首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C. Lupi  A. Bennici  D. Gennai 《Protoplasma》1985,125(3):185-189
Summary Callus induction, adventitious shoot and root formation, and somatic embryogenesis were investigated in root, cotyledon and mesocotyl cultures ofBellevalia romana (L.) Rchb. grown on a synthetic nutrient medium containing different plant hormones. The combination of naphtaleneacetic acid plus benzylaminopurine was very effective in causing callus growth and plant regeneration from mesocotyl explants. On the contrary 2,4-dichlorophenoxyacetic acid caused suppression of shoot bud development in the same type of callus. Both cotyledon and root derived calli showed a low growth rate and did not regenerate shoots but only roots. Differentiation of somatic embryos which eventually developed into plantlets was promoted by 2,4-dichlorophenoxyacetic acid in suspension cultures. The results are discussed in relation to studies on nuclear behaviour during different morphogenetic pathways.  相似文献   

2.
In vitro morphogenesis of sweet potato (Ipomoea batatas) shoot explants after cultures in callus initiation medium (CIM) with two sucrose contents and plant regeneration medium (PRM) with three growth regulator combinations for different durations was studied. After 4 weeks, explants on 5 % sucrose CIM had significantly more shoots but similar or lower root fresh mass and callus fresh mass than those on 3 % sucrose CIM subsequent to transfer for 6 weeks on all three PRM. Cultures transferred to growth regulator-free PRM after 4 and 12 weeks on 5 % sucrose CIM formed plants through organogenesis and embryogenesis, respectively. Embryogenic cultures from 4 weeks on CIM + 10 weeks on callus proliferation medium when transferred to PRM without growth regulator for 4 and 8 weeks produced multiple embryos in the prior and both embryos and shoot buds in the later.  相似文献   

3.
A genetic analysis of cell culture traits in tomato   总被引:6,自引:0,他引:6  
Summary Tomato genotypes superior in regenerating plants from protoplast and callus cultures were obtained by transferring regeneration capacity from Lycopersicon peruvianum into L. esculentum by classical breeding. The genetics of regeneration and callus growth have been studied in selfed and backcross progenies of a selected plant (MsK93) which has 25% L. peruvianum in its ancestry. Segregation data showed that the favourable cell culture traits of L. peruvianum are dominant. Regeneration capacity from established callus cultures was controlled by two dominant genes. Callus growth on primary expiants, callus growth of established cultures and shoot regeneration from explants had high heritabilities (0.47, 0.78, 0.87, respectively). Callus growth and regeneration capacity were not correlated within the populations studied.  相似文献   

4.
Summary Design II matings were made among randomly selected clones of Arlington red clover (Trifolium pratense L.). Progeny were evaluated in vitro on two regeneration media for callus growth and differentiation. Additive genetic variance was a significant source of variability for nearly all traits evaluated, including somatic embryogenesis. In vitro traits, such as rapid callus growth, colony vascularization, root initiation, chlorophyll production and embryogenesis were highly heritable and should respond to breeding and selection. Dominance genetic variance was significant for only a few in vitro characters. Maternal and cytoplasmic factors were significant primarily in the early subcultures. Highly significant additive genetic correlation of performance on two regeneration media was found. A population selected on one of the regeneration media for such characteristics as improved plantlet regeneration, rapid callus growth, long term colony viability or the frequency of root initiation should show correlated improvement on the other medium. No significant differences for embryogenesis were attributable to differences in the regeneration media used. Furthermore, no interaction of additive genetic effects with regeneration media were observed. These data indicate that improvement in the frequency of plantlet regeneration from callus of red clover could effectively be achieved by breeding and selection for embryogenic types.The research reported in this paper (No. 80-3-152) is in connection with a project of the Kentucky Agric. Exp. Stn. and the paper is published with the approval of the director. Part of a thesis submitted by the senior author in partial fulfillment of the requirements for the M.S. degree  相似文献   

5.
The effects of the auxins 2,4-D, NAA and IAA either alone or in combination with kinetin or BA were investigated to assess the morphogenetic potential of leaf, root and hypocotyl explants of Digitalis thapsi. Calluses were obtained from the three explants in basal medium without the addition of growth regulators and in leaves, the calluses formed roots. Application of 2,4-D, NAA or BA increased callus formation. The presence of NAA induced root formation and that of BA induced shoot formation via callus interphase. Indole-3-acetic acid alone only induced the generation of roots in the hypocotyl callus. Kinetin was ineffective in all the explants tested. Combinations of NAA with kinetin or BA were more effective in inducing organogenesis in leaf explants. Optimum responses were obtained in hypocotyl and root explants by using IAA in combination with BA, the highest rate of shoot regeneration being observed in hypocotyl explants.Rooting of the differentiated shoots was readily achieved in media without growth regulators. Regenerated plantlets were transferred to soil and grew with a survival rate of 70%.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid, Kin-kinetin - NAA naphthaleneacetic acid  相似文献   

6.
A system was developed for in vitro regeneration of Pennisetum glaucum through organogenesis and somatic embryogenesis. Mature embryo and leaf base explants of Pennisetum glaucum (L) Br. cv HH B60 (Poaceae) were cultured on Murashige and Skoog agar medium supplemented with 11.3 microM of 2,4-D for callus induction. Embryogenic calli were induced within eight weeks. Percentage of callus induction and somatic embryogenesis was significantly higher in mature embryo than leaf base explants. Maximum shoot regeneration was obtained via organogenesis on MS medium supplemented with 4.43 microM of BAP and 4.64 microM of kinetin from the calli of both the explants. The frequency of plant regeneration through somatic embryogenesis was comparatively lower than organogenesis. Regeneration frequency was higher in mature embryo explants than leaf base explants. The shoots regenerated via organogenesis were elongated and rooted efficiently on MS medium supplemented with IBA (0.49 microM). The rooted plantlets were hardened and transferred to soil.  相似文献   

7.
Callus was produced on cotyledon, shoot tip, hypocotyl and root explants of twoCorchorus species on several media. Cytokinin was necessary for callus production on cotyledon explants. BothC.olitorius genotypes produced most callus on media with zeatin and either NAA or IAA, and theC.capsularis genotype produced most callus on media with IAA and either zeatin or BA. High frequencies of regenerated shoots were obtained from shoot tip explants of both species, from the apical meristem and from callus. Media with 2.0 mg 1−1 BA were superior for both species, and media with zeatin were equally good forC.capsularis only. More regeneration was obtained for all genotypes after subculture of callus on media with 2.0 mg 1−1 zeatin. Cotyledon callus produced less regeneration, also with differences between genotypes; explants of both genotypes ofC.olitorius produced regeneration on a medium with NAA and zeatin, and theC.capsularis genotype produced regeneration on a medium with IAA and BA. Limited regeneration from root explant callus was obtained forC.capsularis only on medium with BA and IAA. Regeneration was not obtained from hypocotyl callus. Further regeneration of shoots of both species was obtained from secondary callus after subculture, and from nodal segments of regenerated shoots and of seedling shoots cultured on basic MS medium without growth hormones. Roots were produced on about 80% of all shoots after transference to medium with 0.2 mg 1−1 IBA, and rooted plantlets survived and flowered normally after transference to compost.  相似文献   

8.
Regeneration via shoot organogenesis and somatic embryogenesis was observed from thidiazuron (TDZ)-treated leaf and petiole explants of greenhouse- and in vitro-grown African violet plants. The response of cultures to other growth regulators over a range of 0.5 microM to 10 microM was 50% less than that observed with TDZ. A comparative study among several cultivars of African violet indicated that "Benjamin" and "William" had the highest regeneration potential. In "Benjamin", higher frequencies of shoot organogenesis (twofold) and somatic embryogenesis (a 50% increase) were observed from in vitro- and greenhouse-grown plants, respectively. At concentrations lower than 2.5 microM, TDZ induced shoot organogenesis, whereas at higher doses (5-10 microM) somatic embryos were formed. These findings provide the first report of simultaneous shoot organogenesis and somatic embryogenesis of African violet explants in response to TDZ.  相似文献   

9.
The present study demonstrates the establishment of embryogenic tissue from seeds and (seedling-derived hypocotyls) shoot base explants derived from seedlings of Eremochloa ophiuroides. The highest percentage of callus induction obtained from seed and young shoot base explants was 52.0% and 66.6% on Murashige and Skoog (MS) basal media supplemented with 9.0 μM and 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. The type of callus obtained from both types of explants was off-white to yellow in color and non-friable and shiny in texture. Excised callus from the explants was subcultured onto fresh media of the same recipe for further proliferation. After 10–12 d of subculture, a yellow, globular, friable embryogenic callus was obtained from the initial callus. The highest percentage of embryogenic calli obtained at 40.0% was observed on media containing 2.2 μM 2,4-D. The highest regeneration rate of 46.6% was observed on MS media supplemented with 0.4 μM 2,4-D and 2.2 μM benzylaminopurine (BA). Regenerated shoots were rooted in MS basal medium. Plants with well-developed roots were transferred to pots containing a soil mix and acclimatized in greenhouse conditions. Four weeks post-transfer, acclimatized plants showed 100% survival and remained healthy and green. This is the first report of a successful method for induction of somatic embryogenesis with subsequent plant regeneration in centipede grass and demonstrates the establishment of embryogenic callus and efficient plant regeneration with potential application in the development of genetic transformation systems for centipede grass.  相似文献   

10.
The effects of silicon on the growth and development of Phragmites australis (Cav.) Trin. Ex Steud. (common reed) stem nodal and root embryogenic calli were investigated. Silicon is considered to be a beneficial or quasi-essential nutrient for several Gramineaceous plants, including reed. Seven callus lines of four geographical locations (genotypes 1-4) within Hungary were investigated. Callus lines 1A, 2A and 3A were produced from stem nodal explants, while lines 1B, 2B, 3B and 4 were produced from roots. For the assay of silicon-dependent growth of callus lines of identical genotype but originating from different explants, we measured the increase of fresh weight of lines 1A and 1B. The studied developmental parameters were the increase of the number of somatic embryos (for callus lines 1A and 1B) and plant or root production from somatic embryos (for all genotypes/callus lines). Silicon was added to the culture medium as sodium silicate. In control cultures, plant or root regeneration from embryogenic calli was strongly genotype- and explant type-dependent. Stem nodal explants developed plants on regeneration medium in case of callus lines 2A and 3A, while line 1A produced roots only. All root derived calli developed roots on regeneration medium. Silicon stimulated the growth of both stem nodal and root calli (callus lines 1A, B) however, the concentration optima were different. Somatic embryogenesis of root calli, but not of stem nodal calli, was stimulated by silicate at low concentrations. However, for both of these callus lines, root development was stimulated by silicon. It had genotype-dependent influences on plant regeneration: while stimulation was observed in case of callus line 2A, inhibition occurred for line 3A. Root morphogenesis on calli was significantly influenced by silicon and depended on the callus line studied. Root production was stimulated on callus lines 1A, B and 2B, while in case of callus line 3B, it was significantly inhibited. The morphogenetic effects of Si were similar for different explants of the same geographical origin, i.e. plant or root production was similarly stimulated or inhibited by this element. We can conclude that the effects of Si on plant or root development depend on reed genotype used for callus induction. Its effect on growth and somatic embryogenesis depends on the explant type used for callus production. This is the first detailed report on the role of silicon in plant vegetative development and morphogenesis of a Gramineaceous plant.  相似文献   

11.
A simple in vitro protocol has been developed for large scale multiplication of plants from various explants of Pimpinella anisum L., a medicinally important plant belonging to family Apiaceae. Browning of cultures was observed during the maintenance. Frequent subculture at an interval of about 15–17 days was essential for obtaining embryogenic callus cultures and preventing browning of cultures. High frequency of multiple shoot formation was achieved from callus cultures derived from shoot apices, root and stem explants, and also from seed-derived calli. Somatic embryogenesis was observed in callus cultures derived from seeds and shoot apices. Complete plants developed from these embryoids. Direct regeneration of plantlets from shoot apices was also observed. Roots formation occurred in all the cultures. The requirement for exogenous auxin and cytokinin for differentiation was found to be varying in different tissues.  相似文献   

12.
Plantlets were regenerated from cultured seed explants of the forage grass Caucasian bluestem [Bothriochloa caucasica (Trin.) C.E. Hubbard] via somatic embryogenesis. Embryogenic callus was produced in four weeks when surface sterilized seeds were cultured on a medium containing MS-salts, B-5 vitamins, 12 mM L-proline, 2% sucrose, 0.8% agar and 5M 2,4-D. Plantlets were regenerated in 6–8 weeks after culture initiation. Healthy root and shoot systems were produced within three weeks after the plantlets were transferred to a medium lacking 2,4-D. Approximately 95% of the plantlets survived greenhouse acclimation and produced healthy plants and viable seeds. Caucasian bluestem callus cultures exhibit natural resistance to kanamycin. High levels of kanamycin (up to 800 mg/l) did not completely inhibit callus growth. However, the regeneration of healthy-plantlets was completely inhibited by kanamycin even at low levels (50 mg/l).  相似文献   

13.
Summary Studies on the development of protocols for the clonal propagation, through somatic embryogenesis, of coconut have been reported for the past three decades, mostly using inflorescence explants, but with low reproducibility and efficiency. Recent improvements in these respects have been achieved using plumular explants. Here, we report a developmental study of embryogenesis in plumule explants using histological techniques in order to extend our understanding of this process. Coconut plumule explants consisted of the shoot meristem including leaf primordia. At day 15 of culture, the explants did not show any apparent growth; however, a transverse section showed noticeable growth of the plumular leaves forming a ring around the inner leaves and the shoot meristem, which did not show any apparent growth. At day 30, the shoot meristem started to grow and the plumular leaves continued growing., At day 45, the explants were still compact and white in color, but showed partial dedifferentiation and meristematic cell proliferation leading to the development of callus structures with a translucent appearance. After 60 d, these meristematic cells evolved into nodular structures. At day 75, the nodular structures became pearly globular structures on the surface of translucent structures, from which somatic embryos eventually formed and presented well-developed root and caulinar meristems. These results allow better insights and an integrated view into the somatic embryogenesis process in coconut plumule explants, which could be helpful for future studies that eventually could lead us to improved control of the process and greater efficiency of somatic embryo and plantlet formation.  相似文献   

14.
An efficient somatic embryogenesis and regeneration system was developed for the first time in onion using shoot apex explants. These explants were used to initiate callus in Murashige and Skoog (MS) medium supplemented with 4.0 mg l?1 2,4-dichlorophenoxyacetic acid. The induction frequency of primary callus in this medium was 85.3%. The primary calli were then transferred onto medium supplemented with 2.0 mg l?1 2,4-dichlorophenoxyacetic acid. Following two biweekly subcultures, embryogenic callus formed. Inclusion of a low concentration of 6-benzylaminopurine in the subculture medium promoted the formation of embryogenic callus. The addition of 2.0 mg l?1 glycine, 690 mg l?1 proline, and 1.0 g l?1 casein hydrolysate also increased the frequency of callus induction and embryogenic callus formation. The highest frequency of embryogenic callus (86.9%) and greatest number of somatic embryos (26.3 per callus) were obtained by the further addition of 8.0 mg l?1 silver nitrate. Somatic embryos formed plantlets on regeneration medium supplemented with 1.5 mg l?1 6-benzylaminopurine; addition of 2.0 mg l?1 glycine to the regeneration medium promoted a high frequency of regeneration (78.1%) and plantlet formation (28.7 plants per callus). The regenerated plantlets were transferred to half-strength MS medium supplemented with 1.5 mg l?1 indole-3-butyric acid for root development; the maximum frequency of root formation was 87.7% and the average number of roots was 7.6 per shoot. The regenerated plantlets were successfully grown to maturity after hardening in the soil. This is the first report of somatic embryogenesis and regeneration from shoot apex explants of onion.  相似文献   

15.
Three genotypes of Pearl millet were screened in vitro for induction of embryogenic callus, somatic embryogenesis and regeneration. Shoot apices excised from in vitro germinated seedlings or immature embryos isolated from green house established plants were used as primary explants. The frequency of embryogenic callus initiation was significantly higher in shoot apices in comparison with immature zygotic embryos. Moreover, differences between genotypes were minimal when using shoot apices. Friable embryogenic calli (type II) developed on the initial nodular calli after 1 to 3 months of culture. The frequency of type II callus is related to the composition of the maintenance medium and they were more often found in ageing cultures. The transfer of embryogenic calli onto auxin-free medium was sufficient for inducing somatic embryo development in short-term culture (3 months) while a progressive loss in regeneration potential was observed with increasing time of subcultures. Maturation of embryogenic calli on medium supplemented with activated charcoal, followed by germination of somatic embryos on medium supplemented with gibberellic acid, restored regeneration in long-term cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Establishment of callus cultures and plant regeneration from different explants coupled with estimation of Picrosides in morphogenetically different developmental stages showed that Picroside-I accumulates in shoot cultures of Picrorhiza kurroa with no detection of Picroside-II. The Picroside-I content was 1.9, 1.5, and 0.04 mg/g in leaf discs, stem and root segments, respectively. The Picroside-I content declined to almost non- detectable levels in callus cultures derived from leaf discs, stem segments with no change in Picroside-I content in root segments or calli derived thereof. The biosynthesis and accumulation of Picroside-I started in callus cultures differentiating into shoot primordia and reached to the concentrations comparable to original explants of leaf discs and stem segments in fully developed shoots with contents of 2.0 and 1.5 mg/g, respectively. The shoots formed from root-derived callus cultures were relatively slow in growth as well as the amount of Picroside-I content was comparatively low (1.0 mg/g) compared to shoots derived from callus cultures of leaf and stem segments, respectively. The current study concludes that the biosynthesis and accumulation of Picroside-I is developmentally regulated in different morphogenetic stages of P. kurroa tissue cultures.  相似文献   

17.
Adventitious shoot regeneration from immature embryos of sorghum   总被引:1,自引:0,他引:1  
Eleven genotypes of sorghum were examined for their response in tissue culture, and the tissue culture system was optimized. The cultures were initiated from immature embryos taken approximately two weeks after flowering. The response of immature embryos varied with the genotype. `C. Kafir' and `PE932 025' showed the highest frequency of callus induction and regenerable callus formation under appropriate culture conditions. Regeneration occurred at high frequencies when cytokinins (kinetin or 6-benzyladenine) had been added in the callus induction medium, followed by regeneration medium devoid of growth regulators. The addition of proline and polyvinylpyrrolidone also enhanced shoot formation, but the addition of cytokinins to regeneration media did not improve shoot formation. On the revised culture medium, plants were regenerated from up to 100% of sorghum immature embryos.  相似文献   

18.
以国内4个大蒜栽培品种为材料,建立了以根为外植体的再生体系。将蒜瓣去皮后灭菌消毒,萌发后选取苗龄为5~7 d的无菌苗的根接种到含不同激素配比的培养基中进行愈伤组织诱导,发现MS+2,4-D 1 mg/L+2ip 0.1 mg/L组合愈伤诱导效率最高,平均为56.06%;愈伤组织经过2~3次继代培养,选取胚性愈伤组织置于不同分化培养基上进行培养,2~3个月后可见小芽产生,分化培养基为MS+KT 1 mg/L时,植株再生效率最高,平均达到35.01 %。本研究建立了一种以根为外植体的高效的大蒜愈伤诱导和再生体系,为大蒜遗传转化体系的建立打下良好基础。  相似文献   

19.
20.
Tissue cultures of the halophytic saltmarsh grass Sporobolus virginicus were initiated from unemerged immature inflorescence tissue. Typical graminaceous embryogenic and nonembryogenic callus and cell types were noted. Embryogenic callus was compact golden yellow. Histological evidence indicated that proliferation of the ovary tissue of the immature pistil was the source for embryogenic callus. Plants regenerated after first reducing and then eliminating auxin from the culture medium. Regeneration was observed both through the concerted development of bipolar meristems from somatic embryos and by the formation of multiple shoot meristems that were either connected through callus tissue to root meristems or which later adventitiously rooted. The main mode of regeneration appeared to be somatic embryogenesis with additional multiple shoot formation probably due to precocious germination of somatic embryos. Plants recovered from culture were acclimated to soil, grown up in a greenhouse, and planted in field plots with saline irrigation to ensure stability of salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号