and genetic conservation programs in Korea.  相似文献   

18.
Data mining of gene sequences available from various projects dealing with the development of expressed sequence tags (ESTs) can contribute to the discovery of new microsatellite markers. Our aim was to develop new microsatellite markers in hop isolated from an enriched cDNA library and from coding GenBank sequences and to test their suitability in hop diversity studies and for construction of a linkage map. In a set of 614 coding GenBank sequences, 72 containing microsatellites were found (11.7%); the most frequent were trinucleotide repeats (54.0%) followed by dinucleotide repeats (34.5%). Additionally, 11 sequences containing microsatellites were isolated from an enriched cDNA library. A total of 34 primer pairs were designed, 29 based on GenBank sequences and five on sequences from the cDNA enriched library. Twenty-seven (79.4%) coding microsatellites were successfully amplified and used in diversity and linkage mapping studies. Eleven primer pairs amplified 12 coding microsatellite loci suitable for mapping and were placed on female and male linkage maps. We were able to extend previous simple sequence repeat (SSR) female, male and integral maps by 38.8, 25.8 and 40.0 cM, respectively. In the diversity study, 36 diverse hop genotypes were analyzed. Twenty-four coding microsatellites were polymorphic, 17 showing co-dominant behavior and 7 primer pairs amplifying three or more bands in some hop genotypes. Altogether, 143 microsatellite DNA fragments were amplified and they revealed a clear separation of hop genotypes according to geographical region, use or breeding history. In addition, a discussion and comparison of results with other plant coding/EST SSR studies is presented. Our results showed that these microsatellite markers can enhance hop diversity and linkage mapping studies and are a comparable marker system to non-coding SSRs.  相似文献   

19.
Genetic analysis, particularly the development of genetic linkage maps in forage grass species, lags well behind other members of the Poaceae. Comparative mapping within this family has revealed extensive conservation in gene and marker synteny among chromosomes of diverse genera. Recently, the ability to transfer mapped STS markers between barley and wheat has been demonstrated. The transfer of mapped STS markers between cereals and forage grasses could provide PCR-based markers for comparative mapping in these species providing they amplify homologous sequences. In this study, primers derived from three barley genes of defined function and a gene from Phalaris coerulescens were used to amplify homologous fragments in Lolium perenne. Primers derived from two barley and two oat cDNA clones were also tested along with eight barley and two Triticum tauchii STS markers. Twenty one primer pairs derived from 18 loci were tested. Eleven primer pairs (52%) amplified homologous sequences in L. perenne from ten (55%) of the loci targetted. Thirteen new STS markers were generated in L. perenne, of which ten have been mapped in barley or rye and amplify homologous sequences in L. perenne. Received: 20 October 2000 / Accepted: 13 January 2001  相似文献   

20.
Enrichment methods were optimised in order to isolate large numbers of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.), with the aim of developing a comprehensive set of loci for trait mapping and cultivar identification. Two libraries were constructed showing greater than 50% enrichment for a variety of SSR-motif types. Sequence characterisation of 1853 clones identified 859 SSR-containing clones, of which 718 were unique. Truncation of flanking sequences limited potential primer design to 366 clones. One-hundred selected SSR primer pairs were evaluated for amplification and genetic polymorphism across a panel of diverse genotypes. The efficiency of amplification was 81%. A relatively high level of SSR polymorphism was detected (67%), with a range of 2–7 alleles per locus. Mendelian segregation of alleles detected by selected SSR-locus primer pairs was demonstrated in the F1 progeny of a pair cross. Cross-species amplification was detected in a number of related pasture and turfgrass species, with high levels of transfer to other Lolium species and members of the related genus Festuca. The identity of putative SSR ortholoci in these related species was confirmed by DNA sequence analysis. These loci constitute a valuable resource of ideal markers for the molecular breeding of ryegrasses and fescues. Received: 8 May 2000 / Accepted: 13 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号