首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regulation of the mitochondrial adenine nucleotide pool size   总被引:1,自引:0,他引:1  
A mechanism by which normal adult rat liver mitochondria may regulate the matrix adenine nucleotide content was studied in vitro. If mitochondria were incubated with 1 mm ATP at 30 ° C in 225 mm sucrose, 2 mm K2HPO4, 5 mm MgCl2, and 10 mm Tris-Cl (pH 7.4), the adenine nucleotide pool size increased at a rate of 0.44 ± 0.02 nmol/mg mitochondrial protein/min. The rate of adenine nucleotide accumulation under these conditions was concentration dependent and specific for ATP or ADP; AMP was not taken up. The rate of net ADP uptake was 50–75% slower than that for ATP. The Km values for net uptake of ATP and ADP were 2.08 and 0.36 mm, respectively. Adenine nucleotide uptake was stoichiometrically dependent on Mg2+ and stimulated by inorganic phosphate. Net uptake was inhibited by n-ethylmaleimide, or mersalyl, but not by n-butylmalonate. Nigericin inhibited net uptake, but valinomycin did not. In the presence of uncouplers, net uptake was not only inhibited, but adenine nucleotide efflux was observed instead. Like uptake, uncoupler-induced efflux of adenine nucleotides was inhibited by mersalyl, indicating that a protein was required for net flux in either direction. Carboxyatractyloside, bongkrekic acid, or respiratory substrates reduced the rate of adenine nucleotide accumulation, however, this did not appear to be a direct inhibition of the transport process, but rather was probably related indirectly to an increase in the matrix ATPADP ratio. The collective properties of the transport mechanism(s) for adenine uptake and efflux were different from those which characterize any of the known transport systems. It is proposed that uptake and efflux operate to regulate the total matrix adenine nucleotide pool size: a constant pool size is maintained if the rates of uptake and efflux are equal. Transient alterations in the relative rates of uptake and efflux may occur in response to hormones or other metabolic signals, to bring about net changes in the pool size.  相似文献   

2.
In newborn rat liver, the adenine nucleotide content (ATP + ADP + AMP) of mitochondria increases severalfold within 2 to 3 h of birth. The net increase in mitochondrial adenines suggests a novel mechanism by which mitochondria are able to accumulate adenine nucleotides from the cytosol (J. R. Aprille and G. K. Asimakis, 1980, Arch. Biochem. Biophys.201, 564.). This was investigated further in vitro. Isolated newborn liver mitochondria incubated with 1 mM ATP for 10 min at 30 °C doubled their adenine nucleotide content with effects on respiratory functions similar to those observed in vivo: State 3 respiration and adenine translocase activity increased, but uncoupled respiration was unchanged. The mechanism for net uptake of adenine nucleotides was found to be specific for ATP or ADP, but not AMP. Uptake was concentration dependent and saturable. The apparent Km′s for ATP and ADP were 0.85 ± 0.27 mM and 0.41 ± 0.20 mM, respectively, measured by net uptake of [14C]ATP or [14C]ADP. The specific activities of net ATP and ADP uptake averaged 0.332 ± 0.062 and 0.103 ± 0.002 nmol/min/mg protein, respectively. ADP was a competitive inhibitor of net ATP uptake. If Pi was omitted from the incubations, net uptake of ATP or ADP was reduced by 51%. Either mersalyl or N-ethylmaleimide severely inhibited the accumulation of adenine nucleotides. Net ATP uptake was stoichiometrically dependent on MgCl2, suggesting that Mg2+ is accumulated along with ATP (or ADP). Uptake was energy dependent as indicated by the following results: Net AdN uptake (especially ADP uptake) was stimulated by the addition of an oxidizable substrate (glutamate) and inhibited by FCCP (an uncoupler). Antimycin A had no effect on net ATP uptake but inhibited net ADP uptake, suggesting that ATP was able to serve as an energy source for its own accumulation. If carboxyatractyloside was added to inhibit the exchange translocase, thereby preventing rapid access of exogenous ATP to the matrix, net ATP uptake was inhibited; carboxyatractyloside had no effect on ADP uptake. It was concluded that the net uptake of adenine nucleotides from the extramitochondrial space occurs by a specific transport process distinct from the classic adenine nucleotide exchange translocase. The accumulation of adenine nucleotides may regulate matrix reactions which are allosterically affected by adenines or which require adenines as a substrate.  相似文献   

3.
1. Inhibitor titration experiments carried out with carboxyatractyloside, oligomycin and rotenone show that in the case of heart mitochondria the membrane-bound ATPase and the respiratory chain are the major factors controlling the rate of oxidative phosphorylation whereas the adenine nucleotide carrier exhibits no control strength. 2. As shown by carboxyatractyloside titration curves under different conditions, the relative importance of the adenine nucleotide carrier depends on the mode of regeneration (F1-ATPase or glucose plus hexokinase) of ADP from ATP exported outside mitochondria, on the total concentration of adenine nucleotides present in the medium and on the mode of limitation of the rate of respiration (cyanide, rotenone, oligomycin or mersalyl). 3. Concomitantly with the inhibition of O2 consumption, carboxyatractyloside brings about a rise in membrane potential. The inverse relationship between the two processes is observed for carboxyatractyloside concentrations ranging between 0.7 and 1.5 nmol per mg protein. Carboxyatractyloside concentrations below and above this range increase the membrane potential without affecting significantly the rate of respiration. 4. Titration experiments aimed at comparing the effects of ADP, carboxyatractyloside and the uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, corroborate the conclusion that in heart mitochondria a major limiting factor in oxidative phosphorylation is the capacity of the respiratory chain.  相似文献   

4.
Ethidium bromide (23 nmol/mg of protein) was found to be a potent inhibitor of oxidative phosphorylation, as determined by loss of respiratory control through the inhibition of the ADP-induced state-3 rate of oxygen uptake. A time latency for complete loss of respiratory control was noted, after which 2,4-dinitrophenol (DNP) was ineffective in overcoming this inhibition. In the absence of EDTA, ethidium bromide produced an apparent uncoupling, as evidenced by an increase of state-4 rates of oxygen uptake and loss of respiratory control. As low as 8 nmol of ethidium bromide/mg of protein stimulated mitochondrial adenosine triphosphatase (ATPase) for 5 min. Two to three times this amount of ethidium bromide reduced the amount Pi released. Preincubation of mitochondria with ethidium bromide prevented subsequent release of Pi during incubation with ATP. Likewise, preincubation inhibited the DNP-activated ATPase. The uptake of low levels of [14C]ADP preincubated with ethidium bromide (14 nmol/mg of protein) and succinate or α-ketoglutarate could apparently be reversed, with loss of radioactivity beginning several minutes after addition of the radioactive nucleotide. Inhibition of oxidative phosphorylation by ethidium bromide may be due to modification of the adenine nucleotide transport system in mitochondria. The production of apparently swollen mitochondria treated in vitro with ethidium bromide and substrates necessary for oxidative phosphorylation, as seen in electron micrographs, further indicates that the compound is capable of acting directly upon mouse liver mitochondrial function and structure.  相似文献   

5.
D. Bar-Zvi  N. Shavit 《BBA》1982,681(3):451-458
Inactivation of the chloroplast ATPase upon tight nucleotide binding was studied with several adenine nucleotide analogs. Compared with ADP, the other nucleoside diphosphates were less effective in the follwing order: IDP >?-ADP > 1-oxido-ADP > GDP. The nucleotide analogs compete with ADP for binding to the tight nucleotide-binding site(s) on the ATPase and also prevent further inactivation by ADP. AdoPP[NH]P also causes inactivation but has a lower affinity than ADP. [3H]GDP binds tightly to the ATPase, but the resulting enzyme-GDP complex is more readily dissociable than the enzyme-ADP complex. Although both nucleotides appear to bind to the same site, the catalytic and binding properties of the coresponding nucletide-enzyme complexes differ. Binding of GDP also decreases the rate and extent of the sontaneous decay of the activated enzyme. PPi decreases the rate of inacivation caused by ADP and also the level of tigthly buond ADP. Based on these results, we suggest that two different confomations of the ATPase exist which contain tigthly bound ADP. The active conformation is conveted to the inactive conformation in the absence of a continued supply of energy by illumination or ATP hydrolysis.  相似文献   

6.
Unidirectional transport (influx and efflux) of adenine nucleotides in rat liver mitochondria was examined using carboxyatractyloside to inhibit rapid exchange of matrix and external adenine nucleotides via the adenine nucleotide translocase. Influx of adenine nucleotides was concentration-dependent. ATP was the preferred substrate with a Km of 2.67 mM and V of the preferred substrate with a Km of 2.67 mM and V of 8.33 nmol/min/mg of protein. For ADP, the Km was 14.7 mM and V was 10.8 nmol/min/mg of protein. Efflux of adenine nucleotides was also concentration-dependent, varying directly as a function of the matrix adenine nucleotide pool size. Any increase in the influx of adenine nucleotides was coupled to an increase in efflux. However, as the external ATP concentration was increased, influx was stimulated to a much greater extent than was efflux. This imbalance suggested that under certain conditions adenine nucleotide movement might be coupled to the movement of an alternate anion such as phosphate. Adenine nucleotide efflux increased as the external phosphate concentration was varied from 0.5 to 4 mM. Also, increasing the external phosphate concentration caused adenine nucleotide influx to decrease, suggesting competition. In the absence of external adenines and phosphate, no efflux occurred. Both adenine nucleotide influx and efflux were depressed if Mg2+ was omitted. Adenine nucleotide efflux in the presence of external phosphate was inhibited much less by lack of Mg2+ than was efflux in the presence of external ATP. This evidence supports a model in which either adenine nucleotides (probably with Mg2+) or phosphate can move across the mitochondrial membrane on a single carrier. Net adenine nucleotide movements can occur when adenine nucleotide movement is coupled to the movement of phosphate in the opposite direction.  相似文献   

7.
Isolated basolateral plasmamembrane vesicles from rat duodenum epithelial cells exhibit ATP-dependent calcium-accumulation and Ca2+-dependent ATPase activity. Calcium accumulation stimulated by ATP is prevented by the calcium ionophore A23187, inhibited 80% by 0.1 mM orthovanadate but is not effected by oligomycin. Calcium accumulation is not observed with the substrate β-γ-(CH2)-ATP, ADP and p-nitrophenyl phosphate. Kinetic studies reveal an apparent Km of 0.2 μM Ca2+ and a Vmax of 5.3 nmol Ca2+/min per mg protein for the ATP-dependent calcium-uptake system. Calmodulin and phenothiazines have no effect on calcium accumulation in freshly prepared membranes, but small effects are inducable after a wash with a 5 mM EGTA. The kinetic parameters of Ca2+-ATPase are: Km = 0.25 μM Ca2+ and Vmax = 19.2 nmol Pi/min per mg protein. Three techniques, osmotic shock, treatment with Triton X-100 or the channel-forming peptide alamethacin, reveal that about 40% of the vesicles are resealed. Assuming that half of the resealed vesicles have an inside-out orientation, the Vmax of ATP-dependent calcium uptake amounts to 25 nmol Ca2+/min per mg protein and of the Ca2+-ATPase to 23 nmol Pi/min per mg protein. The close correlation between kinetic parameters of Ca2+-ATPase and ATP-dependent calcium-transport strongly suggests that both systems are expressions of a Ca2+-pump located in duodenal basolateral plasma membranes.  相似文献   

8.
In bovine heart mitochondria bongkrekic acid at concentrations as low as about 4 nmol/mg protein (a) completely inhibits phosphorylation of exogenous adenosine diphosphate (ADP) and dephosphorylation of exogenous adenosine triphosphate (ATP), (b) completely reverses atractyloside inhibition of inner membrane contraction induced by exogenous adenine nucleotides, and (c) decreases the amount of adenine nucleotide required to elicit maximal exogenous adenine nucleotide-induced inner membrane contraction to a level which appears to correspond closely with the concentration of contractile, exogenous adenine nucleotide binding sites Bongkrekic acid at concentrations greater than 4 nmol/mg protein induces inner membrane contraction which seems to depend on the presence of endogenous ADP and/or ATP. The findings appear to be consistent with the interpretations (a) that the inner mitochondrial membrane contains two types of contractile, adenine nucleotide binding sites, (b) that the two sites differ markedly with regard to adenine nucleotide affinity, (c) that the high affinity site is identical with the adenine nucleotide exchange carrier, (d) that the low affinity site is accessible exclusively to endogenous adenine nucleotides and is largely unoccupied in the absence of bongkrekic acid, and (e) that bongkrekic acid increases the affinity of both sites in proportion to the amount of the antibiotic bound to the inner membrane.  相似文献   

9.
Enzyme activities conceivably involved in the activation of sulfate were studied with Desulfotomaculum ruminis, D. acetoxidans, D. nigrificans, D. orientis, and Desulfovibrio vulgaris. Cell lysates of these species revealed activities of at least 8 nkat/mg protein (i.e., 480 nmol per min and mg protein) of ATP sulfurylase, acetate kinase, phosphotransacetylase and adenylate kinase. ADP sulfurylase was not detected. Pyrophosphatase activity was high (73 to 97 nkat/mg protein) in Desulfotomaculum orientis and Desulfovibrio vulgaris. In these strains pyrophosphatase was activated by addition of a reductant (dithionite). In Desulfotomaculum ruminis, D. acetoxidans, and D. nigrificans, only low pyrophosphatase activity (2.5 to 6.3 nkat/mg protein) was measured, which was not reductant-activated. Some hints indicated a membrane association of the pyrophosphatase in D. ruminis, and possibly also in D. acetoxidans and D. nigrificans. Activities of a pyrophosphate-dependent acetate kinase (PPi:acetate kinase), a PPi:AMP kinase or a polyphosphate:AMP kinase were not detected or negligible. The results are not in favour of the assumption that pyrophosphate formed by ATP sulfurylase during sulfate activation might be utilized to form acetyl phosphate in Desulfotomaculum species. Contrary results of other authors were shown to be artefacts caused by chemical hydrolysis of acetyl phosphate in the molybdate-sulfuric acid reagent used for phosphate determination.Abbreviations Pi orthophosphate - PPi pyrophosphate - APS adenosine phosphosulfate - AP5A, P1 P5-di(adenosine-5-)pentaphosphate - CTAB cetyltrimethylammonium bromide - MOPS 3-(N-morpholino)propanesulfonic acid - HEPES N(-2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid  相似文献   

10.
Jill Rulfs  June R. Aprille 《BBA》1982,681(2):300-304
The adenine nucleotide content (ATP+ADP+AMP) of newborn rabbit liver mitochondria was 6.0±0.5 nmol/mg mitochondrial protein at birth, increased rapidly to 14.5±1.7 nmol/mg protein by 2 h postnatal, peaked at 6 h, then decreased gradually to 7.8±0.6 nmol/mg protein by 4 days postnatal. There was a strong positive correlation (r=0.82) between the total adenine nucleotide pool size and adenine nucleotide translocase activity in these mitochondria. In contrast, glutamate + malate-supported State 3 respiratory rates remained constant from birth through the first week of life. State 4 rates also remained constant, as did the respiratory control index and uncoupled respiratory rates. The following conclusions are suggested: (1) The maximum rate of translocase activity is limited by the intramitochondrial adenine nucleotide pool size. (2) In newborn rabbit liver mitochondria, the State 3 respiratory rate is not limited by either the adenine pool size or the maximum capacity for translocase-mediated adenine exchange. (3) In contrast to rat, rabbit liver mitochondria are fully functional at birth with regard to respiratory rates and oxidative phosphorylation. (4) The rapid postnatal accumulation of adenine nucleotides by liver mitochondria, now documented in two species, may be a general characteristic of normal metabolic adjustment in neonatal mammals.  相似文献   

11.
A new method for the rapid analysis of inorganic pyrophosphate (PPi) which utilizes the enzyme ATP sulfurylase is described. All components of the assay system are commercially available and inexpensive. The assay is linear over the range of 0.5–50.0 nmol of PPi and is not affected by inorganic phosphate. ATP and PPi can both be analyzed using this method.  相似文献   

12.
The preincubation of rat liver crude extracts with ATP caused a 60% inactivation of phosphoprotein phosphatase in 30 min at 30 °C. The presence of Mg2+, or cyclic AMP, along with ATP in the preincubation mixture had no effect on the inactivation of phosphatase caused by ATP. The crude liver phosphatase was also inactivated by ADP or PPi; PPi being the most potent inactivating metabolite. AMP, adenosine or Pi were without any effect. The effect of ATP or PPi was completely reversed by cobalt. The cobalt effect was very specific and could not be replaced by several metal ions tested except by Mn2+ which was partly active. With the aid of sucrose density gradient studies, it was also shown that PPicauses an apparent conversion of a 4.1 S form to a 7.8 S form of the enzyme in rat liver extracts. Cobalt, on the other hand, converts the higher 7.8 S form to a lower 4.1 S form of the enzyme. The preincubation of purified rabbit liver phosphoprotein phosphatase with PPi also caused a complete inactivation of the enzyme in 40 min. The inactivation of the enzyme by PPi was completely reversed by cobalt. Unlike the apparent interconversion between different molecular forms of the enzyme by PPi and cobalt in rat liver crude extracts, no such interconversion of purified rabbit liver phosphoprotein phosphatase was observed in the presence of PPi and cobalt.  相似文献   

13.
The in vitro effect of Escherichia coli endotoxin on the translocation of adenine nucleotides in dog heart mitochondria was studied. Mitochondrial adenine nucleotides were labeled with 14C by incubating mitochondrial preparations in the presence of [14C]ADP. The exchange reaction was initiated by addition of unlabeled ADP, proceeded for 5 to 60 s at 4 °C, and was terminated by addition of atractyloside. The results showed that preincubation of mitochondria with endotoxin (50 μg/mg protein) for 10 min at 23 °C decreased the exchange reaction by 21.2% (P < 0.05). The inhibitory effect of endotoxin was increased with increasing concentrations of endotoxin with an I50 value of 45 μg/mg protein. The initial rate and the total extent of exchange were both affected. Double reciprocal plots showed that only the V but not the Km for ADP was affected by endotoxin, indicating that the inhibition was noncompetitive in nature. The exchange of adenine nucleotide remained depressed by endotoxin in the presence of either oligomycin or antimycin A, indicating that the inhibitory effect of endotoxin was independent of the action of endotoxin on oxidative phosphorylation. The leakage of labeled adenine nucleotides from mitochondria at 23 °C was increased by 100% by endotoxin (100 μg/mg protein) in the absence of added unlabeled ADP, and this increase in the leakage could not be blocked by atractyloside. The endotoxin-induced changes in adenine nucleotide exchange and leakage were either partially or completely prevented by hydrocortisone, heparin, dibucaine, or EDTA. Since most of these agents have in common an effect on lipid metabolism, it is suggested that endotoxin-induced alterations in the exchange and leakage of adenine nucleotides in heart mitochondria are protected through a mechanism involving membrane lipid reorganization.  相似文献   

14.
The total adenine nucleotide content of rat liver mitochondria was varied in vitro over a wide range in order to investigate a possible relationship between net changes in the total matrix ATP + ADP + AMP content and the overall rate of citrulline synthesis. Isolated mitochondria were specifically depleted of matrix adenine nucleotides by incubating with inorganic pyrophosphate (G. K. Asimakis and J. R. Aprille, 1980, Arch. Biochem. Biophys.203, 307–316); alternatively, matrix adenine nucleotides were increased by incubating mitochondria with 1 mm ATP at 30 °C. No exogenous ATP or ADP was included in the subsequent incubations for the determination of citrulline synthesis. Rates varied from 0.1 to 1.6 μmol citrulline/mg protein/h as a linear function of total adenine nucleotide content in the range 2–15 nmol (ATP + ADP + AMP)/mg protein. Further increases in the matrix ATP + ADP + AMP content caused no further increase in citrulline synthesis rates. Changes in the total adenine nucleotide content were reflected in proportional changes in both the ATP and ADP content of the matrix. The ATPADP ratio did not change significantly. Therefore, the variations in citrulline synthesis were most simply explained as the effect of different concentrations of ATP on the activity of carbamoyl-phosphate synthetase. It was concluded that net changes in the total adenine nucleotide content can contribute to the control of citrulline synthesis. These findings are significant in the context of recent evidence which shows that the matrix adenine nucleotide pool size is under hormonal control.  相似文献   

15.
myo-Inositol hexaphosphate adenosine diphosphate phosphotransferase transfers phosphate from myo-inositol hexaphosphate to adenosine diphosphate to synthesize adenosine triphosphate. This enzyme has been isolated and purified from ungerminated mungbean seeds and found to be different from guanosine diphosphate phosphotransferase. A purification of about 200-fold with 15% recovery has been obtained. The optimal pH of the reaction is 7.0 and is dependent on the presence of a divalent cation, i.e., Mg2+ and Mn2+. The Km value for myo-inositol hexaphosphate has been found to be 0.41 × 10?4m and V is 90.0 nmol of Pi transferred per milligram of protein per 20 min. Km for ADP is 0.88 × 10-4m and V is 83.3 nmol of phosphorus transferred to ADP per milligram of protein per 20 min. The ADP phosphotransferase reaction is reversible to the extent of about 50% of the forward reaction. dADP is partly effective as an acceptor but other ribonucleoside mono- and diphosphates cannot substitute for ADP. The products ATP and myo-inositol pentaphosphate have been confirmed by several criteria. It has also been shown that this enzyme transfers phosphate only from a specific phosphoryl group (C-2 position) of myo-inositol hexaphosphate for the synthesis of ATP and 1,3,4,5,6-myo-inositol pentaphosphate or pentakis (dihydrogen phosphate).  相似文献   

16.
Efflux of Ca2+ from previously Ca2+-loaded heart mitochondria was measured after inhibiting respiratory activity. The efflux was increased by p-chloromercuribenzoate, methylmercuric chloride, Cu2+, Fe2+, 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (uncoupler). 1,1,1-trifluoro-3-(2-thienylacetone and indomethacin; after such increase it could be diminished by dithiothreitol. The induced loss of the Ca2+ was accompanied by a loss of endogenous adenine nucleotide. Methylmercuric chloride was particularly effective, since it was active at ratios of about 1 nmol/mg of mitochondrial protein. The non-respiring mitochondria were found to regenerate bound thiol groups after their original complement had reacted with thiol-blocking reagent. This regeneration was diminished by the Ca2+-efflux stimulatig agents that were not themselves thiol-blocking reagents, such as thyroxine, uncoupler, trifluorothienylacetone and indomethacin. The external exposure of thiol groups was also diminished by thyroxine, uncoupler and trifluorothienylacetone. The results support the proposal made previously that the membrane is maintained in a state of low permeability by adenine nucleotide and Mg2+ being bound to thiol-dependent sites.  相似文献   

17.
The catabolism of ATP and other nucleotides participates partly in the important function of nucleotide salvage by activated cells and also in removal or de novo generation of compounds including ATP, ADP, and adenosine that stimulate purinergic signaling. Seven nucleotide pyrophosphatase/phosphodiesterase NPP family members have been identified to date. These isoenzymes, related by up conservation of catalytic domains and certain other modular domains, exert generally non-redundant functions via distinctions in substrates and/or cellular localization. But they share the capacity to hydrolyze phosphodiester or pyrophosphate bonds, though generally acting on distinct substrates that include nucleoside triphosphates, lysophospholipids and choline phosphate esters. PPi generation from nucleoside triphosphates, catalyzed by NPP1 in tissues including cartilage, bone, and artery media smooth muscle cells, supports normal tissue extracellular PPi levels. Balance in PPi generation relative to PPi degradation by pyrophosphatases holds extracellular PPi levels in check. Moreover, physiologic levels of extracellular PPi suppress hydroxyapatite crystal growth, but concurrently providing a reservoir for generation of pro-mineralizing Pi. Extracellular PPi levels must be supported by cells in mineralization-competent tissues to prevent pathologic calcification. This support mechanism becomes dysregulated in aging cartilage, where extracellular PPi excess, mediated in part by upregulated NPP1 expression stimulates calcification. PPi generated by NPP1modulates not only hydroxyapatite crystal growth but also chondrogenesis and expression of the mineralization regulator osteopontin. This review pays particular attention to the role of NPP1-catalyzed PPi generation in the pathogenesis of certain disorders associated with pathologic calcification.  相似文献   

18.
Changes in the energy metabolism of washed human platelets were compared with the kinetics of secretion induced by thrombin (5 units/ml). A 50% decrease in the level of metabolic ATP (3H-labelled), which was essentially complete in 30 s, was matched in rate by adenine nucleotide secretion from storage in dense granules. Incubation of platelets with antimycin before thrombin addition increased the rate of fall in metabolic ATP, but did not affect the rate of adenine nucleotide secretion. β-N-Acetylglucosaminidase secretion, which was slower than adenine nucleotide secretion in control platelets, was noticeably inhibited by antimycin, confirming previous reports that different regulatory mechanisms exist for dense and α-granule secretion. The rates of rephosphorylation of metabolic ADP to ATP via glycolysis and oxidative phosphorylation were estimated by measuring lactate production and O2 consumption in resting and thrombin-stimulated platelets and compared to the level of metabolic ATP (9–10 nmol/mg of platelet protein in the resting state). The rate of ATP production was stimulated at least two fold from 12 nmol to 24 nmol/min/mg within seconds of thrombin addition. This increased rate was maintained over the observed period of 5 min although the level of metabolic ATP had decreased to 4–5 nmol/mg within 30 s; the turnover of the remaining metabolic ATP thus increased four fold over the resting state although the actual stimulation of energy production was only two fold.  相似文献   

19.
Net adenine nucleotide transport into and out of the mitochondrial matrix via the ATP-Mg/Pi carrier is activated by micromolar calcium concentrations in rat liver mitochondria. The purpose of this study was to induce net adenine nucleotide transport by varying the substrate supply and/or extramitochondrial ATP consumption in order to evaluate the effect of the mitochondrial adenine nucleotide pool size on intramitochondrial adenine nucleotide patterns under phosphorylating conditions. Above 12 nmol/mg protein, intramitochondrial ATP/ADP increased with an increase in the mitochondrial adenine nucleotide pool. The relationship between the rate of respiration and the mitochondrial ADP concentration did not depend on the mitochondrial adenine nucleotide pool size up to 9 nmol ADP/mg mitochondrial protein. The results are compatible with the notion that net uptake of adenine nucleotides at low energy states supports intramitochondrial ATP consuming processes and energized mitochondria may lose adenine nucleotides. The decrease of the mitochondrial adenine nucleotide content below 9 nmol/mg protein inhibits oxidative phosphorylation. In particular, this could be the case within the postischemic phase which is characterized by low cytosolic adenine nucleotide concentrations and energized mitochondria.  相似文献   

20.
The addition of norepinephrine, epinephrine, or forskolin to collagenase-dispersed rat liver hepatocytes increase cAMP and result in a 15% loss in total cell Mg2+ within 5 min. Conversely, carbachol and vasopressin induce a 10-15% increase of total cell Mg2+. Permeabilized hepatocytes also mobilize a large pool of Mg2+ when stimulated by ADP or cAMP. This stimulation is completely inhibited by atractyloside and bongkrekic acid, two different specific inhibitors of the mitochondrial adenine nucleotide translocase. cAMP directly mobilizes Mg2+ efflux from isolated rat liver mitochondria. 50 nM cAMP or 250 microM ADP induces in 5 min a mitochondrial loss of about 6 nmol of Mg2+/mg of protein and a stimulation of ATP efflux. The effect of cAMP is specific, is not reproduced by other cyclic or noncyclic nucleotides, and is inhibited by inhibitors of the adenine nucleotide translocase. These data indicate that cAMP is a messenger for a major mobilization of Mg2+ in hepatocytes. A major target for the effect of cAMP are mitochondria, which lose up to 20-25% of their total Mg2+ in 5 min, both within the cell and after isolation. Evidence is presented suggesting that the adenine nucleotide translocase is the target of the cAMP-dependent Mg2+ efflux and that cAMP may change the operation of the translocase. This, in turn, could change within the matrix the substrate of choice of the translocase from ATP to ATP.Mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号