首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The sub-membranous skeleton of the ciliate Paramecium, the epiplasm, is composed of hundreds of epiplasmic scales centered on basal bodies, and presents a complex set of proteins, epiplasmins, which belong to a multigenic family. The repeated duplications observed in the P. tetraurelia genome present an interesting model of the organization and evolution of a multigenic family within a single cell.  相似文献   

2.
Isolated pellicles (cell ‘ghosts’) have been prepared from Tetrahymena thermophila strain B by two different methods. Using differential solubilization in combination with polyacrylamide gel electrophoresis and electron microscopy, we have tentatively identified the major proteins found in the surface-associated cytoskeleton. The ‘epiplasm’, a continuous layer of fibrous material found just beneath the surface membranes, appears to contain two major proteins. The smaller of the two (mol. wt 122 000 D) is believed to be present throughout the layer, whereas the larger protein (mol. wt 145 000 D) appears to be localized in the regions where ciliary basal bodies connect to the epiplasmic layer and to surface membranes. Evidence is presented which suggests that actin may also be present in this structure. Tubulin has been isolated from the cytosol of Tetrahymena and compared with cytoskeletal tubulin and porcine brain tubulin. A major protein of mol. wt 250 000 D which is found in Tetrahymena pellicles appears to be the major component of kinetodesmal fibers (striated elements which attach to the ciliary basal bodies).  相似文献   

3.
A contractile ring consisting mainly of microfilaments was found in the fission zone of dividing Tetrahymena pyriformis. Diameters of the microfilaments were widely distributed from 2.5 to 15 nm. Ring-associated structures such as lateral stripes, linkers and beads with siender tails were recognized. Lateral stripes arranged at regular intervals of about 84 nm on some parts of microfilament bundles were found in both tangential and transverse sections, suggesting that they correspond to bands fastening the contractile ring microfilaments. Linkers that connect individual lateral stripes to the epiplasmic layer were present. Beads or beads with slender tails were found to be arranged on some microfilaments.The results of the present paper also indicate that drastic morphological changes occur in the cortex of the fission zone, especially in the epiplasmic layer, accompanying contraction of the division furrow. The epiplasmic layer which was proved to be a compact filamentous network in this study has been known to exist at the periphery of cytoplasm in immediate contact with one of the cell surface membranes, the inner alveolar membrane; however, in the fission zone of the dividing ceil, it was frequently separated from the membrane and subsided into the cytoplasm. The subsided epiplasmic layer was then loosened and dispersed. The subsidence of the epipiasmic layer appears to be caused by the force generated by the contraction of the contractile ring and transmitted with the linkers to the epiplasmic layer. The changes observed in the epiplasmic layer are presumably indispensable for the rigid cortical layer contraction involved in cytokinesis of Tetrahymena.  相似文献   

4.
ABSTRACT. Extraction of the ciliated protozoon Tetrahymena with nonionic detergents produces a surface-related cytoskeleton that consists of a basic lamina of whole-cell dimensions together with associated microtubule and microfilament systems, including all ciliary basal bodies. The organization of the isolated cytoskeleton has been studied using scanning electron microscopy, and several new features are described in the oral region. Here the ciliary basal bodies are arranged in a very stable and highly complex pattern. This pattern was found to be identical in the four species of Tetrahymena we examined. In addition, various microtubular bundles and two separate systems of filaments were observed in scanning electron micrographs of isolated oral skeletons. The appearance of the deep fiber bundle in preparations of this type suggests that it arises, at least in part, as an extension of the ribbed wall microtubules. On the basis of its distribution within the oral skeleton, one of the filament systems described is suggested to be a contractile system responsible for pinching off food vacuoles.  相似文献   

5.
ABSTRACT. Twelve monoclonal antibodies were raised that are specific for the membrane skeleton of Tetrahymena . Five were directed against T. pyrifomis and seven were directed against T. thermophila . Some cross-reactivity between species was found. Each monoclonal antibody recognized one of the three major components of epiplasm, i.e. the bands A, B, and C identified in electrophoretic separations of epiplasmic proteins. It was found, using these antibodies, that the epiplasmic proteins A, B, and C have overlapping but independent distributions within the cell.  相似文献   

6.
Summary The unique monoclonal antibody FXXXIX 12G9 obtained againstTetrahymena cortices was used to label cytoskeletal structures related to basal body proliferation inParaurostyla weissei. The antibody binds to an amorphous material interconnecting basal bodies in compound ciliary structures: dorsal units, cirri and membranelles in interfission cells, and filamentous structures supporting the primordia of ciliary structures and fission line in dividing cells. The antibody visualized meridional filaments preceding proliferation of new basal bodies in the oral primordium and structures accompanying all developing ciliary primordia. It congregated in differentiating new procirri and membranelles, whereas another population of transient meridional structures accompanied the final distribution of new structures. A meridional filament connecting transverse cirri with the oral apparatus, marking the future stomatogenic meridian, persisted in both division products until completion of cell elongation. The fission line was found to originate from an anterior extension of the pre-oral filament toward the parental oral structures. It then encircled the cell's midbody demarcating the boundary between daughter cells; two additional circumferential structures bordering the anterior and posterior ends of differentiating division products participate in formation of the new poles. They disappear after separation of daughter cells and completion of resorption of parental ciliature. In the enhanced multi-left-marginal mutant expressing gross hyperduplication of basal bodies, the location of the 12G9 antigen corresponded to that in wild-type cells. The sequence of formation of meridional filaments in the mutant was found to be altered. The filaments in the left lateral domain preceded the formation of the preoral filament, yet the temporal pattern of basal body assembly was not modified. The fission line, as in wild-type cells, originated in connection with the oral primordium. We conclude that the nucleation of the filamentous structures bearing the 12G9 antigen and the basal body assembly occur by independent mechanisms reading the same cell cycle signals. We suggest that the 12G9-antigen-bearing protein might be similar to septins: involved in signaling the position of the oral primordium and the fission line and functioning in establishing and maintaining the asymmetric cortical domain characteristics.Abbrevations AZM zone of adorai membranelles - bb basal bodies - CC caudal cirri - FC frontal cirri - Fmf frontal meridional filament - FTV the primordia of fronto-ventro-transverse cirri - LD, RD dorsal rows of bristle units - LM, RM left or right marginal cirral row - OA oral apparatus - OP primordium of the adoral membranelles - pLM, pRM primordium of the left or right marginal cirri - pLD, pRD primordia of the left or right dorsal bristle rows - pUM primordium of the undulating membranes - TC transverse cirri - UM undulating membranes - VC ventral cirral rows  相似文献   

7.
An important unsolved problem lies in the mechanisms that determine overall size, shape, and the localization of subcellular structures in eukaryotic cells. The membrane skeleton must play a central role in these processes in many cell types, and the ciliate membrane skeleton, or epiplasm, offers favorable opportunities for exploring the molecular determinants of cortical organization. Among the ciliates, Tetrahymena is well suited for the application of a wide range of molecular and cellular approaches. Progress has been made in the identification and sequencing of genes and proteins that encode epiplasmic and cortical proteins. The amino acid sequences of these proteins suggest that they define new classes of cytoskeletal proteins, distinct from the articulin and epiplasmin proteins. We will also discuss recent in vivo and in vitro studies of the regulation of assembly of these cortical proteins. This will include information regarding the down-regulation of epiplasmic proteins during cleavage, their topographic regulation in the cell cycle, and the results of in vitro assembly and binding studies of the epiplasmic C protein.  相似文献   

8.
Biochemical evidence is presented for the presence of cyclin in Tetrahymena. Zeuthen previously postulated the existence of a heat-labile “division protein” to explain heat-shock-induced division synchrony in Tetrahymena [(1964) Synchrony in Cell Division and Growth (Zeuthen, E., Ed.), pp. 99–158, Interscience, New York]. We show that cyclin is heat-labile in Tetrahymena and suggest that cyclin may be Zeuthen's division protein. Cyclin and cell cycle control is of interest in Tetrahymena because the division mechanism drives macronuclear amitosis, closed and acentric micronuclear mitosis, and cortical differentiation in this cell type.  相似文献   

9.
SYNOPSIS. The suctorian Heliophrya erhardi (Rieder) Matthes is attached to the substrate by the flattened ventral side of the cell body. The dorsal is covered by a pellicle composed of 3 unit membranes. Below the pellicle is a 0.4–0.8-μm thick epiplasm composed of 6–8-nm thick fibrils. Microtubules form a network beneath the epiplasm. The epipalsm is penetrated by tube-like pellicular pits, which are lined by the cell membrane and end beneath the epiplasm in a saccule-like enlargement. During conjugation, 2 neighboring organisms form cytoplasmic processes which come into contact and fuse, thus forming a cytoplasmic bridge between the 2 cells. Around the bridge the pellicles of both organisms fuse, and the partners become united by a continuous common membrane system. Across the entire conjugation bridge the 2 fused epiplasms form a septum. Tube-like structures can be seen lying partly in the epiplasmic septum and partly in the adjacent cytoplasm. These structures are open at both ends and represent remnants of the pellicular pits. No trace of the original pellicular membranes can be found at the fusion area within the epiplasmic septum. The cytoplasm of the conjugation partners is separated only by the fused epiplasms forming the epiplasmic septum.  相似文献   

10.
SYNOPSIS. The expression of intracellular patterning is perhaps nowhere more impressive than in the arrangements of structural elements associated with the cell surface in protozoa. The view is proposed that biochemical studies of protozoan plasma membranes and associated surface structures represent important contributions of potential significance for the understanding of the perpetuation, and expression of positional information at the intracellular level. Some recent work dealing with the isolation, identification, and metabolism of pellicular proteins in Tetrahymena is presented and discussed. Some integral membrane proteins have been identified by iodination and polyacrylamide gel electrophoresis. Labeling studies suggest heterogeneous turnover rates within the group of presently identified membrane proteins. High molecular weight proteins with some similarity to spectrin have been isolated from Tetrahymena epiplasm. It is suggested that the ciliate epiplasm is one example of membrane-associated, actomyosin-like systems found in a variety of cell types. The epiplasm may play a role in the positioning of surface-associated structures and in the control of cell shape.  相似文献   

11.
ABSTRACT. Allantosoma intestinalis, a suctorian ciliate isolated from the intestine of the horse, was studied utilizing light and electron optical methods. These small sausage-shaped organisms have a varying number of tentacles (between one and 12) located at each extremity of the body. The microtubular axoneme of each tentacle in cross-section consists of two files of microtubules arranged in a daisy-like configuration. Haptocysts occur in the tentacle shaft, abutted to the plasma membrane of the knob of the tentacle, and in the cell body. The haptocysts are bottle-shaped, with prominent annular striations around their midportion. The cell is covered by three membranes, an outer plasma membrane, an outer alveolar, and an inner alveolar membrane. A thin epiplasmic layer is found beneath the inner alveolar membrane, and a single row of microtubules underlies the epiplasm. The subpellicular microtubules are arranged parallel to each other forming a corset around the cell along the long axis: such a system is not characteristic of suctorians. A field of diminutive kinetosomes (each 180 nm long, max. of 15 per field), lacking cilia, was found below the cortex. The function of these prokinetosomes is unknown. A ciliated swarmer has not been observed, only the nonciliated adult. The characteristics of Allantosoma are compared with those of other suctorian genera.  相似文献   

12.
Summary InCryptomonas ovata, long, dorsal flagella are produced which transform during the following cell division into short, ventral flagella. At division there is a reorientation in cell polarity, and the parental basal apparatus, which comprises the basal bodies and associated roots, is distributed to the daughter cells via a complex sequence of events. Flagellar apparatus development includes the transformation of a four-stranded microtubular root into a mature root of different structure and function. Each newly formed basal body nucleates new microtubular roots, but receives a striated fibrous root from a parental basal body. The striated roots are originally produced on the transforming basal body and are transferred to the new basal bodies at each successive division. The development of the asymmetric flagellar apparatus throughout the cell cycle is described.  相似文献   

13.
Summary— The morphogenesis of basal bodies is described in the phytoflagellate Polytoma papillatum. The observations are based on the analysis of ultrathin serial sections through the flagellar apparatus of interphase, mitotic, and postmitotic cells using transmission electron microscopy. Formation of new basal bodies starts in prometaphase. Individual A-subfibres develop orthogonally to the long axis of mature basal bodies. The microtubules assemble at the surface of an annulus of amorphous material. By telophase, a complete cylinder of A-subfibres with a length of approximately 300 nm has formed. Although the proximal ends of these new probasal bodies are detached from the mature basal bodies, prominent reorientation of the probasal bodies does not occur. They remain with their proximal ends in the vicinity of mature basal bodies. In daughter cells with probasal bodies around 400 nm long, the assembly of microtubular triplets is initiated. B- and C-subfibres first show up distal from the mature basal bodies and may elongate towards them. Thus, A-subfibres on the one side and B- and C-subfibres on the other appear to growt with opposite polarity. If A-subfibres grow at their plus ends, B- and C-subfibres elongate at their minus ends. The latter is unusual in comparison with individual cytoplasmic and spindle microtubules. Possible the presence of a lateral template in the form of the A-subfibres is responsible for the deviating growth characteristics of the incomplete B- and C-subfibres. In interphase cells, the mature basal bodies extend into long flagella. The new basal bodies remain devoid of flagella and are less than 85 nm long. Thus, they have shortened relative to their precursors in mitotic and postmitotic cells. At the onset of a new division cycle, the flagellate basal badies shed their flagella. The breaking point is at the triplet-doublet transition of the flagellum.  相似文献   

14.
Summary The ultrastructure of the flagellar apparatus of aPleurochrysis, a coccolithophorid was studied in detail. Three major fibrous connecting bands and several accessory fibrous bands link the basal bodies, haptonema and microtubular flagellar roots. The asymmetrical flagellar root system is composed of three different microtubular roots (referred to here as roots 1,2, and 3) and a fibrous root. Root 1, associated with one of the basal bodies, is of the compound type, constructed of two sets of microtubules,viz. a broad sheet consisting of up to twenty closely aligned microtubules, and a secondary bundle made up of 100–200 microtubules which arises at right angles to the former. A thin electron-dense plate occurs on the surface of the microtubular sheet opposite the secondary bundle. The fibrous root arises from the same basal body and passes along the plasmalemma together with the microtubular sheet of root 1. Root 2 is also of the compound type and arises from one of the major connecting bands (called a distal band) as a four-stranded microtubular root and extends in the opposite direction to the haptonema. From this stranded root a secondary bundle of microtubules arises at approximately right angle. Root 3 is a more simple type, composed of at least six microtubules which are associated with the basal body. The flagellar transition region was found to be unusual for the classPrymnesiophyceae. The phylogenetic significance of the flagellar apparatus in thePrymnesiophyceae is discussed.  相似文献   

15.
K. Hausmann 《Protoplasma》1979,100(2):199-213
Summary The membranes of the pellicle of the ciliatePseudomicrothorax dubius are investigated using thin section electron microscopy and freeze-fracture replicas. The plasma membrane is covered by a surface coat and is connected to the outer alveolar membrane by short, sometimes branched, bridges. The inner alveolar membrane is coated on both sides. The epiplasm lies in intimate contact with the cytoplasmic surface of this membrane, and there is a corresponding deposit on the other surface. This deposit is regularly striated.The epiplasmic layer and the alveoli are interrupted at sites of cytotic activity,e.g., the attachment sites of trichocysts, the cytoproct, and the parasomal sacs. The striated deposit ends where the epiplasm ends, indicating a direct relationship between these two epimembranous layers.There is a deposit along the sides of the first part of the tip of the trichocysts, and in this region the trichocyst membrane is free of intramembranous particles.The membrane of the parasomal sacs has a coat on both surfaces. That on the extraplasmic surface is similar to the surface coat of the plasma membrane. The origin of the cytoplasmic coat is unknown. The cytotic activity of these sacs is indicated by their highly irregular profiles.  相似文献   

16.
The ultrastructure of the flagellar apparatus in the quadriflagellate zoospores ofUlva lactuca was examined. The two L-shaped pairs of basal bodies are arranged in mirror image relation. Two apical capping plates connect adjacent basal bodies of different pairs with each other. The flagellar root system is cruciate and exhibits a microtubular part (4-2-4-2 system) and a complex and elaborate fibrillar part. The latter consists of two striated fibres (striation pattern 32 nm) closely associated with the two-stranded roots and four differently patterned fibres (striation pattern 150–160 nm) which are more internally located and run parallel to all four microtubular roots. The presence of four microtubular roots and six striated fibres is at present not known for any other green alga and taxonomic implications are discussed.  相似文献   

17.
The present study reveals a deficiency in the number of ciliated basal bodies along 180° rotated ciliary rows (IRs) in Tetrahymena. This feature is common to IRs recently generated in young clones with stable corticotypes (total number of ciliary rows per cell), irrespective of the number of IRs present per cell or their cellular location, and is found before the cell loses any of the IRs. In cells bearing three IRs, the IRs on the two sides of the inversion immediately next to normal ciliary rows (junctures) exhibit an even greater deficiency in ciliated basal bodies, compared to the IR located internally between two other IRs; the normal ciliary rows flanking the inversion are also somewhat deficient. These observations show that the IRs of Tetrahymena are structurally deficient, hence developmentally defective, and suggest that they are intrinsically unstable. We propose that basal body development along IRs tends to be truncated before the stage of ciliation; such basal bodies would fail to acquire the potential to serve as nucleating centers for new basal body development in the next round of basal body proliferation, leading to the eventual loss of the IRs. © 1992 Wiley-Liss, Inc.  相似文献   

18.
Cell structure, cell adhesion, and stalk formation have been examined by electron microscopy in the colonial flagellate, Cephalothamnium cyclopum. Each cell is obconical or spindle-shaped, pointed posteriorly and truncated anteriorly. The cell membrane is underlain by epiplasm 0.1 μm thick in the posterior region, but bands of microtubules support the anterior region which is differentiated into a flagellar pocket, oral apparatus and contractile vacuole. Each of 2 flagella, joined a short way above their bases by an interflagellar connective, has a paraxial rod and mastigonemes. One flagellum is free and is important in food gathering while the other is recurrent and lies in a shallow groove on the ventral cell surface but projects posteriorly into the stalk. The basal bodies of these flagella are bipartite structures connected by a pair of striated rootlets with accessory microtubular fibers. The oral apparatus consists of a funnel-shaped buccal cavity and cytostome. It is supported by helical and longitudinal microtubules and also has nearby striated and microtubular fibers. Possible roles of associated oral vesicles in relation to ingestion are discussed. A reticulate mitochondrion houses a massive kinetoplast which has a fibrillar substructure resembling that of dinoflagellate chromosomes. Adjacent flagellates adhere by laminate extensions of their posterior regions and attach by their recurrent flagella to a communally secreted stalk composed of finely fibrillar material. This study indicates that Cephalothamnium belongs in the order Kinetoplastida, and has many features in common with members of the family Bodonidae.  相似文献   

19.
The absolute configurations of the basal/flagellar apparatus during male gametogenesis of Chara contraria var. nitelloides (Charales, Charophyta) were carefully analysed. Emphasis was placed on the changes in the angles and lengths of the basal bodies, the microtubular root angles and the development of the distal as well the proximal connecting fibers. Six principal stages were recognized: a) parallel, non-axonemal, developing basal bodies connected by a non-striated, proximal fiber; b) non-parallel, non-axonemal, mature basal bodies connected by a developing, striated, distal fiber; c) non-parallel, axonemal basal bodies connected by a fully developed, striated, distal fiber; d) opposite, axonemal basal bodies not connected by fibers, e) axonemal basal bodies not connected by fibers and directed backwards and f) parallel, axonemal basal bodies not connected by fibers. A headpiece, a 3-membered root and a reduced multilayered structure developed during ontogeny. The initial parallel disposition of the basal bodies, the initial lack of MLS and the presence of only two microtubular roots from the very inception of the basal apparatus development, suggest a Mamiella-like ancestor for Charales. Ontogenetic evidence supports previous ideas in the sense that similarities of sperm morphology of charalean and bryophytan gametes are likely due to convergent evolution. In addition, the present study clearly reveals the presence of centrin in Charales.  相似文献   

20.
Flagellar and basal body development during cell division was studied in the biflagellate green alga Spermatozopsis similis Preisig et Melkonian by light microscopy of immobilized living cells, statistical analysis of flagellar lengths during the cell cycle, and electron microscopy of cells and isolated cytoskeletons. Interphase cells display two flagella of unequal/subequal length. An eyespot located in an anterior lobe of the chloroplast is connected to the basal body bearing the shorter flagellum by means of a five-stranded microtubular root. Until cell division, the two parental flagella attain the same length. During cell division, each cell forms two new flagella that grow to a length of 1.5 μm before they are distributed in a semiconservative fashion together with the parental flagella to the two progeny cells at cytokinesis. During the following interphase, the flagella newly formed during the preceding cell division grow to attain the same length as the parental flagella until the subsequent cell division. The shorter of the two flagella of a cell thus represents the developmentally younger flagellum, which transforms to the mature state during two consecutive cell cycles. Interphase cells display only two flagella-bearing basal bodies; two nascent basal bodies are formed during cell division and are connected to the microtubular d-roots of respective parental basal bodies with which the newly formed basal bodies are later distributed to the progeny cells. During segregation, basal body pairs shaft into the 11/5 o'clock direction, thus conserving the 1/7 o'clock configuration of basal body pairs of interphase cells. Prior to chloroplast and cell division, an eyespot is newly formed near the cell posterior in close association with a 1s microtubular root, while the parental eyespot is retained. During basal body segregation, eyespot-root connections for both the old and newly formed eyespots are presumably lost, and new associations of the eyespots with the 2s roots of the newly formed basal bodies are established during cytokinesis. The significance of this “eyespot-flagellar root developmental cycle” for the absolute orientation of the progeny cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号