首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental conditions have been defined that allow bovine corneal endothelial (BCE) cells to grow in the complete absence of serum. Low density BCE cell cultures maintained on extracellular matrix (ECM)-coated dishes and plated in the total absence of serum proliferate actively when exposed to a synthetic medium supplemented with high density lipoprotein (HDL 500 μg protein/ml), transferrin (10 μg/ml), insulin (5 μg/ml), and fibroblast (FGP) or epidermal growth factor (EGF) added at concentrations of 100 or 50 ng/ml, respectively. Omission of any of these components results in a lower growth rate and/or final cell density of the cultures. BCE cell cultures plated on plastic dishes and exposed to the same synthetic medium grow very poorly. The longevity of BCE cultures maintained on plastic versus ECM and exposed to serum-free versus serum-containing medium has been studied. The use of ECM-coated dishes extended the life span of BCE cultures maintained in serum-supplemented medium to over 120 generations, as compared to less than 20 generations for cultures maintained on plastic. Likewise, BCE cells maintained on ECM and exposed to a synthetic medium supplemented with optimal concentrations of HDL, transferrin, insulin, and FGF underwent 85 generations, whereas control cultures maintained on plastic could not be passaged. The enhancing effect of ECM on BCE cell growth and culture longevity clearly illustrates the importance of the cell substrate in the control of proliferation of these cells.  相似文献   

2.
Summary The culturing of human endometrium in conventional plastic dishes and media is only partially successful, mainly because a growth of a heterogeneous population of cells is achieved. Naturally produced extracellular matrix closely resembles the subepithelial basement membrane and seems to affect both growth and differentiation of cells. These qualities of the extracellular matrix (ECM) were applied for obtaining endometrial epithelial cultures. Endometrial tissue specimens were plated after slicing on ECM-coated dishes and kept for up to 8 d. The growth of a confluent homogeneous tissue composed of polygonal epithelial-like cells was demonstrated. To further characterize these cells, cultures were examined by scanning electron microscopy and transmission electron microscopy. Scanning electron microscopy revealed flattened polygonal cells covered with microvilli, among which ciliated cells were observed. By transmission electron microscopy the cells were seen as a monolayer, with some cells overlapping, closely adherent to the matrix. Microvilli, as well as intracellular vacuoles and glycogen granules were observed. Cell type specific cytoskeletal markers were demonstrated by antibodies to intermediate filament proteins (keratin and epithelial membrane antigen). Taken together, the morphologic and immunohistochemical studies indicate that a selective growth of the epithelial component of endometrial tissue was obtained after plating unprocessed endometrial tissue fragments on ECM-coated culture dishes. This work was supported by PHS grant no. CA 30289 to J.V.  相似文献   

3.
The aim of this study was to determine the role of ECM components of bone in regulating the differentiation and function of cells of the osteoblast lineage. Rat UMR 201 cells, phenotypically preosteoblast, were plated onto plastic tissue culture dishes or dishes coated with gelled type I collagen or reconstituted basement membrane (matrigel). Acute cell attachment assays showed that cells adhered to substrates in the following order: collagen > matrigel ? plastic. Proliferation rate up to 96 hr were similar on each substrate. However, if cells were treated with 10?6 M retinoic acid (RA), proliferation rates were reduced compared with control for cells grown on collagen and matrigel but not on plastic. Morphological changes were matrix-specific; in subconfluent cultures, long thin processes were seen with cells grown on collagen and a pattern of interconnecting cell processes formed when cells were plated on matrigel. Striking differences were observed in the constitutive or RA-induced gene expression of cells grown on the different substrates. When cells plated on collagen were treated with RA, induction of mRNA for alkaline phosphatase (ALP) as well as ALP enzyme activity were much less than with cells grown on plastic. In contrast, RA treatment induced osteopontin (OP) mRNA expression more strongly in cells plated on collagen compared with plastic within 24 hr and this was maintained for 72 hr. RA treatment produced a two fold increase of pro-α 1(I) collagen mRNA in cells grown on plastic and matrigel but not in cells grown on collagen. Growth on collagen produced changes in the way UMR 201 cells responded to RA from which they did not fully recover in subsequent 48-hr growth periods on plastic. These results indicate that ECM components regulate the function of and are capable of modulating RA-induced differentiation of preosteoblasts. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Low density vascular smooth muscle (VSM) cell cultures maintained on extracellular-matrix(ECM)-coated dishes and plated in the presence of either plasma or serum will proliferate actively when serum-containing medium is replaced by a synthetic medium supplemented with three factors: high density lipoprotein (HDL, 250 micrograms protein/ml); insulin (2.5 micrograms/ml) or somatomedin C (10 ng/ml); and fibroblast growth factor (FGF, 100 ng/ml) or epidermal growth factor (EGF, 50 ng/ml). The omission of any of these three factors from the synthetic medium results in a lower growth rate of the cultures, as well as in a lower final cell density once cultures reach confluence. When cells are plated in the total absence of serum, transferrin (10 micrograms/ml) is also required to induce optimal cell growth. The effects of the substrate and medium supplements on the life span of VSM cultures have also been analyzed. Cultures maintained on plastic and exposed to medium supplemented with 5% bovine serum underwent 15 generations. However, when maintained on ECM-coated dishes the serum-fed cultures had a life span of at least 88 generations. Likewise, when cultures were maintained in a synthetic medium supplemented with HDL and either FGF or EGF, an effect on the tissue culture life span by the substrate was observed. Cultures maintained on plastic underwent 24 generations, whereas those maintained on ECM-coated dishes could be passaged repeatedly for 58 generations. These experiments demonstrate the influence of the ECM-substrate only in promoting cell growth but also in increasing the longevity of the cultures.  相似文献   

5.
The hypothesis that, in the case of clonal or low-density cultures, cells which do not readily proliferate are those that do not produce an extracellular matrix (ECM), while those that proliferate actively are cells that have retained their ability to produce it, has been tested using low-density vascular endothelial cell cultures maintained on either plastic or ECM-coated dishes and exposed to various combinations of media and sera. Proliferation of low-density vascular endothelial cell cultures seeded on plastic and exposed to DMEM, RPMI-1640, or medium 199 plus thymidine is a function of the batch of calf serum used to supplement the various media. In all three cases, such cultures proliferated at a slow rate and fibroblast growth factor (FGF) greatly accelerated their proliferation. In contrast, when similar cultures were seeded on ECM-coated dishes, they actively proliferated regardless of the batch of calf serum to which they were exposed. FGF was no longer required in order for cultures to become confluent. In the case of cultures exposed to RPMI-1640 or medium 199 plus thymidine, it was even toxic. When cultures were exposed to either medium 199 or Waymouth medium, cells did not proliferate, regardless of the substrate (either plastic or ECM) upon which they were maintained and of the batch of serum to which they were exposed. Addition of FGF to such media had no effect. It is therefore likely that nutrient limitations in both of these media restrict the ability of low-density vascular endothelial cells to respond to the mitogenic stimuli provided by either serum or FGF. These restrictions cannot be relieved by maintaining cells on ECM-coated dishes, and modifications of the nutrient composition of both media is required in order to allow cells to respond to either FGF or serum when maintained on plastic or to serum alone when maintained on ECM. These results suggest that, when low-density cell cultures are maintained on plastic and exposed to an adequate medium, their proliferation will be a function of both serum and FGF. When maintained on ECM, their proliferation will depend only on serum. It is therefore possible that the inability of serum to stimulate optimal cell proliferation when cells are maintained on plastic results from an inability of the cells to produce an ECM, and that FGF could induce such production.  相似文献   

6.
Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells   总被引:5,自引:0,他引:5  
Bovine corneal endothelial (BCE) cells seeded and grown on plastic dishes were labeled with 35S-sulfate or 3H-glucosamine for 48 h at various phases of growth of the cultures. Newly synthesized proteoglycans were isolated from the culture medium and from the extracellular matrix (ECM) produced by the BCE cells, and the glycosaminoglycan (GAG) component of the proteoglycans was analyzed. Cells actively proliferating on plastic surfaces secreted an ECM that contained heparan sulfate as the major 35S-labeled GAG (86%) and dermatan sulfate as a minor component (13%). Upon reaching confluence, the BCE cells incorporated 35S-labeled chondroitin sulfate (20%), as well as heparan sulfate (66%) and dermatan sulfate (14%), into the EC. Seven-day postconfluent cells incorporated newly synthesized heparan sulfate and dermatan sulfate into the matrix in approximately equal proportions. Dermatan sulfate was the main 35S-labeled GAG (60-65%) in the medium of both confluent and postconfluent cultures. 35S-Labeled chondroitin sulfate (20-25%) and heparan sulfate (15%) were also secreted into the culture medium. The type of GAG incorporated into newly synthesized ECM was affected when BCE cells were seeded onto ECM-coated dishes instead of plastic. BCE cells actively proliferating on ECM-coated dishes incorporated newly synthesized heparan sulfate and dermatan sulfate into the ECM in a ratio that was very similar to the ratio of these GAGs in the underlying ECM. Addition of mitogens such as fibroblast growth factor (FGF) to the culture medium altered the type of GAG synthesized and incorporated into the ECM by BCE cells seeded onto ECM-coated dishes if the cells were actively growing, but had no effect on postconfluent cultures.  相似文献   

7.
Summary Comparisons were made of attachment and viability of rainbow trout (Salmo gairdneri) hepatocytes in short-term (2 days), primary culture on plastic, collagen-coated or extracellular matrix (ECM) coated dishes. Hepatocyte isolation routinely yielded cells with good viability (96%). Cells plated on ECM attached with high efficiency (93%) in contrast to cells cultured on plastic or collagen (∼20%). The cells plated on ECM flattened out and formed monolayers, while the cells on plastic and collagen rounded up and formed multi-cell aggregates in suspension. Viability of cells in all substrates remained high over the 2 day culture period. ECM is the first substrate to support trout-hepatocyte attachment in primary culture. Differentiated liver function was maintained in cells cultured on ECM as evidence by the induction of tyrosine aminotransferase by hydrocortisone (200%). This work was supported in part by research grant R809599010 from the U. S. Environmental Protection Agency. Editor's Statement This paper reports improved methods for culture of trout liver-derived cells that make in vitro investigations of fish metabolism, carcinogenesis and chemical toxicity more feasible than previously applied techniques. Recent interest in fish as models for study and indicators of effects of envionmental and food-related toxins make this work timely, poarticularly since many of the compounds of interest are primarily metabolized by hepatocytes or act on liver as a major target. David W. Barnes  相似文献   

8.
A growth factor (EDGF) derived from the retina controls the proliferation and shape of adult bovine epithelial lens (BEL) cells in vitro as well as extracellular matrix (ECM) assembly. In order to analyse this mechanism and the specificity of the interactions between BEL cells and the extracellular matrix we have investigated the adhesion and growth of BEL cells on various substrata (fibronectin, laminin, ECM). BEL cells treated with EDGF adhered more slowly to plastic Petri dishes than untreated cells, in part due to EDGF inhibition of fibronectin deposition. The untreated BEL cells spread less well on ECM or laminin than on fibronectin-coated plastic. The preferential adhesiveness of BEL cells on fibronectin vs laminin was confirmed by attachment experiments performed on replicas of SDS-PAGE of these proteins. However, in long-term cultures, 8 days after seeding, BEL cells were very differently arranged on plastic or on ECM. ECM by itself did not increase the proliferation rate but helped to restore an organized cell monolayer. BEL cells stimulated to grow on ECM by treatment with EDGF exhibited at least transiently contact inhibition producing a perfectly organized epithelium similar to the one observed in vivo. These results suggest specific interactions between ECM or ECM components with BEL cell that restrain excessive cell spreading and restore an original polarized phenotype of the cells seen in vivo.  相似文献   

9.
The permissive effects of extracellular matrix (ECM) on in vitro growth and differentiation of fetal human retinal pigment epithelial (RPE) cells have been studied. Factors which enhanced the effect of ECM to support cell division were also examined, including growth factors, culture media, and serum requirement. Under the specific culture conditions we have defined, it is possible to propagate these RPE cells at low density (less than 20 cells/mm2) with excellent growth properties for greater than 72 doublings (fourteen passages) in serial culture. Later-passaged cells maintained the morphological appearance of early-passaged cultures. ECM produced by bovine corneal endothelial cells was by far the most predominant factor in promoting rapid cell proliferation and viability over repeated passaging. Basic fibroblast growth factor (bFGF) exerted a substantial effect on the rate of cell division at different serum concentrations on plastic dishes. In addition, this factor showed profound synergistic effect when RPE cells were maintained on ECM, both in the preservation of cell morphology and also in long term viability. Other growth factors, such as epidermal growth factor (EGF) and transforming growth factor-beta (TGF-B), were also tested, but EGF effects were less prominent than those observed with bFGF, and TGF-B had an inhibitory effect at high concentrations. The ability to obtain a relatively large number of human RPE cells in vitro which preserve the appearance of early passage cells may provide useful opportunities to study the physiological properties and pathological alterations involving this important cell type.  相似文献   

10.
We examined the influence of glucocorticoid hormones on the proliferation of cultured adult bovine aortic smooth muscle cells (BASM) using both primary mass cultures and a cloned strain. Cloned BASM cells maintained on plastic culture dishes were inhibited by approximately 40% by dexamethasone treatment but showed no inhibition when grown of homologous extracellular matrix (ECM) coated dishes. Dexamethasone inhibited growth of primary cultures by 73% on plastic and by 45% on ECM. The inhibitory effect was specific for the glucocorticoids, dexamethasone, corticosterone, and cortisol and was not observed with progesterone, aldosterone, estradiol or 17-alpha OH progesterone. In cloned cells, the abolition of glucocorticoid inhibition by ECM was independent of seeding density and serum concentration. The inhibition on plastic was dependent on serum concentrations greater than 1% and resulted in both a slow rate of proliferation and a lower saturation density. A specific subset of peptides detected on two-dimensional gels was induced by glucocorticoids under growth inhibitory conditions but was not induced when the cells were grown on ECM. Primary cultures grown on ECM and exposed to Dulbecco's modified Eagle's Medium (DME) containing high density lipoprotein and transferrin grew at 40% of the rate observed for cultures exposed to DME with 10% serum. Both conditions showed growth inhibition of 70% in the presence of dexamethasone. The addition of epidermal and platelet-derived growth factors in DME containing high density lipoprotein and transferrin to cells grown on ECM resulted in growth rates comparable to that observed with cultures exposed to 10% serum and were inhibited 45% by dexamethasone. These results suggest that glucocorticoids inhibit smooth muscle proliferation by decreasing the sensitivity of the cells to mitogenic stimulation by high density lipoprotein when the cells are maintained on a homologous substrate.  相似文献   

11.
In this study, we investigated the effect of the extracellular matrix (ECM) secreted by vascular cells on proteoglycan (PG) synthesis by vascular smooth muscle cells in culture. PG synthesis of human aortic smooth muscle cells plated on plastic or the matrices derived from vascular endothelial cells, vascular smooth muscle cells, or THP-1 macrophages was characterized. Smooth muscle cell and macrophage matrices increased both secreted and cellular smooth muscle cells PG production by 2.5-fold to 3.9-fold, respectively, over plastic and endothelial cell matrix. Macrophage matrix was more potent than smooth muscle cell matrix in this regard. Selective enzymatic removal of chondroitin sulfates, collagen, and elastin from smooth muscle cell matrix enhanced the stimulation of PG synthesis, as did the removal of chondroitin sulfates from macrophage matrix. PG turnover rates were similar for smooth muscle cells plated on the three matrices. The newly synthesized PG from cultures plated on smooth muscle cell-, and macrophage-derived matrices had greater charge density, larger molecular size, and longer glycosaminoglycan chains than those from endothelial cell matrix cultures. These data show that the ECM plays a major role in modulating vascular smooth muscle cell PG metabolism in vitro.  相似文献   

12.
We describe a method for preparing highly enriched cultures of Drosophila myoblasts from a heterogeneous cell population derived from gastrulating embryos. Enriched cultures are prepared by plating this heterogeneous population of cells in medium from which much of the free calcium is chelated by ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA). Adhesion of myoblasts to tissue culture plastic is better than that of other cell types when plated in this medium. Data concerning cell identity, timing of S phase, and fusion kinetics document the degree of enrichment for myogenic cells and illustrate their synchronous differentiation in vitro.  相似文献   

13.
The survival of Chinese hamster ovary cells in culture following graded doses of X rays delivered under aerobic and hypoxic conditions, or treatment with the bioreductive drug SR 4233 under hypoxic conditions, was evaluated as a function of whether cells were plated onto glass or Permanox plastic petri dishes. In the case of treatment with SR 4233, the influence of varying the total volume of medium in the dishes was also studied. While the Permanox petri dishes were sufficient to yield "radiobiological" hypoxia, that is, oxygen enhancement ratios of approximately 3.0 were obtained for X irradiation, they were inferior to glass petri dishes with respect to the hypoxia-selective cytotoxicity of SR 4233. For a 90-min hypoxic exposure to 40 microM SR 4233, the surviving fraction of cells plated on plastic dishes averaged about 50-fold higher than that of cells plated on glass dishes. Although varying the total medium volume did affect the extent of SR 4233-induced cytotoxicity for glass dishes--drug toxicity decreased slightly with increasing medium volume--this was not the case for the plastic dishes, in which the cell survival following a fixed SR 4233 exposure was essentially constant as a function of medium volume. These results suggest, at least for SR 4233, and under these experimental conditions, that Permanox petri dishes are not satisfactory for such studies.  相似文献   

14.
Following muscle damage, fast- and slow-contracting fibers regenerate, owing to the activation of their satellite cells. In rats, crush-induced regeneration of extensor digitorum longus (EDL, a fast muscle) and soleus (a slow muscle) present different characteristics, suggesting that intrinsic differences exist among their satellite cells. An in vitro comparative study of the proliferation and differentiation capacities of satellite cells isolated from these muscles is presented there. We observed several differences between soleus and EDL satellite cell cultures plated at high density on gelatin-coated dishes. Soleus satellite cells proliferated more actively and fused into myotubes less efficiently than EDL cells. The rate of muscular creatine kinase enzyme appeared slightly lower in soleus than in EDL cultures at day 11 after plating, when many myotubes were formed, although the levels of muscular creatine kinase mRNA were similar in both cultures. In addition, soleus cultures expressed higher levels of MyoD and myogenin mRNA and of MyoD protein than EDL satellite cell cultures at day 12. A clonal analysis was also carried out on both cell populations in order to determine if distinct lineage features could be detected among satellite cells derived from EDL and soleus muscles. When plated on gelatin at clonal density, cells from both muscles yielded clones within 2 weeks, which stemmed from 3–15 mitotic cycles and were classified into three classes according to their sizes. Myotubes resulting from spontaneous fusion of cells from the progeny of one single cell were seen regardless of the clone size in the standard culture medium we used. The proportion of clones showing myotubes in each class depended on the muscle origin of the cells and was greater in EDL- than in soleus-cell cultures. In addition, soleus cells were shown to improve their differentiation capacity upon changes in the culture condition. Indeed, the proportions of clones showing myotubes, or of cells fusing into myotubes in clones, were increased by treatments with a myotube-conditioned medium, with phorbol ester, and by growth on extra-cellular matrix components (Matrigel). These results, showing differences among satellite cells from fast and slow muscles, might be of importance to muscle repair after trauma and in pathological situations.  相似文献   

15.
The effect of p-nitrophenyl-beta-D-xyloside on proteoglycan synthesis and extracellular matrix (ECM) formation by cultured bovine corneal endothelial (BCE) cells was investigated. BCE cells actively proliferating on plastic dishes produced in the absence of xyloside an ECM containing various proteoglycans. Heparan sulfate was the main 35S-labeled glycosaminoglycan component (83%). Dermatan sulfate (14%) and chondroitin sulfate (3%) were also present. Exposure of actively proliferating BCE cells to xyloside totally inhibited synthesis of proteoglycans containing dermatan sulfate or chondroitin sulfate and caused an 86% inhibition of heparan sulfate proteoglycan synthesis. The heparan sulfate proteoglycans that were extracted from the ECM produced by BCE cells exposed to xyloside had a smaller size and a reduced charge density compared to their counterparts extracted from the ECM of cultures not exposed to xyloside. In contrast to the inhibitory effect of the xyloside on proteoglycan synthesis, exposure of actively proliferating BCE cells to xyloside stimulated synthesis of free chondroitin sulfate and heparan sulfate chains. All of the xyloside-initiated glycosaminoglycan chains were secreted into the culture medium. The proteoglycan-depleted matrices produced by BCE cells exposed to xyloside were used to study the effect of these matrices on proteoglycan synthesis by BCE cells. BCE cells growing on proteoglycan-depleted ECM showed a considerable increase in the rate of proteoglycan synthesis compared to BCE cells growing on normal ECM. Moreover, the pattern of glycosaminoglycan synthesis by BCE cells growing on proteoglycan-depleted ECM was changed to one which resembled that of BCE cells actively proliferating on plastic dishes. It is postulated that BCE cells are able to recognize when an ECM is depleted of proteoglycan and to respond to it by increasing their rate of proteoglycan synthesis and incorporation into the ECM.  相似文献   

16.
The quadratojugal (QJ) is a neural crest-derived membrane bone in the maxillary region of the avian head.In vivoits periosteum undergoes both osteogenesis to form membrane bone and chondrogenesis to form secondary cartilage. This bipotential property, which also exists in some other membrane bones, is poorly understood. The present study used cell culture to investigate the differentiation potential of QJ periosteal cells. Three cell populations were enzymatically released from QJ periostea and plated at different densities. Cell density greatly affected phenotypic expression and differentiation pathways. We found two culture conditions that favored osteogenesis and chondrogenesis, respectively. In micromass culture, the periosteal cells produced a layer of osteogenic cells that expressed alkaline phosphatase (APase) and secreted bony extracellular matrix (ECM). In contrast, low-density monolayer culture elicited chondrogenesis. Cells with pericellular refractile ECM and round shape appeared at 7 to 8 days and formed colonies later. The chondrogenic phenotype of these cells was confirmed by immunolocalization of type II collagen and Alcian blue staining of ECM. This result demonstrated that a fully expressed chondrogenic phenotype can be achieved from membrane bone periosteal cells in primary monolayer culture. Chondrogenesis requires a cell density lower than confluence and cannot be initiated in confluent cultures. Among the three cell populations, those cells from the outer layer have the highest growth rate and require the lowest initial plating density (below 5 × 103cells/ml) to achieve chondrogenesis. Cells from the inner layer have the slowest growth rate and chondrify at the highest initial density (below 5 × 104cells/ml). Chondrocytes from all populations express distinct phenotypic markers—APase and type I collagen—from initial chondrogenesis, but are not hypertrophic morphologically. Furthermore, the fact that chondrocytes arise within the same colony as APase-positive polygonal cells suggests that chondrocytes may differentiate from precursors related to the osteogenic cell lineage. This cell culture approach mimics secondary cartilage and membrane bone formationin vivo.  相似文献   

17.
The matrix upon which cells grow affects their morphology, growth rate, response to external stimuli, and protein synthesis. GH3 cells, a well-characterized rat pituitary tumor cell line, synthesize and secrete growth hormone and prolactin (Prl). These cells are rounded, attach loosely, and form clumps when plated on plastic. GH3 cells plated on an extracellular matrix (ECM) from bovine corneal endothelial cells become flattened and strongly adherent to the culture dish, and have an initial increased rate of proliferation. Cells cultured on plastic have a 48-hr lag period before the start of cell division; this can be shortened by increasing the concentration of serum in the medium. Since GH3 cells store little Prl, hormone release is a good index of Prl synthesis. Prl secretion from cells cultured on extracellular matrix is twice as great as from cells cultured on plastic. The increase in Prl secretion from cells grown on extracellular matrix paralleled by a concomitant increase in the accumulation of prolactin mRNA. Cells cultured on plastic secrete more Prl in response to TRH stimulation than do cells cultured on ECM. Cells grown on either surface were unresponsive to dopamine. Thus, culturing cells on ECM may change their morphology and affect the synthesis and regulation of specific cellular proteins and their mRNAs.  相似文献   

18.
This study was undertaken to determine the importance of integrin binding and cell shape changes in the control of cell-cycle progression by extracellular matrix (ECM). Primary rat hepatocytes were cultured on ECM-coated dishes in serum-free medium with saturating amounts of growth factors (epidermal growth factor and insulin). Integrin binding and cell spreading were promoted in parallel by plating cells on dishes coated with fibronectin (FN). Integrin binding was separated from cell shape changes by culturing cells on dishes coated with a synthetic arg-gly-asp (RGD)-peptide that acts as an integrin ligand but does not support hepatocyte extension. Expression of early (junB) and late (ras) growth response genes and DNA synthesis were measured to determine whether these substrata induce G0-synchronized hepatocytes to reenter the growth cycle. Cells plated on FN exhibited transient increases in junB and ras gene expression (within 2 and 8 h after plating, respectively) and synchronous entry into S phase. Induction of junB and ras was observed over a similar time course in cells on RGD-coated dishes, however, these round cells did not enter S phase. The possibility that round cells on RGD were blocked in mid to late G1 was confirmed by the finding that when trypsinized and replated onto FN-coated dishes after 30 h of culture, they required a similar time (12-15 h) to reenter S phase as cells that had been spread and allowed to progress through G1 on FN. We have previously shown that hepatocytes remain viable and maintain high levels of liver-specific functions when cultured on these RGD-coated dishes. Thus, these results suggest that ECM acts at two different points in the cell cycle to regulate hepatocyte growth: first, by activating the G0/G1 transition via integrin binding and second, by promoting the G1/S phase transition and switching off the default differentiation program through mechanisms related to cell spreading.  相似文献   

19.
Establishment of monolayer cell-cultures from adult normal rat liver is described using cells isolated by a collagenase-hyaluronidase perfusion technique. The cells plated originally were polygonal in shape and contained a large number of mitochondria. However, cells with less granules were also observed in the primary culture, after a few days of plating. In subsequent subcultures, the latter type of cells could be grown continuously. After an initial lag, the cells attained a doubling time of 55 hours and a plating efficiency of 20%. The cells are “normal” with respect to their karyology, morphology and growth pattern. Difficulties encountered during the culture and the possible uses of these cultured cells in studies on carcinogenesis in vitro are discussed.  相似文献   

20.
Culture and Characterization of Epithelial Cells from Bovine Choroid Plexus   总被引:6,自引:3,他引:3  
Epithelial cells were isolated from choroid plexus, which plays a major role in cerebrospinal fluid production and regulation. Incubation of bovine choroid plexuses with pronase released cells which attached to plastic dishes with a plating efficiency of 5%. The cells were predominantly polygonal as judged by phase-contrast microscopy. These polygonal cells undergo limited cell division and survive for 1-2 weeks in culture before being overgrown by fibroblasts. The fibroblastic cells could be selectively removed from the cultures but the addition of 100 microgram/ml cis-hydroxyproline to the medium for several days. The specific activities of three membrane-bound enzymes, gamma-glutamyl transpeptidase, alkaline phosphatase, and leucine aminopeptidase were compared in selective cultures of polygonal cells and fibroblasts. Polygonal cells were found to have 4-5 times the gamma-glutamyl transpeptidase of fibroblasts, whereas fibroblasts have 2-3 times the alkaline phosphatase of polygonal cells. Leucine aminopeptidase levels in the two cultures were roughly equivalent. The polygonal cells rapidly lost gamma-glutamyl transpeptidase activity over a 4-day period in culture but acquired increased levels of leucine aminopeptidase. Alkaline phosphatase remained roughly constant. Under similar conditions fibroblasts showed a 3- to 4-fold increase in the specific activities of all three enzymes; these changes coincided with a substantial increase in cell density. Based on morphology, resistance to cis-hydroxyproline, absence of antihemophilic factor antigen, and enzymatic characteristics, we believe the polygonal cells to be of epithelial origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号