首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
Arylamine N-acetyltransferases (NATs) detoxify arylamines and hydrazine xenobiotics by catalyzing their N-acetylation, which prevents their bioactivation. Here, we reveal how structural dynamics impact NAT protein function. Our data suggest that there are multiple conformations in the catalytic cavity of hamster NAT2 that exchange on the millisecond time scale and enable NATs to accommodate substrates of varying size. The regions spanning N177-L180 and D285-F288, which form unique structures in mammalian NATs, possess inherent motions on the nanosecond time scale. The latter segment becomes more restricted in its motions upon substrate binding according to our NMR XNOE data. This greater rigidity appears to stem from interactions with the substrate. Finally, NAT acetylation has been suggested to protect these enzymes from ubiquitination. Our NMR data on a catalytically active state of hamster NAT2 suggest that structural rearrangements caused by its acetylation might contribute to this protection.  相似文献   

2.
Arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that biotransform arylamine drugs. The Bacillus anthracis (BACAN)NAT1 enzyme affords increased resistance to the antibiotic sulfamethoxazole through its acetylation. We report the structure of (BACAN)NAT1. Unexpectedly, endogenous coenzymeA was present in the active site. The structure suggests that, contrary to the other prokaryotic NATs, (BACAN)NAT1 possesses a 14-residue insertion equivalent to the “mammalian insertion”, a structural feature considered unique to mammalian NATs. Moreover, (BACAN)NAT1 structure shows marked differences in the mode of binding and location of coenzymeA when compared to the other NATs. This suggests that the mechanisms of cofactor recognition by NATs is more diverse than expected and supports the cofactor-binding site as being a unique subsite to target in drug design against bacterial NATs.  相似文献   

3.
4.
Catalytic mechanism of hamster arylamine N-acetyltransferase 2   总被引:1,自引:0,他引:1  
Wang H  Liu L  Hanna PE  Wagner CR 《Biochemistry》2005,44(33):11295-11306
Arylamine N-acetyltransferases (NATs) catalyze an acetyl group transfer from AcCoA to primary arylamines, hydrazines, and hydrazides and play a very important role in the metabolism and bioactivation of drugs, carcinogens, and other xenobiotics. The reaction follows a ping-pong bi-bi mechanism. Structure analysis of bacterial NATs revealed a Cys-His-Asp catalytic triad that is strictly conserved in all known NATs. Previously, we have demonstrated by kinetic and isotope effect studies that acetylation of the hamster NAT2 is dependent on a thiolate-imidazolium ion pair (Cys-S(-)-His-ImH(+)) and not a general acid-base catalysis. In addition, we established that, after formation of the acetylated enzyme intermediate, the active-site imidazole, His-107, is likely deprotonated at physiological pH. In this paper, we report steady-state kinetic studies of NAT2 with two acetyl donors, acetyl coenzyme A (AcCoA) and p-nitrophenyl acetate (PNPA), and four arylamine substrates. The pH dependence of k(cat)/K(AcCoA) exhibited two inflection points at 5.32 +/- 0.13 and 8.48 +/- 0.24, respectively. The pK(a) at 5.32 is virtually identical with the previously reported pK(a) of 5.2 for enzyme acetylation, reaffirming that the first half of the reaction is catalyzed by a thiolate-imidazolium ion pair in the active site. The inflection point at 8.48 indicates that a pH-sensitive group on NAT2 is involved in AcCoA binding. A Br?nsted plot constructed by the correlation of log k(4) and log k(H)2(O) with the pK(a) for each arylamine substrate and water displays a linear free-energy relationship in the pK(a) range from -1.7 (H(2)O) to 4.67 (PABA), with a slope of beta(nuc) = 0.80 +/- 0.1. However, a further increase of the pK(a) from 4.67 (PABA) to 5.32 (anisidine) resulted in a 2.5-fold decrease in the k(4) value. Analysis of the pH-k(cat)/K(PABA) profile revealed a pK(a) of 5.52 +/- 0.14 and a solvent kinetic isotope effect (SKIE) of 2.01 +/- 0.04 on k(cat)/K(PABA). Normal solvent isotope effects of 4.8 +/- 0.1, 3.1 +/- 0.1, and 3.2 +/- 0.1 on the k(cat)/K(b) for anisidine, pABglu, and PNA, respectively, were also determined. These observations are consistent with a deacetylation mechanism dominated by nucleophilic attack of the thiol ester for arylamines with pK(a) values or=5.5. The general base is likely His-107 because the His-107 to Gln and Asn mutants were found to be devoid of catalytic activity. In contrast, an increase in pH-dependent hydrolysis of the acetylated enzyme was not observed over a pH range of 5.2-7.5. On the basis of these observations, a catalytic mechanism for the acetylation of arylamines by NAT2 is proposed.  相似文献   

5.
N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish.  相似文献   

6.
Arylamine N-acetyltransferases (NATs) are polymorphic enzymes mediating the biotransformation of arylamine/arylhydrazine xenobiotics, including pharmaceuticals and environmental carcinogens. The NAT1 and NAT2 genes, and their many polymorphic variants, have been thoroughly studied in humans by pharmacogeneticists and cancer epidemiologists. However, little is known about the function of NAT homologues in other primate species, including disease models. Here, we perform a comparative functional investigation of the NAT2 homologues of the rhesus macaque and human. We further dissect the functional impact of a previously described rhesus NAT2 gene polymorphism, causing substitution of valine by isoleucine at amino acid position 231. Gene constructs of rhesus and human NAT2, bearing or lacking non-synonymous polymorphism c.691G>A (p.Val231Ile), were expressed in Escherichia coli for comparative enzymatic analysis against various NAT1- and NAT2-selective substrates. The results suggest that the p.Val231Ile polymorphism does not compromise the stability or overall enzymatic activity of NAT2. However, substitution of Val231 by the bulkier isoleucine appears to alter enzyme substrate selectivity by decreasing the affinity towards NAT2 substrates and increasing the affinity towards NAT1 substrates. The experimental observations are supported by in silico modelling localizing polymorphic residue 231 close to amino acid loop 125–129, which forms part of the substrate binding pocket wall and determines the substrate binding preferences of the NAT isoenzymes. The p.Val231Ile polymorphism is the first natural polymorphism demonstrated to affect NAT substrate selectivity via this particular mechanism. The study is also the first to thoroughly characterize the properties of a polymorphic NAT isoenzyme in a non-human primate model.  相似文献   

7.
Arylamine N-acetyltransferases (NATs) are drug and xenobiotic metabolizing enzymes that catalyze the N-acetylation of arylamines and hydrazines and the O-acetylation of N-hydroxy-arylamines. Recently, studies report that human NAT1 and mouse Nat2 hydrolyze acetyl-coenzyme A (AcCoA) into acetate and coenzyme A in a folate-dependent fashion, a previously unknown function. In this study, our goal was to confirm these findings and determine the apparent Michaelis–Menten kinetic constants (Vmax and Km) of the folate-dependent AcCoA hydrolysis for human NAT1/NAT2, and the rodent analogs rat Nat1/Nat2, mouse Nat1/Nat2, and hamster Nat1/Nat2. We also compared apparent Vmax values for AcCoA hydrolysis and N-acetylation of the substrate para-aminobenzoic acid (PABA). Human NAT1 and its rodent analogs rat Nat2, mouse Nat2 and hamster Nat2 catalyzed AcCoA hydrolysis in a folate-dependent manner. Rates of AcCoA hydrolysis were between 0.25–1% of the rates for N-acetylation of PABA catalyzed by human NAT1 and its rodent orthologs. In contrast to human NAT1, human NAT2 and its rodent analogs rat Nat1, mouse Nat1, and hamster Nat1 did not hydrolyze AcCoA in a folate-dependent manner. These results are consistent with the possibility that human NAT1 and its rodent analogs regulate endogenous AcCoA levels.  相似文献   

8.
Arylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. Each residue is essential for catalysis in both prokaryotic and eukaryotic NATs. Indeed, in (HUMAN)NAT2 variants, mutation of the Asp residue to Asn, Gln, or Glu dramatically impairs enzyme activity. However, a putative atypical NAT harboring a catalytic triad Glu residue was recently identified in Bacillus cereus ((BACCR)NAT3) but has not yet been characterized. We report here the crystal structure and functional characterization of this atypical NAT. The overall fold of (BACCR)NAT3 and the geometry of its Cys-His-Glu catalytic triad are similar to those present in functional NATs. Importantly, the enzyme was found to be active and to acetylate prototypic arylamine NAT substrates. In contrast to (HUMAN) NAT2, the presence of a Glu or Asp in the triad of (BACCR)NAT3 did not significantly affect enzyme structure or function. Computational analysis identified differences in residue packing and steric constraints in the active site of (BACCR)NAT3 that allow it to accommodate a Cys-His-Glu triad. These findings overturn the conventional view, demonstrating that the catalytic triad of this family of acetyltransferases is plastic. Moreover, they highlight the need for further study of the evolutionary history of NATs and the functional significance of the predominant Cys-His-Asp triad in both prokaryotic and eukaryotic forms.  相似文献   

9.
Protein acetylation is a widespread modification that is mediated by site-selective acetyltransferases. KATs (lysine Nϵ-acetyltransferases), modify the side chain of specific lysines on histones and other proteins, a central process in regulating gene expression. Nα-terminal acetylation occurs on the ribosome where the α amino group of nascent polypeptides is acetylated by NATs (N-terminal acetyltransferase). In yeast, three different NAT complexes were identified NatA, NatB, and NatC. NatA is composed of two main subunits, the catalytic subunit Naa10p (Ard1p) and Naa15p (Nat1p). Naa50p (Nat5) is physically associated with NatA. In man, hNaa50p was shown to have acetyltransferase activity and to be important for chromosome segregation. In this study, we used purified recombinant hNaa50p and multiple oligopeptide substrates to identify and characterize an Nα-acetyltransferase activity of hNaa50p. As the preferred substrate this activity acetylates oligopeptides with N termini Met-Leu-Xxx-Pro. Furthermore, hNaa50p autoacetylates lysines 34, 37, and 140 in vitro, modulating hNaa50p substrate specificity. In addition, histone 4 was detected as a hNaa50p KAT substrate in vitro. Our findings thus provide the first experimental evidence of an enzyme having both KAT and NAT activities.  相似文献   

10.
Arylamine N-acetyltransferase (NAT) enzymes are widespread in nature. They serve to acetylate xenobiotics and/or endogenous substrates using acetyl coenzyme A (CoA) as a cofactor. Conservation of the architecture of the NAT enzyme family from mammals to bacteria has been demonstrated by a series of prokaryotic NAT structures, together with the recently reported structure of human NAT1. We report here the cloning, purification, kinetic characterisation and crystallographic structure determination of NAT from Mycobacterium marinum, a close relative of the pathogenic Mycobacterium tuberculosis. We have also determined the structure of M. marinum NAT in complex with CoA, shedding the first light on cofactor recognition in prokaryotic NATs. Surprisingly, the principal CoA recognition site in M. marinum NAT is located some 30 Å from the site of CoA recognition in the recently deposited structure of human NAT2 bound to CoA. The structure explains the Ping-Pong Bi-Bi reaction mechanism of NAT enzymes and suggests mechanisms by which the acetylated enzyme intermediate may be protected. Recognition of CoA in a much wider groove in prokaryotic NATs suggests that this subfamily may accommodate larger substrates than is the case for human NATs and may assist in the identification of potential endogenous substrates. It also suggests the cofactor-binding site as a unique subsite to target in drug design directed against NAT in mycobacteria.  相似文献   

11.
Wang H  Vath GM  Gleason KJ  Hanna PE  Wagner CR 《Biochemistry》2004,43(25):8234-8246
Arylamine N-acetyltransferases (NATs) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to arylamines, hydrazines, and their N-hydroxylated arylamine metabolites. The recently determined three-dimensional structures of prokaryotic NATs have revealed a cysteine protease-like Cys-His-Asp catalytic triad, which resides in a deep and hydrophobic pocket. This catalytic triad is strictly conserved across all known NATs, including hamster NAT2 (Cys-68, His-107, and Asp-122). Treatment of NAT2 with either iodoacetamide (IAM) or bromoacetamide (BAM) at neutral pH rapidly inactivated the enzyme with second-order rate constants of 802.7 +/- 4.0 and 426.9 +/- 21.0 M(-1) s(-1), respectively. MALDI-TOF and ESI mass spectral analysis established that Cys-68 is the only site of alkylation by IAM. Unlike the case for cysteine proteases, no significant inactivation was observed with either iodoacetic acid (IAA) or bromoacetic acid (BAA). Pre-steady state and steady state kinetic analysis with p-nitrophenyl acetate (PNPA) and NAT2 revealed a single-exponential curve for the acetylation step with a second-order rate constant of (1.4 +/- 0.05) x 10(5) M(-1) s(-1), followed by a slow linear rate of (7.85 +/- 0.65) x 10(-3) s(-1) for the deacetylation step. Studies of the pH dependence of the rate of inactivation with IAM and the rate of acetylation with PNPA revealed similar pK(a)(1) values of 5.23 +/- 0.09 and 5.16 +/- 0.04, respectively, and pK(a)(2) values of 6.95 +/- 0.27 and 6.79 +/- 0.25, respectively. Both rates reached their maximum values at pH 6.4 and decreased by only 30% at pH 9.0. Kinetic studies in the presence of D(2)O revealed a large inverse solvent isotope effect on both inactivation and acetylation of NAT2 [k(H)(inact)/k(D)(inact) = 0.65 +/- 0.02 and (k(2)/K(m)(acetyl))(H)/(k(2)/K(m)(acetyl))(D) = 0.60 +/- 0.03], which were found to be identical to the fractionation factors (Phi) derived from proton inventory studies of the rate of acetylation at pL 6.4 and 8.0. Substitution of the catalytic triad Asp-122 with either alanine or asparagine resulted in the complete loss of protein structural integrity and catalytic activity. From these results, it can be concluded that the catalytic mechanism of NAT2 depends on the formation of a thiolate-imidazolium ion pair (Cys-S(-)-His-ImH(+)). However, in contrast to the case with cysteine proteases, a pH-dependent protein conformational change is likely responsible for the second pK(a), and not deprotonation of the thiolate-imidazolium ion. In addition, substitutions of the triad aspartate are not tolerated. The enzyme appears, therefore, to be engineered to rapidly form a stable acetylated species poised to react with an arylamine substrate.  相似文献   

12.
Arylamine N-acetyltransferases (NATs) are found in many eukaryotic organisms, including humans, and have previously been identified in the prokaryote Salmonella typhimurium. NATs from many sources acetylate the antitubercular drug isoniazid and so inactivate it. nat genes were cloned from Mycobacterium smegmatis and Mycobacterium tuberculosis, and expressed in Escherichia coli and M. smegmatis. The induced M. smegmatis NAT catalyzes the acetylation of isoniazid. A monospecific antiserum raised against pure NAT from S. typhimurium recognizes NAT from M. smegmatis and cross-reacts with recombinant NAT from M. tuberculosis. Overexpression of mycobacterial nat genes in E. coli results in predominantly insoluble recombinant protein; however, with M. smegmatis as the host using the vector pACE-1, NAT proteins from M. tuberculosis and M. smegmatis are soluble. M. smegmatis transformants induced to express the M. tuberculosis nat gene in culture demonstrated a threefold higher resistance to isoniazid. We propose that NAT in mycobacteria could have a role in acetylating, and hence inactivating, isoniazid.  相似文献   

13.
Arylamine N-acetyltransferases (NATs) catalyse the acetylation of arylamine, arylhydrazine and arylhydroxylamine substrates by acetyl Coenzyme A. NAT has been discovered in a wide range of eukaryotic and prokaryotic species. Although prokaryotic NATs have been implicated in xenobiotic metabolism, to date no endogenous role has been identified for the arylamine N-acetyl transfer reaction in prokaryotes. Investigating the substrate specificity of these enzymes is one approach to determining a possible endogenous role for prokaryotic NATs. We describe an accurate and efficient assay for NAT activity that is suitable for high-throughput screening of potential NAT ligands. This assay has been utilised to identify novel substrates for pure NAT from Salmonella typhimurium and Mycobacterium smegmatis which show a relationship between the lipophilicity of the arylamine and its activity as a substrate. The lipophilic structure/activity relationship observed is proposed to depend on the topology of the active site using docking studies of the crystal structures of these NAT isoenzymes. The evidence suggests an endogenous role of NAT in the protection of bacteria from aromatic and lipophilic toxins.  相似文献   

14.
N-acyltaurines (NATs) are biologically active amphiphilic lipids. They come under the group of compounds known as N-acyl amino acids. NATs were first detected in the brain and other tissues in mice lacking the enzyme fatty acid amide hydrolase FAAH (?/?). N-arachidonoyltaurine (20:4 NAT) acts as an excellent ligand for the subset of transient receptor potential (TRP) channels, especially vanilloid type channels TRPV1 and TRPV4. Also, hydrophobic and hydrophilic regions of NATs enable them to interact with membrane lipids. Here, we have investigated the interaction of NATs, N-myristoyltaurine (NMT), and N-palmitoyltaurine (NPT) with their corresponding diacyl phosphatidylcholines (PCs), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylchoine (DPPC). The miscibility and phase behavior of the hydrated binary mixtures have been investigated by differential scanning calorimetry (DSC). Studies on the interaction of NMT/NPT with DMPC/DPPC revealed that the two amphiphiles mix well up to 50 mol% of NAT and phase separation is observed at higher contents of the NAT. The phase transition of the equimolar mixtures of NAT:PC (50:50) studied by fluorescence, also supported the DSC results. PXRD and FTIR analysis show that the NAT:PC equimolar mixture (50:50) forms different supramolecular structures when compared to that of individual NATs and PCs. From transmission electron microscopic studies it is observed that the equimolar mixtures of NMT and NPT with their corresponding diacylphosphatidylcholines (50:50, mol/mol) forms unilamellar vesicles whose diameter range between 30 and 50 nm.  相似文献   

15.
N-terminal acetylation (N-Ac) is a highly abundant eukaryotic protein modification. Proteomics revealed a significant increase in the occurrence of N-Ac from lower to higher eukaryotes, but evidence explaining the underlying molecular mechanism(s) is currently lacking. We first analysed protein N-termini and their acetylation degrees, suggesting that evolution of substrates is not a major cause for the evolutionary shift in N-Ac. Further, we investigated the presence of putative N-terminal acetyltransferases (NATs) in higher eukaryotes. The purified recombinant human and Drosophila homologues of a novel NAT candidate was subjected to in vitro peptide library acetylation assays. This provided evidence for its NAT activity targeting Met-Lys- and other Met-starting protein N-termini, and the enzyme was termed Naa60p and its activity NatF. Its in vivo activity was investigated by ectopically expressing human Naa60p in yeast followed by N-terminal COFRADIC analyses. hNaa60p acetylated distinct Met-starting yeast protein N-termini and increased general acetylation levels, thereby altering yeast in vivo acetylation patterns towards those of higher eukaryotes. Further, its activity in human cells was verified by overexpression and knockdown of hNAA60 followed by N-terminal COFRADIC. NatF's cellular impact was demonstrated in Drosophila cells where NAA60 knockdown induced chromosomal segregation defects. In summary, our study revealed a novel major protein modifier contributing to the evolution of N-Ac, redundancy among NATs, and an essential regulator of normal chromosome segregation. With the characterization of NatF, the co-translational N-Ac machinery appears complete since all the major substrate groups in eukaryotes are accounted for.  相似文献   

16.
Here we report the physical mapping of the rad56-1 mutation to the NAT3 gene, which encodes the catalytic subunit of the NatB N-terminal acetyltransferase in Saccharomyces cerevisiae. Mutation of RAD56 causes sensitivity to X-rays, methyl methanesulfonate, zeocin, camptothecin and hydroxyurea, but not to UV light, suggesting that N-terminal acetylation of specific DNA repair proteins is important for efficient DNA repair.  相似文献   

17.
N-terminal acetylation can occur cotranslationally on the initiator methionine residue or on the penultimate residue if the methionine is cleaved. We investigated the three N-terminal acetyltransferases (NATs), Ard1p/Nat1p, Nat3p and Mak3p. Ard1p and Mak3p are significantly related to each other by amino acid sequence, as is Nat3p, which was uncovered in this study using programming alignment procedures. Mutants deleted in any one of these NAT genes were viable, but some exhibited diminished mating efficiency and reduced growth at 37 degrees C, and on glycerol and NaCl-containing media. The three NATs had the following substrate specificities as determined in vivo by examining acetylation of 14 altered forms of iso-1-cytochrome c and 55 abundant normal proteins in each of the deleted strains: Ard1p/Nat1p, subclasses with Ser-, Ala-, Gly- and Thr-termini; Nat3p, Met-Glu- and Met-Asp- and a subclass of Met-Asn-termini; and Mak3p subclasses with Met-Ile- and Met-Leu-termini. In addition, a special subclass of substrates with Ser-Glu- Phe-, Ala-Glu-Phe- and Gly-Glu-Phe-termini required all three NATs for acetylation.  相似文献   

18.
N-Acetyltransferase 2 (NAT2) metabolizes a variety of xenobiotics that includes many drugs, chemicals and carcinogens. This enzyme is genetically variable in human populations and polymorphisms in the NAT2 gene have been associated with drug toxicity and efficacy as well as cancer susceptibility. Here, we have focused on the identification of NAT2 variants in Brazilian individuals from two different regions, Rio de Janeiro and Goiás, by direct sequencing, and on the characterization of new haplotypes after cloning and re-sequencing. Upon analysis of DNA samples from 404 individuals, six new SNPs (c.29T>C, c.152G>T, c.203G>A, c.228C>T, c.458C>T and c.600A>G) and seven new NAT2 alleles were identified with different frequencies in Rio de Janeiro and Goiás. All new SNPs were found as singletons (observed only once in 808 genes) and were confirmed by three independent technical replicates. Molecular modeling and structural analysis suggested that p.Gly51Val variant may have an important effect on substrate recognition by NAT2. We also observed that amino acid change p.Cys68Tyr would affect acetylating activity due to the resulting geometric restrictions and incompatibility of the functional group in the Tyr side chain with the admitted chemical mechanism for catalysis by NATs. Moreover, other variants, such like p.Thr153Ile, p.Thr193Met, p.Pro228Leu and p.Val280Met, may lead to the presence of hydrophobic residues on NAT2 surface involved in protein aggregation and/or targeted degradation. Finally, the new alleles NAT2*6H and NAT2*5N, which showed the highest frequency in the Brazilian populations considered in this study, may code for a slow activity. Functional studies are needed to clarify the mechanisms by which new SNPs interfere with acetylation.  相似文献   

19.
The mouse arylamine N-acetyltransferase 2 (Nat2) and its homologue (NAT1) in humans are known to detoxify xenobiotic arylamines and are also thought to play a role in endogenous metabolism. Human NAT1 is highly over-expressed in estrogen receptor positive breast tumours and is implicated in susceptibility to neural tube defects. In vitro assays have suggested an endogenous role for human NAT1 in folate metabolism, but in vivo evidence to support this hypothesis has been lacking. Mouse Nat2 provides a good model to study human NAT1 as it shows similar expression profiles and substrate specificities. We have generated transgenic mice lacking a functional Nat2 gene and compared the urinary levels of acetylated folate metabolite para-aminobenzoylglutamate in Nat2 knockout and Nat2 wild-type mice. These results support an in vivo role for mouse Nat2/human NAT1 in folate metabolism. In addition, effects of the Nat2 deletion on sex ratios and neural tube development are described.  相似文献   

20.
Arylamine N-acetyltransferases (NATs) catalyze a variety of biotransformation reactions, including N-acetylation of arylamines and O-acetylation of arylhydroxylamines. Chemical modification of hamster recombinant NAT2 with 2-(bromoacetylamino)fluorene (Br-AAF) and bromoacetanilide revealed that Br-AAF is an affinity label for the enzyme whereas bromoacetanilide inactivates NAT2 through a bimolecular alkylation process. Electrospray ionization quadrupole time-of-flight mass spectrometry analysis of Br-AAF-treated NAT2 showed that a single molecule of 2-acetylaminofluorene had been adducted. Peptide sequencing with tandem mass spectrometry identified the catalytically essential Cys68 as the alkylated amino acid. Br-AAF exhibits similar affinity for hamster NAT1 and NAT2, but is a more effective inactivator of NAT1 because, subsequent to the formation of a reversible enzyme-Br-AAF complex, the rate of alkylation of NAT1 is greater than the rate of alkylation of NAT2. Bromoacetanilide alkylates Cys68 and, to a lesser extent, Cys237 of NAT2; it does not exhibit significant selectivity for either NAT1 or NAT2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号