首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of calmodulin dependent regulation of adenylate cyclase has been studied in human platelet membranes. Calmodulin activated adenylate cyclase exhibited a biphasic response to both Mg2+ and Ca2+. A stimulatory effect of Mg2 on adenylate cyclase was observed at all Mg2+ concentrations employed, although the degree of activation by calmodulin was progressively decreased with increasing concentrations of Mg2+. These results demonstrate that the Vmax of calmodulin dependent platelet adenylate cyclase can be manipulated by varying the relative concentrations of Mg2+ and Ca2+. The activity of calmodulin stimulated adenylate cyclase was always increased 2-fold above respective levels of activity induced by GTP, Gpp(NH)p and/or PGE. The stimulatory influence of calmodulin was not additive but synergistic to the effects of PGE1, GTP and Gpp(NH)p. GDP beta S inhibited GTP-and Gpp(NH)p stimulation of adenylate cyclase but was without effect on calmodulin stimulation. Since the inhibitory effects of GDP beta S have been ascribed to apparent reduction of active N-protein-catalytic unit (C) complex formation, these results suggest that the magnitude of calmodulin dependent adenylate cyclase activity is proportional to the number of N-protein-C complexes, and that calmodulin interacts with preformed N-protein-C complex to increase its catalytic turnover. Our data do not support existence of two isoenzymes of adenylate cyclase (calmodulin sensitive and calmodulin insensitive) in human platelets.  相似文献   

2.
The effect of calcium on adenylate cyclase from rabbit small intestine has been studied using a particulate preparation obtained from isolated epithelial cells. Both basal and vasoactive intestinal peptide-stimulated activities were inhibited by calcium concentrations in the micromolar range. In the presence of calmodulin, a biphasic response was obtained. At low calcium concentration (4 X 10(-9)-6 X 10(-8) M) the enzyme was activated up to 50%. As the Ca2+ concentration was increased, the enzyme was concomitantly inhibited. Half-maximal inhibition of calmodulin-dependent activity was obtained at 1 microM free Ca2+. The activation of the enzyme was also dependent on the concentration of Mg2+. At less than 1 microM Ca2+, the enzyme exhibited a biphasic response, being activated at below 3 mM Mg2+ and inhibited at higher concentrations. At Ca2+ concentrations that were inhibitory, the enzyme did not show the biphasic response to Mg2+. At concentrations above 3 mM, the maximal rate (Vmax) remained constant. Vmax was inversely proportional to the concentration of Ca2+ present. Calmodulin altered Vmax when acting on vasoactive intestinal peptide-stimulated enzyme. Calmodulin had no effect on the Km for hormone activation. The calmodulin-dependent activity was inhibited by incubation with trifluoperazine.  相似文献   

3.
Abalone spermatozoa contain a particulate adenylate cyclase that displays maximal catalytic activity when Mn2+ is present as a metal cofactor in excess of ATP. Unlike other sperm adenylate cyclases, the abalone enzyme displays a high Mg2+-supported catalytic activity (Mg2+/Mn2+ activity ratio = 0.8). Kinetics analyses demonstrate that the enzyme contains both a MgATP catalytic site and a separate Mg2+ regulatory site. Mg2+-supported enzyme activity, however, is not stimulated by guanine nucleotides, NaF, cholera toxin, forskolin, or a variety of hormones. The enzyme from unfractionated sperm homogenates is inhibited by added Ca2+ in a concentration-dependent manner, when EGTA is not present in the assay. Methylxanthines, such as 1-methyl-3-isobutylxanthine and theophylline, also inhibit enzyme activity in a concentration-dependent manner through a noncompetitive mechanism. On the other hand, when intact cells are preincubated with Ca2+ prior to breakage and assayed for enzyme activity, Ca2+ stimulates enzyme activity at low concentrations. Enzyme activity of intact sperm preincubated with methylxanthines, in either the absence or presence of added Ca2+, is also stimulated. This effect is expressed via an effect on the velocity of the enzyme. A-23187 has similar stimulatory effects on the enzyme under these conditions. These data provide further support for the role of Ca2+ conductance in modulating sperm adenylate cyclase activity. The abalone sperm enzyme also appears to have regulatory properties that are unique among other sperm types.  相似文献   

4.
Calmodulin antagonists inhibited hormone-stimulated cyclic AMP accumulation in both cultured cells and cell lysates of mouse B16 melanoma. Particulate preparations of B16 melanoma contained 34-45% of total cell calmodulin, which could not be dissociated by extensive washing irrespective of the presence of EGTA in the buffer. The adenylate cyclase activity in such preparations was unaffected by the addition of exogenous calmodulin. However, the rare-earth-metal ion La3+, which can mimic or replace Ca2+ in many systems, produced an immediate inhibition of agonist-stimulated adenylate cyclase activity and preincubation of particulate preparations was La3+ followed by washing with La3+-free buffer dissociated calmodulin (96% loss) from particulate preparations. The loss of calmodulin from particulate preparations was associated with a decrease in agonist responsiveness (74%) and a marked change in the Ca2+-sensitivity of the enzyme, low concentrations of calcium (approx. 10 nM) now failing to stimulate enzyme activity, high concentrations of calcium (greater than or equal to 100 nM) producing greater-than-normal inhibition of enzyme activity. Direct activation of adenylate cyclase by the addition of pure calmodulin was now demonstrable in such calmodulin-depleted particulate preparations. Half-maximal stimulation of agonist-responsive adenylate cyclase occurred at 80 nM-calmodulin in the presence of 10 microM free Ca2+. Maximal stimulation by calmodulin (at 300-600 nM) restored enzyme activity to 89 +/- 5% (mean +/- S.E.M., n = 7) of the activity in untreated, calmodulin-intact, preparations.  相似文献   

5.
Inhibition of a Low Km GTPase Activity in Rat Striatum by Calmodulin   总被引:1,自引:0,他引:1  
In rat striatum, the activation of adenylate cyclase by the endogenous Ca2+-binding protein, calmodulin, is additive with that of GTP but is not additive with that of the nonhydrolyzable GTP analog, guanosine-5'-(beta, gamma-imido)triphosphate (GppNHp). One possible mechanism for this difference could be an effect of calmodulin on GTPase activity which has been demonstrated to "turn-off" adenylate cyclase activity. We examined the effects of Ca2+ and calmodulin on GTPase activity in EGTA-washed rat striatal particulate fractions depleted of Ca2+ and calmodulin. Calmodulin inhibited GTP hydrolysis at concentrations of 10(-9)-10(-6) M but had no effect on the hydrolysis of 10(-5) and 10(-6) M GTP, suggesting that calmodulin inhibited a low Km GTPase activity. The inhibition of GTPase activity by calmodulin was Ca2+-dependent and was maximal at 0.12 microM free Ca2+. Maximal inhibition by calmodulin was 40% in the presence of 10(-7) M GTP. The IC50 for calmodulin was 100 nM. In five tissues tested, calmodulin inhibited GTP hydrolysis only in those tissues where it could also activate adenylate cyclase. Calmodulin could affect the activation of adenylate cyclase by GTP in the presence of 3,4-dihydroxyphenylethylamine (DA, dopamine). Calmodulin decreased by nearly 10-fold the concentration of GTP required to provide maximal stimulation of adenylate cyclase activity by DA in the striatal membranes. The characteristics of the effect of calmodulin on GTPase activity with respect to Ca2+ and calmodulin dependence and tissue specificity parallel those of the activation of adenylate cyclase by calmodulin, suggesting that the two activities are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Calcium-dependent adenylate cyclase of pituitary tumor cells   总被引:7,自引:0,他引:7  
Effects of Ca2+ and calmodulin on the adenylate cyclase activity of a prolactin and growth hormone-producing pituitary tumor cell strain (GH3) were examined. The adenylate cyclase activity of homogenates was stimulated approx. 60% by submicromolar free Ca2+ concentrations and inhibited by higher (microM range) concentrations of the cation. A 2-3-fold stimulation of the activity in response to Ca2+ was observed at physiologic concentrations of KCl, with both the stimulatory and inhibitory responses occurring at respectively higher free Ca2+ concentrations. Calmodulin in incubations at low KCl concentrations increased the enzyme activity at all Ca2+ concentrations tested. In incubations conducted at physiologic KCl concentrations, both the inhibitory and stimulatory responses to Ca2+ were shifted by calmodulin to lower respective concentrations of the cation, without significant change occurring in the maximal rate of enzymic activity at optimal free Ca2+ X Mg2+ concentrations in the incubation also influenced the Ca2+ concentration dependence of adenylate cyclase; at high Mg2+ more Ca2+ was required to obtain maximal activity. Trifluoperazine inhibited adenylate cyclase of GH3 cells only in the presence of Ca2+; as Ca2+ concentrations in the assay were increased, higher drug concentrations were required to inhibit the enzyme. Ca2+ was also observed to reduce the extent of enzyme destabilization which occurred during pretreatments at warm temperatures. Vasoactive intestinal polypeptide and phorbol myristate acetate, which stimulate prolactin secretion in intact GH3 cells, enhanced enzyme activity 4- and 2.5-fold, respectively, without added Ca2+. Increasing free Ca2+ concentrations reduced the enhancement by VIP and eliminated the stimulation by PMA.  相似文献   

7.
Adenylate cyclase was assayed in a sonicated preparation of silkworm pupal fat body. The adenylate cyclase was found mostly in the particulate fraction. The activity depended upon either Mg2+ or Mn2+, and the degree of stimulation by Mn2+ was 2 times greater than that by Mg2+ compared at the saturating concentrations. In the presence of Mg2+, the enzyme was inhibited by both EGTA and high concentrations of Ca2+, showing biphasical response to Ca2+. The enzyme was stimulated several-fold by NaF. The enzyme exhibited typical Michaelis-Menten kinetics and Km values were 0.13 mM for MgATP and 0.086 mM for MnATP.  相似文献   

8.
A plasma-membrane preparation of crayfish muscle showed an adenylate cyclase activity which is inhibited to about 80% of its original activity by 100 microM-EGTA. Measurements of the enzyme activity in the presence of 100 microM-EGTA and various concentrations of Ca2+ revealed an increase in enzyme activity of about 400%, indicating an adenylate cyclase which is dependent on Ca2+ for activity. Fluphenazine (1 mM), a blocker of the Ca2+-binding protein calmodulin, decreased enzyme activity to zero. The enzyme can be re-activated by the addition of certain concentrations of calmodulin to the assay medium. This suggests that crayfish muscle adenylate cyclase is dependent on Ca2+ and calmodulin for activity.  相似文献   

9.
Adenylate cyclase was solubilized from washed particulate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60 degrees C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

10.
A novel adenylate cyclase activity was found in crude homogenates of Neurospora crassa. The adenylate cyclase had substantial activity with ATP-Mg2+ as substrate differing significantly from the strictly ATP-Mn2+-dependent enzyme characterized previously. Additionally, the ATP-Mg2+-dependent activity was stimulated two- to fourfold by GTP or guanyl-5'-yl-imido-diphosphate (Gpp(NH)p). We propose that the ATP-Mg2+-dependent, guanine nucleotide-stimulated activity is due to a labile regulatory component (G component) of the adenylate cyclase which was present in carefully prepared extracts. The adenylate cyclase had a pH optimum of 5.8 and both the catalytic and G component were particulate. The Km for ATP-Mg2+ was 2.2 mM in the presence of 4.5 mM excess Mg2+. Low Mn2+ concentrations had no effect on adenylate cyclase activity whereas high concentrations of Mn2+ or Mg2+ stimulated the enzyme. Maximal Gpp(NH)p stimulation required preincubation of the enzyme in the presence of the guanine nucleotide and the K1/2 for Gpp(NH)p stimulation was 110 nM. Neither fluoride nor any of a variety of glycolytic intermediates or hormones, including glucagon, epinephrine, and dopamine, had an effect on ATP-Mg2+-dependent adenylate cyclase activity. However, the enzymatic activity was stimulated not only by GTP but also by 5'-AMP and was inhibited by NADH.  相似文献   

11.
Ca2+, through the mediation of calmodulin, stimulates the activity of brain adenylate cyclase. The growing awareness that fluctuating Ca2+ concentrations play a major role in intracellular signalling prompted the present study, which aimed to investigate the implications for neurotransmitter (receptor) regulation of enzymatic activity of this calmodulin regulation. The role of Ca2+/calmodulin in regulating neurotransmitter-mediated inhibition and stimulation was assessed in a number of rat brain areas. Ca2+/calmodulin stimulated adenylate cyclase activity in EGTA-washed plasma preparations from each region studied--from 1.3-fold (in striatum) to 3.4-fold (in cerebral cortex). The fold-stimulation produced by Ca2+/calmodulin was decreased in the presence of GTP, forskolin, or Mn2+. In EGTA-washed membranes, receptor-mediated inhibition of adenylate cyclase was strictly dependent upon Ca2+/calmodulin stimulation in all regions, except striatum. A requirement for Mg2+ in combination with Ca2+/calmodulin to observe neurotransmitter-mediated inhibition was also observed. In contrast, receptor-mediated stimulation of activity was much greater in the absence of Ca2+/calmodulin. The findings demonstrate that ambient Ca2+ concentrations, in concert with endogenous calmodulin, may play a central role in dictating whether inhibition or stimulation of adenylate cyclase by neurotransmitters may proceed.  相似文献   

12.
Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the ciliated protozoan Paramecium, Ca2+ and cyclic nucleotides are believed to act as second messengers in the regulation of the ciliary beat. Ciliary adenylate cyclase was activated 20-30-fold (half-maximal at 0.8 microM) and inhibited by higher concentrations (10-20 microM) of free Ca2+ ion. Ca2+ activation was the result of an increase in Vmax., not a change in Km for ATP. The activation by Ca2+ was seen only with Mg2+ATP as substrate; with Mn2+ATP the basal adenylate cyclase activity was 10-20-fold above that with Mg2+ATP, and there was no further activation by Ca2+. The stimulation by Ca2+ of the enzyme in cilia and ciliary membranes was blocked by the calmodulin antagonists calmidazolium (half-inhibition at 5 microM), trifluoperazine (70 microM) and W-7 (50-100 microM). When ciliary membranes (which contained most of the ciliary adenylate cyclase) were prepared in the presence of Ca2+, their adenylate cyclase was insensitive to Ca2+ in the assay. However, the inclusion of EGTA in buffers used for fractionation of cilia resulted in full retention of Ca2+-sensitivity by the ciliary membrane adenylate cyclase. The membrane-active agent saponin specifically suppressed the Ca2+-dependent adenylate cyclase without inhibiting basal activity with Mg2+ATP or Mn2+ATP. The ciliary adenylate cyclase was shown to be distinct from the Ca2+-dependent guanylate cyclase; the two activities had different kinetic parameters and different responses to added calmodulin and calmodulin antagonists. Our results suggest that Ca2+ influx through the voltage-sensitive Ca2+ channels in the ciliary membrane may influence intraciliary cyclic AMP concentrations by regulating adenylate cyclase.  相似文献   

13.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

14.
The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets.  相似文献   

15.
The properties of particulate guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from purified rabbit skeletal muscle membrane fragments were studied. Four membrane fractions were prepared by sucrose gradient centrifugation and the fractions characterized by analysis of marker enzymes. Guanylate cyclase activity was highest in the fraction possessing enzymatic properties typical of sarcolemma, while fractions enriched with sarcoplasmic reticulum had lower activities. In the presence of suboptimal Mn2+ concentrations, Mg2+ stimulated particulate guanylate cyclase activity both before and after solubilization in 1% Triton X-100. Guanylate cyclase activity was biphasic in the presence of Ca2+. Increasing the Ca2+ concentration from 10(-8) to 10(-5) M decreased the specific activity. As the Ca2+ concentration was further increased to 5 . 10(-4) M enzyme activity again increased. After solubilization of the membranes in 1% Triton X-100, Ca2+ suppressed enzyme activity. Studies utilizing ionophore X537A indicated that the altered effect of Ca2+ upon the solubilized membranes was independent of asymmetric distribution of Ca2+ and Mg2+.  相似文献   

16.
The interaction between the Ca2+-binding protein, calmodulin, and guanyl nucleotides was investigated in a rat striatal particulate fraction. We found that the ability of calmodulin to stimulate adenylate cyclase in the presence of guanyl nucleotides depends upon the type and concentration of the guanyl nucleotide. Adenylate cyclase activity measured in the presence of calmodulin and GTP reflected additivity at every concentration of these reactants. On the contrary, when the activating guanyl nucleotide was the nonhydrolyzable analog of GTP, guanosine-5'-(beta,gamma-imido)triphosphate (GppNHp), calmodulin could further activate adenylate cyclase only at concentrations less than 0.2 microM GppNHp. Kinetic analysis of adenylate cyclase by GppNHp was compatible with a model of two components of adenylate cyclase activity, with over a 100-fold difference in sensitivity for GppNHp. The component with the higher affinity for GppNHp was competitively stimulated by calmodulin. The additivity between calmodulin and GTP in the striatal particulate fraction suggests that they stimulate different components of cyclase activity. The calmodulin-stimulatable component constituted 60% of the total activity. Our two-component model does not delineate, at this point, whether there are two separate catalytic subunits or one catalytic subunit with two GTP-binding proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Ca2+-stimulated, Mg2+-dependent ATPase in bovine thyroid plasma membranes   总被引:1,自引:0,他引:1  
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine.  相似文献   

18.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

19.
The role of calcium-calmodulin (Ca2+-CaM) in the modulation of beta-adrenergic adenylate cyclase activity in rat cerebral cortex has been studied. In addition, the effects of manganese (Mn2+) and forskolin on CaM-dependent enzyme activity were investigated. At 2 mM magnesium (Mg2+) low concentrations of Ca2+ stimulated the enzyme activity (Ka 0.25 +/- 0.08 microM), whereas higher Ca2+ levels (greater than 2 microM) inhibited the activity. No activating effect of Ca2+ was observed in CaM-depleted membranes, but the inhibitory effect persisted and the stimulatory action of Ca2+ could be restored by addition of exogenous CaM. The ability of Ca2+ to activate the enzyme was reduced by increasing concentrations of Mg2+. At 10 mM Mg2+ the apparent Ka of Ca2+ was 0.55 +/- 0.16 microM and half-maximal inhibition was observed at 80-120 microM Ca2+. A synergistic effect was observed between Ca2+ and isoprenaline on the adenylate cyclase activity. Calcium did not alter the apparent Ka of isoprenaline (0.9 +/- 0.27 microM) and isoprenaline did not change the apparent Ka of Ca2+. However, isoprenaline decreased the apparent Ka of CaM; 0.11 +/- 0.07 micrograms vs. 0.32 +/- 0.1 micrograms (0.5 ml assay mixture)-1, with and without isoprenaline, respectively. A synergistic effect was also observed between Ca2+ and forskolin, but no change in their apparent Ka values was found. Furthermore, Mn2+ was found to activate the enzyme through CaM. These data demonstrate that Ca2+ -CaM potentiates beta-adrenergic adenylate cyclase activity and thus is able to modulate neurotransmitter stimulation in cortex. Furthermore, both forskolin and Mn2+ affect CaM-dependent enzyme activity. Forskolin potentiates Ca2+-CaM stimulation, while Mn2+ increases the activity by activating the enzyme through CaM.  相似文献   

20.
TSH (thyrotropin)-stimulated human thyroid adenylate cyclase has a biphasic response to Ca2+, being activated by submicromolar Ca2+ (optimum 22nM), with inhibition at higher concentrations. Calmodulin antagonists caused an inhibition of TSH-stimulated adenylate cyclase in a dose-dependent manner. Inhibition of TSH-and TSIg-(thyroid-stimulating immunoglobulins)-stimulated activity was more marked than that of basal, NaF- or forskolin-stimulated activity. This inhibition was not due to a decreased binding of TSH to its receptor. Addition of pure calmodulin to particulate preparations of human non-toxic goitre which had not been calmodulin-depleted had no effect on adenylate cyclase activity. EGTA was ineffective in removing calmodulin from particulate preparations, but treatment with the tervalent metal ion La3+ resulted in a loss of up to 98% of calmodulin activity from these preparations. Addition of La3+ directly to the adenylate cyclase assay resulted in a partial inhibition of TSH- and NaF-stimulated activity, with 50% inhibition produced by 5.1 microM and 4.0 microM-La3+ respectively. Particulate preparations with La3+ showed a decrease of TSH- and NaF-stimulated adenylate cyclase activity (approx. 40-60%). In La3+-treated preparations there was a decrease in sensitivity of TSH-stimulated adenylate cyclase to Ca2+ over a wide range of Ca2+ concentrations, but most markedly in the region of the optimal stimulatory Ca2+ concentration. In particulate preparations from which endogenous calmodulin had been removed by La3+ treatment, the addition of pure calmodulin caused an increase (73 +/- 22%; mean +/- S.E.M., n = 8) in TSH-stimulated thyroid adenylate cyclase activity. This was seen in 8 out of 13 experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号