首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Prior studies have shown that kreisler mutants display early inner ear defects that are related to abnormal hindbrain development and signaling. These defects in kreisler mice have been linked to mutation of the kr/mafB gene. To investigate potential relevance of kr/mafB and abnormal hindbrain development in inner ear patterning, we analyzed the ear morphogenesis in kreisler mice using a paint-fill technique. We also examined the expression patterns of a battery of genes important for normal inner ear patterning and development. Our results indicate that the loss of dorsal otic structures such as the endolymphatic duct and sac is attributable to the downregulation of Gbx2, Dlx5 and Wnt2b in the dorsal region of the otocyst. In contrast, the expanded expression domain of Otx2 in the ventral otic region likely contributes to the cochlear phenotype seen in kreisler mutants. Sensory organ development is also markedly disrupted in kreisler mutants. This pattern of defects and gene expression changes is remarkably similar to that observed in Gbx2 mutants. Taken together, the data show an important role for hindbrain cues, and indirectly, kr/mafB, in guiding inner ear morphogenesis. The data also identify Gbx2, Dlx5, Wnt2b and Otx2 as key otic genes ultimately affected by perturbation of the kr/mafB-hindbrain pathway.  相似文献   

3.
4.
Suppression of neural fate and control of inner ear morphogenesis by Tbx1   总被引:8,自引:0,他引:8  
Inner ear sensory organs and VIIIth cranial ganglion neurons of the auditory/vestibular pathway derive from an ectodermal placode that invaginates to form an otocyst. We show that in the mouse otocyst epithelium, Tbx1 suppresses neurogenin 1-mediated neural fate determination and is required for induction or proper patterning of gene expression related to sensory organ morphogenesis (Otx1 and Bmp4, respectively). Tbx1 loss-of-function causes dysregulation of neural competence in otocyst regions linked to the formation of either mechanosensory or structural sensory organ epithelia. Subsequently, VIIIth ganglion rudiment form is duplicated posteriorly, while the inner ear is hypoplastic and shows neither a vestibular apparatus nor a coiled cochlear duct. We propose that Tbx1 acts in the manner of a selector gene to control neural and sensory organ fate specification in the otocyst.  相似文献   

5.
6.
The inner ear develops from a simple ectodermal thickening called the otic placode into a labyrinth of chambers which house sensory organs that sense sound and are used to maintain balance. Although the morphology and function of the sensory organs are well characterized, their origins and lineage relationships are virtually unknown. In this study, we generated a fate map of Xenopus laevis inner ear at otic placode and otocyst stages to determine the developmental origins of the sensory organs. Our lineage analysis shows that all regions of the otic placode and otocyst can give rise to the sensory organs of the inner ear, though there were differences between labeled quadrants in the range of derivatives formed. A given region often gives rise to cells in multiple sensory organs, including cells that apparently dispersed from anterior to posterior poles and vice versa. These results suggest that a single sensory organ arises from cells in different parts of the placode or otocyst and that cell mixing plays a large role in ear development. Time-lapse videomicroscopy provides further evidence that cells from opposite regions of the inner ear mix during the development of the inner ear, and this mixing begins at placode stages. Lastly, bone morphogenetic protein 4 (BMP-4), a member of the transforming growth factor beta (TGF-beta) family, is expressed in all sensory organs of the frog inner ear, as it is in the developing chicken ear. Inner ear fate maps provide a context for interpreting gene expression patterns and embryological manipulations.  相似文献   

7.
8.
9.
A renewed interest in the development of the inner ear has provided more data on the fate and cell lineage relationships of the tissues making up this complex structure. The inner ear develops from a simple ectodermal thickening of the head called the otic placode, which undergoes a great deal of growth and differentiation to form a multichambered nonsensory epithelium that houses the six to nine sensory organs of the inner ear. Despite a large number of studies examining otic development, there have been surprisingly few fate maps generated. The published fate maps encompass four species and range from preotic to otocyst stages. Although some of these studies were consistent with a compartment and boundary model, other studies reveal extensive cell mixing during development. Cell lineage studies have been done in fewer species. At the single cell level the resulting clones in both chicks and frogs appear somewhat restricted in terms of distribution. We conclude that up until late placode stages there are no clear lineage restriction boundaries, meaning that cells seem to mix extensively at these early stages. At late placode stages, when the otic cup has formed, there are at least two boundaries located dorsally in the forming otocyst but none ventrally. These conclusions are consistent with all the fate maps and reconciles the chick and frog data. These results suggest that genes involved in patterning the inner ear may have dynamic and complex expression patterns.  相似文献   

10.
Cell fate specification during inner ear development is dependent upon regional gene expression within the otic vesicle. One of the earliest cell fate determination steps in this system is the specification of neural precursors, and regulators of this process include the Atonal-related basic helix-loop-helix genes, Ngn1 and NeuroD and the T-box gene, Tbx1. In this study we demonstrate that Eya1 signaling is critical to the normal expression patterns of Tbx1, Ngn1, and NeuroD in the developing mouse otocyst. We discuss a potential mechanism for the absence of neural precursors in the Eya1-/- inner ears and the primary and secondary mechanisms for the loss of cochleovestibular ganglion cells in the Eya1bor/bor hypomorphic mutant.  相似文献   

11.
The inner ear, which contains sensory organs specialized for hearing and balance, develops from an ectodermal placode that invaginates lateral to hindbrain rhombomeres (r) 5-6 to form the otic vesicle. Under the influence of signals from intra- and extraotic sources, the vesicle is molecularly patterned and undergoes morphogenesis and cell-type differentiation to acquire its distinct functional compartments. We show in mouse that Fgf3, which is expressed in the hindbrain from otic induction through endolymphatic duct outgrowth, and in the prospective neurosensory domain of the otic epithelium as morphogenesis initiates, is required for both auditory and vestibular function. We provide new morphologic data on otic dysmorphogenesis in Fgf3 mutants, which show a range of malformations similar to those of Mafb (Kreisler), Hoxa1 and Gbx2 mutants, the most common phenotype being failure of endolymphatic duct and common crus formation, accompanied by epithelial dilatation and reduced cochlear coiling. The malformations have close parallels with those seen in hearing-impaired patients. The morphologic data, together with an analysis of changes in the molecular patterning of Fgf3 mutant otic vesicles, and comparisons with other mutations affecting otic morphogenesis, allow placement of Fgf3 between hindbrain-expressed Hoxa1 and Mafb, and otic vesicle-expressed Gbx2, in the genetic cascade initiated by WNT signaling that leads to dorsal otic patterning and endolymphatic duct formation. Finally, we show that Fgf3 prevents ventral expansion of r5-6 neurectodermal Wnt3a, serving to focus inductive WNT signals on the dorsal otic vesicle and highlighting a new example of cross-talk between the two signaling systems.  相似文献   

12.
The inner ear, the sensory organ responsible for hearing and balance, contains specialized sensory and non-sensory epithelia arranged in a highly complex three-dimensional structure. To achieve this level of complexity, a tight coordination between morphogenesis and cell fate specification is essential during otic development. Tissues surrounding the otic primordium and more particularly the adjacent segmented hindbrain, have been implicated in conferring signals required for inner ear development. In this review, we present the current view on the role of hindbrain signals in axial specification of the inner ear. The functional analysis of mutants of hindbrain segmentation genes, as well as the investigation of signaling pathways potentially involved, all point to an essential role of FGF, Wnt and Hh signaling in otic regionalization. However, these data provide conflicting evidence regarding the involvement of hindbrain signals in otic regionalization in fish and in amniotes. We discuss the possible origin of these differences.  相似文献   

13.
The role of Six1 in mammalian auditory system development   总被引:7,自引:0,他引:7  
The homeobox Six genes, homologues to Drosophila sine oculis (so) gene, are expressed in multiple organs during mammalian development. However, their roles during auditory system development have not been studied. We report that Six1 is required for mouse auditory system development. During inner ear development, Six1 expression was first detected in the ventral region of the otic pit and later is restricted to the middle and ventral otic vesicle within which, respectively, the vestibular and auditory epithelia form. By contrast, Six1 expression is excluded from the dorsal otic vesicle within which the semicircular canals form. Six1 is also expressed in the vestibuloacoustic ganglion. At E15.5, Six1 is expressed in all sensory epithelia of the inner ear. Using recently generated Six1 mutant mice, we found that all Six1(+/-) mice showed some degree of hearing loss because of a failure of sound transmission in the middle ear. By contrast, Six1(-/-) mice displayed malformations of the auditory system involving the outer, middle and inner ears. The inner ear development in Six1(-/-) embryos arrested at the otic vesicle stage and all components of the inner ear failed to form due to increased cell death and reduced cell proliferation in the otic epithelium. Because we previously reported that Six1 expression in the otic vesicle is Eya1 dependent, we first clarified that Eya1 expression was unaffected in Six1(-/-) otic vesicle, further demonstrating that the Drosophila Eya-Six regulatory cassette is evolutionarily conserved during mammalian inner ear development. We also analyzed several other otic markers and found that the expression of Pax2 and Pax8 was unaffected in Six1(-/-) otic vesicle. By contrast, Six1 is required for the activation of Fgf3 expression and the maintenance of Fgf10 and Bmp4 expression in the otic vesicle. Furthermore, loss of Six1 function alters the expression pattern of Nkx5.1 and Gata3, indicating that Six1 is required for regional specification of the otic vesicle. Finally, our data suggest that the interaction between Eya1 and Six1 is crucial for the morphogenesis of the cochlea and the posterior ampulla during inner ear development. These analyses establish a role for Six1 in early growth and patterning of the otic vesicle.  相似文献   

14.
15.
The vertebrate inner ear is structurally complex, consisting of fluid-filled tubules and sensory organs that subserve the functions of hearing and balance. The epithelial parts of the inner ear are derived from the otic placode, which deepens to form a cup before closing to form the otic vesicle. We fate-mapped the rim of the otic cup to monitor the cellular movements associated with otocyst formation and to aid in interpreting the changing gene expression patterns of the early otic field. Twelve sites around the rim, defined as positions of a clock face, were targeted by iontophoretic injection of fluorescent, lipophilic dye. Labeled cells were imaged 24 and 48 h after injection. The data show that the entire dorsal rim of the otic cup becomes the endolymphatic duct (ED), while the posteroventral rim becomes the lateral otocyst wall. Two intersecting boundaries of lineage restriction were identified near the dorsal pole: one bisecting the ED into anterior and posterior halves and the other defining its lateral edge. We hypothesize that signaling across compartment boundaries may play a critical role in duct specification. This model is discussed in the context of mouse mutants that are defective in both hindbrain development and ED outgrowth.  相似文献   

16.
17.
18.
19.
20.
Trypsin has been shown to disrupt normal in vitro morphogenesis of embryonic organ rudiments. Otic tissues derived from 11-, 12-, and 13-day-old mouse embryos were exposed to either Ca++- and Mg++-free PBS or 0.25% trypsin dissolved in Ca++- and Mg++-free PBS prior to explanation into organ culture. Trypsin treatment of otic explants disrupted the expression of the normal pattern of inner-ear development in vitro. There was a direct correlation between the embryonic age at time of exposure to trypsin and the severity of dysmorphogenesis of the inner ear. The younger explants showed abnormalities of both vestibular and auditory structures, whereas with increasing embryonic age, abnormalities were confined more to the auditory portion of the inner ear. The results suggest that integrity of the otocyst basal lamina and epitheliomesenchymal tissue interactions are important factors in early otic development. It is postulated that the major effect of trypsin on inner-ear morphogenesis is through disruption of these factors, which may act to regulate the progressive expression of early otic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号