首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
Fluorescent Pseudomonas species are an important group of PGPR that suppress fungal root and seedling disease by production of antifungal metabolites such as 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin, pyrolinitrin, siderophores and HCN. The compound 2,4-DAPG is a major determinant in biocontrol of plant pathogens. A 7.2 kbp chromosomal DNA region, carrying DAPG biosynthetic genes (phlA, phlC, phlB, phlD, phIE and phlF). Detecting the ph1 genes make them an ideal marker gene for 2,4-DAPG-producing fluorescent pseudomonad's. In this study we detected ph1A gene (that convert MAPG to 2,4-DAPG) using PCR assay with primers phlA-1r and phlA- f that enabled amplification of phlA sequences from fluorescent pseudomonad's from ARDRA group 1 and 3. We could detect phlA gene in P. fluorescens strains CHAO, Pf-44, Pf-1, Pf-2, Pf-3, Pf-17, Pf-62 and Pf-64, native isolates of Iran. The efficacy of this method for rapid assay characterizing rhizosphere population of 2,4-DAPG producing bacteria from soil of different area of Iran is in progress. We used a collection of 48 fluorescent pseudomonas strains in vitro, with known biological control activity against some soil born phytopathogenic fungi such as, Macrophomina phaseoli, Rhizoctonia solani Vericillium dahlia, Phytophthora nicotiana, Pythium spp. and Fusarium spp. and the potential to produce known secondary metabolites such as protease. Strains Pf-1, Pf-2, Pf-3, Pf-17, Pf-33 and Pf-44 showed the best antifungal activity against all fungi used in this study. Thirty-eight of 48 strains produced protease. The ability to rapidly characterize populations of 2,4-DAPG producers will greatly enhance our understanding of their role in the suppression of root disease.  相似文献   

4.
5.
6.
A 21-kb region required for the biosynthesis of the polyketide antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5 was identified and cloned. Seven previously isolated mutants deficient in pyoluteorin production (Plt(sup-)) had Tn5 insertions spanning the 21-kb region. Sequences flanking Tn5 inserts were cloned from genomic DNA of three Plt(sup-) mutants and used as probes to identify wild-type alleles of the plt loci from a genomic library of Pf-5. Five cosmids containing overlapping regions of genomic DNA hybridized to one or more of the probes. One cosmid, pJEL1938, contained the entire 21-kb region and, when introduced into a Plt(sup-) mutant, partially restored pyoluteorin production. To study the expression of the genes required for pyoluteorin biosynthesis, the transposon Tn3-nice, which contains a promoterless ice nucleation gene (inaZ) and a type I neomycin phosphotransferase gene, was introduced into the genomic plt region of Pf-5. Carbon sources that influenced pyoluteorin production by Pf-5 had parallel effects on ice nucleation activity of Pf-5 containing a genomic plt::Tn3-nice fusion, indicating that inaZ was transcribed from a promoter of the plt region. Cells of Pf-5 containing a genomic plt::Tn3-nice fusion expressed ice nucleation activity on cotton and cucumber seeds planted in field soil. The expression of plt genes by Pf-5 in the cucumber spermosphere was delayed in comparison with expression in the cotton spermosphere. This study demonstrates that genes required for pyoluteorin production were expressed in situ by the biological control bacterium.  相似文献   

7.
Many biocontrol fluorescent pseudomonads can protect plants from soilborne fungal pathogens through production of the antifungal secondary metabolite 2,4-diacetylphloroglucinol (Phl). One of the phl biosynthetic genes, phlD, encodes a polyketide synthase similar to plant chalcone synthases. Here, restriction analysis of phlD from 39 Phl+ biocontrol fluorescent pseudomonads yielded seven different banding patterns. The gene was sequenced in seven strains, representing the different restriction patterns. Cluster analysis of phlD restriction data or phlD sequences indicated that phlD polymorphism was high, and two main clusters were obtained when predicted PhlD sequences were compared. When the seven PhlD sequences were studied with those of other procaryotic polyketide synthases (gram-positive bacteria) and plant chalcone synthases, however, Phl+ pseudomonads, gram-positive bacteria, and plants clustered separately. Yet, sequence analysis of active site regions for PhlD and plant chalcone synthases revealed that PhlD can be considered a member of the chalcone synthase family, which may be interpreted as convergent evolution of key enzymes involved in secondary metabolism. For the 39 Phl+ pseudomonads, a relationship was found among phlD restriction patterns, phylogenetic groups defined by 16S rDNA restriction analysis (confirmed by 16S rDNA sequencing), and production levels of Phl in vitro.  相似文献   

8.
In biocontrol Pseudomonads, phlD is an essential gene involved in the biosynthesis of 2,4-diacetylphloroglucinol (DAPG). HaeIII restriction of amplified phlD gene, previously proposed as the most discriminant analysis, showed no polymorphism among 144 Pseudomonas strains isolated from maize roots. However, these strains fell into three statistically significant DAPG production level groups. phlD sequences of 13 strains belonging to the three DAPG groups revealed a KspI restriction site only in good DAPG-producing strains. This result was confirmed on the 144 strains, 82 of which were identified as good-DAPG producers by both biochemical and amplified phlD KspI restriction analysis. They are candidates as potential biocontrol agents.  相似文献   

9.
Pseudomonas fluorescens Pf-5 is a soil bacterium that suppresses plant pathogens due in part to its production of the antibiotic pyoluteorin. Previous characterization of Pf-5 revealed three global regulators, including the stationary-phase sigma factor sigma(S) and the two-component regulators GacA and GacS, that influence both antibiotic production and stress response. In this report, we describe the serine protease Lon as a fourth global regulator influencing these phenotypes in Pf-5. lon mutants overproduced pyoluteorin, transcribed pyoluteorin biosynthesis genes at enhanced levels, and were more sensitive to UV exposure than Pf-5. The lon gene was preceded by sequences that resembled promoters recognized by the heat shock sigma factor sigma(32) (sigma(H)) of Escherichia coli, and Lon accumulation by Pf-5 increased after heat shock. Therefore, sigma(H) represents the third sigma factor (with sigma(S) and sigma(70)) implicated in the regulation of antibiotic production by P. fluorescens. Lon protein levels were similar in stationary-phase and exponentially growing cultures of Pf-5 and were not positively affected by the global regulator sigma(S) or GacS. The association of antibiotic production and stress response has practical implications for the success of disease suppression in the soil environment, where biological control organisms such as Pf-5 are likely to encounter environmental stresses.  相似文献   

10.
2,4-diacetylphloroglucinol alters plant root development   总被引:1,自引:0,他引:1  
Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.  相似文献   

11.
Pseudomonas fluorescens Pf-5 is a soil bacterium that suppresses plant pathogens due in part to its production of the antibiotic pyoluteorin. Previous characterization of Pf-5 revealed three global regulators, including the stationary-phase sigma factor ςS and the two-component regulators GacA and GacS, that influence both antibiotic production and stress response. In this report, we describe the serine protease Lon as a fourth global regulator influencing these phenotypes in Pf-5. lon mutants overproduced pyoluteorin, transcribed pyoluteorin biosynthesis genes at enhanced levels, and were more sensitive to UV exposure than Pf-5. The lon gene was preceded by sequences that resembled promoters recognized by the heat shock sigma factor ς32H) of Escherichia coli, and Lon accumulation by Pf-5 increased after heat shock. Therefore, ςH represents the third sigma factor (with ςS and ς70) implicated in the regulation of antibiotic production by P. fluorescens. Lon protein levels were similar in stationary-phase and exponentially growing cultures of Pf-5 and were not positively affected by the global regulator ςS or GacS. The association of antibiotic production and stress response has practical implications for the success of disease suppression in the soil environment, where biological control organisms such as Pf-5 are likely to encounter environmental stresses.  相似文献   

12.
The genotypic diversity of antibiotic-producing Pseudomonas spp. provides an enormous resource for identifying strains that are highly rhizosphere competent and superior for biological control of plant diseases. In this study, a simple and rapid method was developed to determine the presence and genotypic diversity of 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas strains in rhizosphere samples. Denaturing gradient gel electrophoresis (DGGE) of 350-bp fragments of phlD, a key gene involved in DAPG biosynthesis, allowed discrimination between genotypically different phlD(+) reference strains and indigenous isolates. DGGE analysis of the phlD fragments provided a level of discrimination between phlD(+) genotypes that was higher than the level obtained by currently used techniques and enabled detection of specific phlD(+) genotypes directly in rhizosphere samples with a detection limit of approximately 5 x 10(3) CFU/g of root. DGGE also allowed simultaneous detection of multiple phlD(+) genotypes present in mixtures in rhizosphere samples. DGGE analysis of 184 indigenous phlD(+) isolates obtained from the rhizospheres of wheat, sugar beet, and potato plants resulted in the identification of seven phlD(+) genotypes, five of which were not described previously based on sequence and phylogenetic analyses. Subsequent bioassays demonstrated that eight genotypically different phlD(+) genotypes differed substantially in the ability to colonize the rhizosphere of sugar beet seedlings. Collectively, these results demonstrated that DGGE analysis of the phlD gene allows identification of new genotypic groups of specific antibiotic-producing Pseudomonas with different abilities to colonize the rhizosphere of sugar beet seedlings.  相似文献   

13.
14.
Applying directed evolution to the phloroglucinol synthase PhlD from Pseudomonas fluorescens Pf-5 has provided the first example of engineering enhanced productivity in a type III polyketide synthase, and a rare instance of improving the activity of a biosynthetic enzyme from secondary metabolism.  相似文献   

15.
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.  相似文献   

16.
The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains. In this study the nucleotide sequence was determined for the 6.5-kb fragment and flanking regions of genomic DNA from strain Q2-87. Six open reading frames were identified, four of which (phlACBD) comprise an operon that includes a set of three genes (phlACB) conserved between eubacteria and archaebacteria and a gene (phlD) encoding a polyketide synthase with homology to chalcone and stilbene synthases from plants. The biosynthetic operon is flanked on either side by phlE and phlF, which code respectively for putative efflux and regulatory (repressor) proteins. Expression in Escherichia coli of phlA, phlC, phlB, and phlD, individually or in combination, identified a novel polyketide biosynthetic pathway in which PhlD is responsible for the production of monoacetylphloroglucinol (MAPG). PhlA, PhlC, and PhlB are necessary to convert MAPG to 2,4-DAPG, and they also may function in the synthesis of MAPG.  相似文献   

17.
Coronamic acid (CMA; 2-ethyl-1-aminocyclopropane 1-carboxylic acid) is an intermediate in the biosynthesis of coronatine (COR), a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. Tn5 mutagenesis and substrate feeding studies were previously used to characterize regions of the COR biosynthetic gene cluster required for synthesis of coronafacic acid and CMA, which are the only two characterized intermediates in the COR biosynthetic pathway. In the present study, additional Tn5 insertions were generated to more precisely define the region required for CMA biosynthesis. A new analytical method for CMA detection which involves derivatization with phenylisothiocyanate and detection by high-performance liquid chromatography (HPLC) was developed. This method was used to analyze and quantify the production of CMA by selected derivatives of P. syringae pv. glycinea which contained mutagenized or cloned regions from the CMA biosynthetic region. pMU2, a clone containing a 6.45-kb insert from the CMA region, genetically complemented mutants which required CMA for COR production. When pMU2 was introduced into P. syringae pv. glycinea 18a/90 (a strain which does not synthesize COR or its intermediates), CMA was not produced, indicating that pMU2 does not contain the complete CMA biosynthetic gene cluster. However, when two plasmid constructs designated pMU234 (12.5 kb) and pKTX30 (3.0 kb) were cointroduced into 18a/90, CMA was detected in culture supernatants by thin-layer chromatography and HPLC. The biological activity of the CMA produced by P. syringae pv. glycinea 18a/90 derivatives was demonstrated by the production of COR in cosynthesis experiments in which 18a/90 transconjugants were cocultivated with CMA-requiring mutants of P. syringae pv. glycinea PG4180. CMA production was also obtained when pMU234 and pKTX30 were cointroduced into P. syringae pv. syringae B1; however, these two constructs did not enable Escherichia coli K-12 to synthesize CMA. The production of CMA in P. syringae strains which lack the COR biosynthetic gene cluster indicates that CMA production can occur independently of coronafacic acid biosynthesis and raises interesting questions regarding the evolutionary origin of the COR biosynthetic pathway.  相似文献   

18.
Pseudomonas fluorescens strains are known to produce a wide range of secondary metabolites including phenazines, siderophores, pyoluteorin, and 2,4 diacetylphloroglucinol (DAPG). DAPG is of particular interest because of its antifungal properties and because its production is associated with inhibition of phytopathogenic fungi in natural disease-suppressive soils. This trait has been exploited to develop strains of P. fluorescens that have potential application as biocontrol agents. Although the biochemistry, genetics and regulation of DAPG production have been well-studied, relatively little is known about how DAPG inhibits fungal growth and how fungi respond to DAPG. Employing a yeast model and a combination of phenotypic assays, molecular genetics and molecular physiological probes, we established that inhibition of fungal growth is caused by impairment of mitochondrial function. The effect of DAPG on yeast is largely fungistatic but DAPG also induces the formation of petite cells. Expression of the multidrug export proteins Pdr5p and Snq2p is increased by DAPG-treatment but this appears to be a secondary effect of mitochondrial damage as no role in enhancing DAPG-tolerance was identified for either Pdr5p or Snq2p.  相似文献   

19.
Monoacetylphloroglucinol (MAPG) acetyltransferase, catalyzing the conversion of MAPG to 2,4-diacetylphloroglucinol (DAPG), was purified from Pseudomonas sp. YGJ3 grown without Cl(-). Cl(-) and pyoluteorin repressed expression of the enzyme. SDS-polyacrylamide gel electrophoresis showed that the purified enzyme (M(r)=330 kDa) was composed of three subunits of 17, 38, and 43 kDa, and protein sequencing identified these as PhlB, PhlA, and PhlC respectively. The enzyme catalyzed the reversible disproportionation of 2 moles of MAPG to phloroglucinol (PG) and DAPG. The equilibrium constant K (=[DAPG][PG]/[MAPG](2)) was estimated to be about 1.0 at 25 °C. A KpnI 20-kb DNA fragment was cloned from the genomic DNA of strain YGJ3, and a 12,598-bp long DNA region containing the phl gene cluster phlACBDEFGHI was sequenced. PCR cloning and expression of the phl genes in Escherichia coli confirmed that expression of phlACB genes produced MAPG ATase.  相似文献   

20.
Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号