首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Flufenamate is a powerful inhibitor of anion exchange in red blood cells. It binds to the band 3 protein involved in the transport as discussed in the preceding paper (Cousin, J.-L. and Motais, R. (1982) Biochim. Biophys. Acta 687, 147–155). The present study is concerned with the chemical properties of the inhibitory binding site. Structure-activity studies were performed with two sets of compounds derivated from anthranilate (considered as the basic structure of flufenamate). The molar concentrations required to produce 50% inhibition (I50) varied over more than a 104 range. The inhibitory activity was quantitatively correlated with the hydrophobic character of the molecules and the electron-withdrawing capacity of the substituents. Comparison between the inhibitory potency of flufenamate analogs made a definition of the contribution of each part of the molecule in the binding to the receptor possible. The results suggest that anionic inhibitors bind to a site which presents a positively charged groups at the water-protein interface whereas the hydrophobic part of the molecule is inserted into an hydrophobic and electron-donor region of the protein. The specificity of amphiphilic compounds towards anion transport is discussed.  相似文献   

2.
The binding of [3H]muscimol, a gamma-aminobutyrate (GABA) receptor agonist, to a membrane preparation from pig cerebral cortex was enhanced by the anaesthetic propanidid in a concentration-dependent manner. At 0 degrees C, binding was stimulated to 220% of control values, with 50% stimulation at 60 microM-propanidid. At 37 degrees C, propanidid caused a more powerful stimulation of [3H]muscimol binding (340% of control values). Propanidid (1 mM) exerted little effect on the affinity of muscimol binding (KD approx. 10 nM), but increased the apparent number of high-affinity binding sites in the membrane by 2-fold. Enhancement of [3H]muscimol binding was observed only in the presence of Cl- ions, half-maximal activation being achieved at approx. 40 mM-Cl-. Picrotoxinin inhibited the stimulation of [3H]muscimol binding by propanidid with an IC50 (concentration causing 50% inhibition) value of approx. 25 microM. The enhancement of [3H]muscimol binding by propanidid was not additive with the enhancement produced by secobarbital. Phenobarbital inhibited the effect of propanidid and secobarbital. The GABA receptor was solubilized with Triton X-100 or with Chaps [3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate]. Propanidid and secobarbital did not stimulate the binding of [3H]muscimol after solubilization with Triton X-100. However, the receptor could be solubilized by 5 mM-Chaps with retention of the stimulatory effects of propanidid and secobarbital. Unlike barbiturates, propanidid did not stimulate the binding of [3H]flunitrazepam to membranes. It is suggested that the ability to modulate the [3H]muscimol site of the GABA-receptor complex may be a common and perhaps functional characteristic of general anaesthetics.  相似文献   

3.
The cell membrane permeability governs the rate of solute transport into and out of the cell, significantly affecting the cell's metabolic processes, viability, and potential usefulness in both biotechnological applications and physiological systems. Most previous studies of the cell membrane permeability have neglected the possible effects of suspending medium on membrane transport, even though there is extensive experimental evidence that suspending phase composition can significantly affect other properties related to the cell membrane (e.g., cell deformability, fragility, and aggregation rate). This study examined the effects of suspending phase composition (both proteins and electrolytes) on the permeability of human red blood cells to the metabolites creatinine and uric acid. Data were obtained using a stirred ultrafiltration device with direct cell- and proteinfree sampling through a semipermeable membrane. Both the uric acid and creatinine permeabilities were strongly affected by the suspending phase composition, with the permeabilities in different buffer solutions varying by as much as a factor of three. The predominant factors affecting the permeability were the presence (or absence) of chloride, phosphate/adenine, and proteins, although the magnitude and even the direction of these effects were significantly different for creatinine and uric acid transport. The dramatic differences in behavior for uric acid and creatinine reflect the different transport mechanisms for these solutes, with uric acid transported by a carrier-mediated mechanism and creatinine transported by passive diffusion through the lipid bilayer. These results provide important insights into the effects of solution environment on cell membrane transport and other cell membrane-mediated properties. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Band 3 protein extracted from human erythrocyte membranes by Triton X-100 was recombined with the major classes of phospholipid occurring in the erythrocyte membrane. The resulting vesicle systems were characterized with respect to recoveries, phospholipid composition, protein content and vesicle size as well as capacity and activation energy of sulfate transport. Transport was classified into band-3-specific fluxes and unspecific permeability by inhibitors. Transport numbers (sulfate ions per band 3 per minute) served as a measure of functional recovery after reconstitution. The transport properties of band 3 proved to be insensitive to replacement of phosphatidylcholine by phosphatidylethanolamine, while sphingomyelin and phosphatidylserine gradually inactivated band-3-specific anion transport when present at mole fractions exceeding 30 mol%. The activation energy of transport remained unaltered in spite of the decrease in transport numbers. The results, which are discussed in terms of requirements of band 3 protein function with respect to the fluidity and surface charge of its lipid environment, provide a new piece of evidence that the transport function of band 3 protein depends on the properties of its lipid environment just as the catalytic properties of some other membrane enzymes. The well-established species differences in anion transport (Gruber, W. and Deuticke, B. (1973) J. Membrane Biol. 13, 19–36) may to some extent reflect this lipid dependence.  相似文献   

5.
Depressant drugs are considered to exert their pharmacological effects as a result of membrane interactions determined by their physico-chemical properties. In this study, a correlation was found between lipid solubility and potency of various local anaesthetics, antihistamines, tricyclic antidepressants and phenothiazine tranquilizers as inhibitors of the Na, K-ATPase activity of a microsomal membrane fraction from bovine brain cortex. Depressant drugs such as chlorpromazine, which have the greatest lipid solubilities, were competitive inhibitors of Na activation but noncompetitive toward K activation, whereas drugs such as tetracaine with lower lipid solubilities were competitive inhibitors of K activation but noncompetitive toward Na activation. Drugs with intermediate lipid solubilities were mixed competitive-noncompetitive inhibitors of both Na and K activation. Both chlorpromazine and tetracaine competitively inhibited cation activation by a heterotropic allosteric mechanism, probably mediated through membrane conformational changes. Whereas quaternization or a decrease in the incubation pH interfered with the ability of chlorpromazine to inhibit Na activation in a competitive fashion, these changes did not affect the ability of tetracaine to compete with K activation. In addition Mn, Ca and phosphatidyl serine were very effective non-competitive antagonists of chlorpromazine inhibition of Na, K-ATPase, whereas these agents competitively antagonized tetracaine inhibition to a lesser extent. These data suggest that the more lipid soluble phenothiazines penetrate into and react in hydrophobic areas of the membrane microenvironment, resulting in a membrane perturbation which interferes with Na activation. On the other hand the less lipid soluble local anaesthetics probably act at superficial sites near the membrane surface, resulting in a different membrane perturbation which interferes with the K activation mechanism. It is suggested that lipid solubility may be a significant factor in determining selectivity in the membrane interactions of various pharmacological agents and hence differences in pharmacological activity among different classes of depressant drugs.  相似文献   

6.
Red blood cell membranes have been labeled with several covalent and non-covalent inhibitors of anion transport and their heat capacity profiles determined as a function of temperature. Covalent inhibitors include the amino reactive agents 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid, 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid, pyridoxal phosphate and 1-fluoro-2,4-dinitro benzene. The non-covalent inhibitors include several well known local anesthetics. The study was undertaken in order to identify regions of the membrane involved in anion transport. Covalent modification in all cases resulted in a large upward shift of the C transition, which is believed to involved a localized phospholipid region. Evidence is presented which indicates that Band III protein and this phospholipid region are in close physical proximity on the membrane. Addition of non-covalent inhibitors affects the membrane in either or both of two ways. In some cases, a lowering and broadening of the C transition occurs; in other the B1 and B2 transitions are altered. These latter transitions are believed to involve both phospholipid and protein, including Band III. These results may indicate that the non-covalent inhibitors produce their inhibitory effect on anion transport at least in part by interacting with membrane phospholipid.  相似文献   

7.
Scanning microcalorimetry was employed as an aid in examining some structural features of the anion transport system in red blood cell vesicles. Two structural transitions were previously shown to be sensitive to several covalent and non-covalent inhibitors of anion transport in red cells. In this study, these transitions were selectively removed, either thermally or enzymatically, and the subsequent effect on 35SO42? efflux in red cell vesicles was determined. It is shown that removal of one of these transitions (B2) has a negligible inhibitory effect on anion transport. Cytoplasmic, intermolecular disulfide linkages between band 3 dimers are known to form during the B2 transition. The integrity of the 4,4′-diisothiocyanostilbene-2,2′-disulfonate-sensitive C transition, on the other hand, is shown to be a requirement for anion transport. The localized region of the membrane giving rise to this transition contains the transmembrane segment of band 3, as well as membrane phospholipids. The calorimetric results suggest a structure of band 3 which involves independent structural domains, and are consistent with the transmembrane segment playing a direct role in the transport process.  相似文献   

8.
P.M. Vignais  P.V. Vignais 《BBA》1973,325(3):357-374

1. 1. Fuscin, a mould metabolite, is a colored quinonoid compound which reacts readily with −SH groups to give colorless addition derivatives.

2. 2. Binding of fuscin to mitochondria has been monitored spectrophotometrically. Fuscin binding is prevented by −SH reagents such as N-ehylmaleimide, N-Methylmaleimide, mersalyl or p-chloromercuribenzoate. Conversely, fuscin prevents the binding of −SH reagents as shown with N-[14C]ethylmaleimide. Once bound to mitochondria, fuscin is not removable by washing of mitochondria.

3. 3. High affinity-fuscin binding sites (Kd = 1 μM, N = 4–8 nmoles/mg protein) are present in whole mitochondria obtained from rat heart, rat liver, pigeon heart or yeast (Candida utilis). They are lost upon sonication but are still present in digitonin inner membrane + matrix vesicles. On the other hand, lysis of mitochondria by Triton X-100 does not increase the number of high affinity binding sites indicating that all these sites are accessible to fuscin in whole mitochondria. The number of fuscin high affinity sites appears to correlate with the glutathione content of mitochondrial preparations.

4. 4. Fuscin as well as N-ethylmaleimide and avenaciolide are penetrant SH-reagents;

5. 5. Fuscin interferes with the ADP-stimulated respiration of mitochondria on NAD-linked substrates, several functions of the mitochondrial respiratory apparatus being inhibited by fuscin in a non-competitive manner, but to various extents: (a) The electron transfer chain (Ki in the range of 0.1 mM); (b) the lipoamide dehydrogenase system (Ki = 5–10 μM); (c) the transport systems of phosphate (Ki ≈ 20 μM) and of glutamate (Ki = 3–5 μM); (d) the ADP transport, indirectly (Ki ≈ 10 μM).

6. 6. Like N-ethylmaleimide, fuscin inhibits the glutamate-OH carrier, the inhibition of that carrier bringing about an apparent increase of aspartate entry in glutamate-loaded mitochondria by the glutamate-aspartate carrier.

7. 7. The inhibition of phosphate transport by fuscin probably accounts for the inhibition of the reduction of endogenous NAD by succinate in intact pigeon heart mitochondria.

8. 8. By binding the −SH groups of mitochondrial membrane specifically unmasked by addition of micromolar amounts of ADP, fuscin, like N-ethylmaleimide, prevents the functioning of ADP translocation.

9. 9. Because of their specific and analogous effects on some well defined mitochondrial functions such as glutamate transport and ADP transport, fuscin and N-ethylmaleimide can be distinguished from other −SH reagents. The lipophilic nature of fuscin and N-ethylmaleimide which accounts for the accessbility of these compounds to hydrophobic sites in the mitochondrial membrane or on the matrix side of this membrane may be partly responsible for their characteristic inhibitory effects on mitochondrial functions.

Abbreviations: DTNB, 5,5′-dithio-bis-(2-nitrobenzoic acid); PCMB, p-chloromercuribenzoate  相似文献   


9.
The effects of phenylisothiocyanate (PITC) and of the polar analogue p-sulfophenylisothiocyanate (p-sulfoPITC) on the phosphate carrier of bovine heart mitochondria have been investigated. Incubation of mitochondria with the two phenylisothiocyanates leads to inhibition of the phosphate carrier protein. The inhibition of phosphate transport by PITC is unaffected by the addition of dithioerythritol (DTE) or by variation of the pH. The inhibition by p-sulfoPITC is in part removed by DTE; the remaining inactivation of the phosphate carrier, which can be attributed to the reaction with NH2 groups, is temperature and pH-dependent. Inhibition of phosphate transport by both p-sulfoPITC and PITC depends on the time of incubation and the concentration of the inhibitor. Preincubation with mersalyl protects the carrier protein against the inactivation by p-sulfoPITC but not against PITC. Other SH reagents tested do not show any protective effect. It can thus be concluded that two types of lysine residues are essential for the activity of the phosphate carrier. Lysine(s) of the former type are located at the surface of the membrane and are topologically related to the functional SH groups of the protein. Lysine residue(s) of the latter type are buried in the hydrophobic phase of the membrane.  相似文献   

10.
革兰氏阴性菌脂多糖运输系统的构成及作用机制   总被引:1,自引:0,他引:1  
莫婷  刘马峰  程安春 《微生物学报》2018,58(9):1521-1530
革兰氏阴性菌包含有两层组分不同的膜结构——内膜和外膜,对大多数革兰氏阴性菌而言,脂多糖(lipopolysaccharides,LPS)是其外膜上最主要的脂质成分,锚定在外膜小叶(the outer leaflet of the OM)上,是革兰氏阴性菌固有免疫的重要组成部分。脂多糖运输系统(lipopolysaccharide transport system,Lpt)将胞内装配完整的LPS正确装配到外膜,使得与脂多糖相关的阻渗、有机溶剂耐受性、疏水性抗生素耐受性、膜通透性等功能得以实现。该运输系统的正确作用主要依赖7个不同的脂多糖运输蛋白(Lpt ABCDEFG)协同完成,整个系统贯穿细菌内膜至外膜,由内膜上ABC转运体复合物Lpt B2FG、胞质内转运协同蛋白Lpt A/C及被许多学者称作脂多糖运输的"命门"的外膜蛋白复合物Lpt DE共同构成。本文就革兰氏阴性菌脂多糖的具体结构功能进行简介,进而综述脂多糖运输系统的7个蛋白的构成和作用机制,以期为进一步研究该系统中每个蛋白的功能提供理论基础及参考。  相似文献   

11.
Plasma membrane enriched microsomal fraction was isolated from corn root cells by sucrose density centrifugation. The ATPase activity as measured by the release rate of inorganic phosphate, was decreased by the presence of modifiers which included diethylstilbestrol, vanadate, N,N'-dicyclohexylcarbodiimide, and miconazole. The presence of ADP also decreased the rate of ATP hydrolysis. Furthermore, a preincubation of the membrane with ADP significantly reduced the inhibitory effects of these membrane ATPase modifiers. Since the modes of interaction of these modifiers with the enzyme are different, the results suggest that the binding of ADP may stabilize the plasma membrane ATPase in a modifier insensitive state.  相似文献   

12.
The modulation of a variety of mechanisms of channel-mediated transport across unilamellar phospholipid membranes by a range of halogenated inhalation general anaesthetics (chloroform, enflurane, halothane and methoxyflurane) was investigated using 1H-NMR spectroscopy. Transport of the probe ion Pr3+ across egg yolk phosphatidylcholine (PC) and dipalmitoyl phosphatidylcholine (DPPC) vesicular membranes in the presence of the channel forming polypeptides alamethicin 30 and melittin, and the polyene antibiotic nystatin, as well as the degree of vesicular lysis at the gel to liquid-crystal phase transition of DPPC vesicles was monitored. The observation that the inhalation general anaesthetics inhibit such membrane permeability independently of the channel system or type of lipid used, suggests that hydrogen-bonded water structure and/or hydrogen-bonding centres at dipolar lipid-polypeptide interfaces, can be likely sites of action of the general anaesthetics.  相似文献   

13.
A mixed membrane preparation obtained from turtle bladder epithelial cells contains (Na+ + K+)-ATPase, adenylate cyclase and protein kinase, which interact with ouabain, norepinephrine and cyclic AMP, respectively. When such a preparation is obtained from bladders which had been preexposed to serosal fluids containing the tritiated form of 4,4′-diisothiocyano-2,2′-disulfonic stilbene, the subsequently isolated membrane proteins are enriched in tritium as well as in the afore-mentioned enzymes, none of which is inhibited. Freeflow electrophoresis separates the mixed membrane preparation into two distinguishable groups: one, construed as apical membranes, is enriched in norepinephrine-sensitive adenylate cyclase and cyclic AMP-sensitive protein kinase; the other, construed as basal-lateral membranes, is enriched in ouabain-sensitive ATPase and 4,4′-diisothiocyano-2,2′-disulfonic stilbene-binding proteins.The physiological counterparts of these enzymatically defined membrane markers are the mucosal sidedness of the transport effects of norepinephrine and cyclic AMP derivatives and the serosal sidedness of the transport effects of ouabain and disulfonic stilbenes in the intact turtle bladder. The discreteness and ion selectivity of each membrane-bound, transport-related element are discussed in relation to the corresponding characteristics of each transport process in vivo; the possibility of regulation of anion transport by adenylate cyclase-protein kinase system is also discussed.  相似文献   

14.
15.
The hydrophobic probe phenylisothiocyanate is utilized for chemical modification of human erythrocyte band 3 protein. The binding of phenylisothiocyanate to this protein is characterized in whole erythrocytes, erythrocyte ghost membranes and in isolated band 3 protein. The label, reactive with nucleophiles in their deprotonated form, is found in all three preparations to be covalently bound to band 3 protein. Under saturation conditions, 4–5 mol phenylisothiocyanate are covalently bound per mol protein (molecular weight 95 000). The described modification effects inhibition of phosphate entry into erythrocytes. 50% inhibition of phosphate transport is obtained following a preincubation of erythrocytes with 0.45 mM phenylisothiocyanate. Both phenylisothiocyanate binding and transport inhibition are saturating processes. The relationship of the two parameters is non-linear.  相似文献   

16.
The effects of tyrosine- and sulfhydryl-specific reagents on the Na+-dependent transport of phosphate in brush border membrane vesicles prepared from rat renal cortex were investigated. This study is the first to show that the tyrosine-specific reagents 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and tetranitromethane inactivate the transporter in a concentration- and time-dependent fashion while the membrane impermeant tyrosine reagent, N-acetylimidazole, has no effect on phosphate uptake. The membrane permeant sulfhydryl reagent N-ethylmaleimide also caused a time- and concentration-dependent inactivation of this transport process but the membrane impermeant reagents 7-chloro-4-sulfobenzo-2-oxa-1,3-diazole and eosin-5-maleimide had little effect on phosphate uptake. The inhibitory effects of both tyrosine- and sulfhydryl-specific reagents were additive, but no protection from inactivation by tyrosine-specific reagents could be achieved by preincubation of the vesicles with the substrates of the transporter or with competitive inhibitors of the transport process. These results suggest that the amino acids modified by these agents are located either within the membrane or on the cytosolic surface of the transporter. These residues may not participate in substrate binding, but may be important for the conformational change of the transporter necessary for the translocation of phosphate across these membranes. This study also shows that Na+-dependent phosphate transport can be inactivated by other reagents which covalently modify histidine, carboxyl, and amino groups on proteins.  相似文献   

17.
Multidrug resistance ABC transporters   总被引:11,自引:0,他引:11  
Chang G 《FEBS letters》2003,555(1):102-105
Clinical multidrug resistance is caused by a group of integral membrane proteins that transport hydrophobic drugs and lipids across the cell membrane. One class of these permeases, known as multidrug resistance ATP binding cassette (ABC) transporters, translocate these molecules by coupling drug/lipid efflux with energy derived from the hydrolysis of ATP. In this review, we examine both the structures and conformational changes of multidrug resistance ABC transporters. Together with the available biochemical and structural evidence, we propose a general mechanism for hydrophobic substrate transport coupled to ATP hydrolysis.  相似文献   

18.
Extracellular chymotrypsin cleaves the 95 000 dalton protein that migrates in band 3 of SDS-polyacrylamide gel electropherograms of the erythrocyte membrane into fragments of 60 000 and 35 000 daltons, but not further. Minor components of band 3 that remain at the original 95 000 dalton location may be eluted from the membrane by 0.1 N NaOH, indicating that, in contrast to the major component and the chymotryptic fragments, they are not integral membrane constituents.Incubation at neutral pH of chymotrypsinized erythrocytes with the bifunctional anion transport inhibitor 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid results in covalent binding of that inhibitor primarily to the 60 000 dalton fragment and some cross-linking of the 60 000 dalton fragment with the 35 000 dalton fragment. Increasing the pH to 9.5 leads to a crosslinking of virtually all of the pairs of chymotryptic fragments and thus to a reconstitution of band 3 with its typical diffuse appearance in the 95 000 dalton region of the SDS-polyacrylamide gels. This indicates that (1) each integral 95 000 dalton protein molecule is capable of binding at least one 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid molecule; (2) the 35 000 dalton fragment, though it is only weakly stained with Coomassie blue, is present in an amount that is equimolar with that of the 60 000 dalton fragment. Since the number of 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid binding sites on the protein in band 3/cell is known to be close to the number of band 3 molecules/cell, it is suggested that the cross-linking takes place at a region of the band 3 molecule that is involved in the control of anion transport.Like chymotrypsin, papain digests the band 3 protein from the outer membrane surface. Unlike chymotrypsin, however, papain digestion results in an inhibition of anion exchange. Papain produces a major fragment of 60 000 daltons that differs from the major chymotryptic fragment by at most six amino acid residues. The only detectable difference between the non-inhibitory action of chymotrypsin and the inhibitory action of papain on the band 3 protein is that papain is capable of partially digesting the 35000 dalton fragment. No reconstitution of band 3 by cross-linking of the fragments with 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid can be achieved. Since the 35 000 dalton fragment reacts with one of the two reactive groups of 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonic acid and is also susceptible to digestion by the inhibitory papain, we suggest that a portion of this peptide participates, together with a portion of the 60 000 dalton fragment, in the control of anion transport.  相似文献   

19.
Calcium uptake by intact bovine epididymal spermatozoa is not affected by low concentrations (up to 0.75 mM) of the calcium transport blocker verapamil. Under these conditions, calcium transport into sperm mitochondria is highly inhibited. At higher verapamil concentrations (1.0, 1.5 mM), calcium transport into intact sperm is also inhibited, and this inhibition cannot be relieved by disrupting the plasma membrane with filipin. Calcium uptake into intact sperm is highly inhibited by mersalyl and this inhibitory effect can be completely relieved when the plasma membrane is disrupted by filipin. This effect of mersalyl is not dependent on the presence of phosphate in the incubation medium. Phosphate itself, up to 2 mM, enhances calcium uptake into the cells; this effect decreases at higher concentrations and is depressed 57% at 10 mM phosphate. This inhibitory effect of high phosphate concentration can be blocked by mersalyl. It is suggested that the calcium carrier itself and not a phosphate carrier of the plasma membrane is inhibited by mersalyl. It is possible that there is a symporter for calcium and phosphate in the plasma membrane of bovine spermatozoa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号