首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
  相似文献   

2.
    
1. Investigating how climatic niches change over evolutionary timescales is a necessary step to understanding the current distribution of lineages, yet few studies have addressed this issue using comprehensive datasets. In this study, the evolution of ant climatic niches is investigated at a global scale based on bioclimatic data associated with 163 481 ant occurrence records. The resulting dataset was subjected to principal component analysis, and the scores obtained were used to characterise the main axes of ant climatic niche evolution. 2. Principal component axis 1 (PC1) reflected variation in average temperature and seasonality – consistent with typical tropical/temperate gradients – whereas PC2 was associated with varying levels of aridity. Evolution along these two niche axes was markedly different: differences in the amount of explained variance between PC1 (65%) and PC2 (19%) suggest that climatic niche evolution was nearly three times more pronounced along a tropical–temperate climate axis. 3. There was statistically significant phylogenetic signal on PC1, with genera occupying more tropical conditions diversifying at a faster rate, yet neither of these results is significant on PC2. In addition, most of the ancient ant lineages are associated with conditions of low seasonality and high temperatures. 4. These results provide partial support for the tropical conservatism hypothesis as an explanation for geographical patterns of ant species richness.  相似文献   

3.
4.
5.
    
Aim To examine butterfly species richness gradients in seven regions/countries and to quantify geographic mean root distance (MRD) patterns. My primary goal is to determine the extent to which an explanation for butterfly richness patterns based on tropical niche conservatism and the evolution of cold tolerance, proposed for the fauna of Canada and the USA, applies to other parts of the world. Location USA/Canada, Mexico, Europe/NW Africa, Transbaikal Siberia, Chile, South Africa and Australia. Methods Digitized range maps for butterfly species in each region were used to map richness patterns in summer (for all areas) and winter (for USA/Canada, Europe/NW Africa and Australia). A phylogeny resolved to subfamily was used to map the geographic MRD patterns. Regression trees and general linear models examined climatic and vegetation correlates of species richness and MRD within and among regions. Results Various combinations of climate and vegetation were strong predictors of species richness gradients within regions, but unresolved ‘regional’ factors contributed to the multiregional pattern. Regionally based differences in phylogenetic structure also exist, but MRD is negatively correlated with temperature both within and across areas. MRD patterns consistent with tropical niche conservatism occur in most areas. With a possible partial exception of Mexico, faunas in cold climates and in mountains are more derived than faunas in lowlands and tropical/subtropical climates. In USA/Canada, Europe and Australia, winter faunas are more derived than summer faunas. Main conclusions The phylogenetic pattern previously found in the USA and Canada is widespread in both the Northern and Southern Hemispheres, and niche conservatism and the evolution of cold tolerance is the likely explanation for the development of the global butterfly species richness gradient over evolutionary time. Contemporary climate also influences species richness patterns but is unlikely to be a complete explanation globally. The importance of climate is also manifested in the seasonal loss of more basal butterfly elements outside the tropics in winter.  相似文献   

6.
    
The evolution of the latitudinal diversity gradient (LDG), characterized by a peak in diversity toward the tropics, has captured significant attention in evolutionary biology and ecology. However, the inverse LDG (i-LDG) mechanism, wherein species richness increases toward the poles, remains inadequately explored. Cycads are among one of the oldest lineages of extant seed plants and have undergone extensive diversification in the tropics. Intriguingly, the extant cycad abundance exhibits an i-LDG pattern, and the underlying causes for this phenomenon remain largely elusive. Here, using 1,843 nuclear genes from a nearly complete sampling, we conducted comprehensive phylogenomic analyses to establish a robust species-level phylogeny for Cycas, the largest genus within cycads. We then reconstructed the spatial-temporal dynamics and integrated global environmental data to evaluate the roles of species ages, diversification rates, contemporary environment, and conservatism to ancestral niches in shaping the i-LDG pattern. We found Cycas experienced decreased diversification rates, coupled with the cooling temperature since its origin in the Eocene from continental Asia. Different regions have distinctively contributed to the formation of i-LDG for Cycas, with the northern hemisphere acting as evolutionary museums and the southern hemisphere serving as cradles. Moreover, water-related climate variables, specifically precipitation seasonality and potential evapotranspiration, were identified as paramount factors constraining Cycas species richness in the rainforest biome near the equator. Notably, the adherence to ancestral monsoonal climates emerges as a critical factor in sustaining the diversity pattern. This study underscores the imperative of integrating both evolutionary and ecological approaches to comprehensively unravel the mechanisms underpinning global biodiversity patterns.  相似文献   

7.
    
Globally, biodiversity is unevenly distributed, as a result of varying environmental conditions and regionally different historical processes. The influence of the latter on current diversity patterns is poorly understood. We explore geographic patterns of matches and mismatches between phylogenetic relatedness metrics measuring different depths of evolutionary history and investigate the effects of evolutionary legacy at different evolutionary depths on species density of ferns.  相似文献   

8.
    
  相似文献   

9.
    
Aim We explore the potential role of the ‘tropical conservatism hypothesis’ in explaining the butterfly species richness gradient in North America. Its applicability can be derived from the tropical origin of butterflies and the presumed difficulties in evolving the cold tolerance required to permit the colonization and permanent occupation of the temperate zone. Location North America. Methods Digitized range maps for butterfly species north of Mexico were used to map richness for all species, species with distributions north of the Tropic of Capricorn (Extratropicals), and species that also occupy the tropics (Tropicals). A phylogeny resolved to subfamily was used to map the geographical pattern of mean root distance, a metric of the evolutionary development of assemblages. Regression models and general linear models examined environmental correlates of overall richness and for Extratropicals vs. Tropicals, patterns in summer vs. winter, and patterns in northern vs. southern North America. Results Species in more basal subfamilies dominate the south, whereas more derived clades occupy the north. There is also a ‘latitudinal’ richness gradient in Canada/Alaska, whereas in the conterminous USA richness primarily varies longitudinally. Overall richness is associated with broad‐ and mesoscale temperature gradients. The richness of Tropicals is strongly associated with temperature and distance from winter population sources. The richness of Extratropicals in the north is most strongly correlated with the pattern of glacial retreat since the more recent Ice Age, whereas in the south, richness is positively associated with the range of temperatures in mountains and the presence of forests but is negatively correlated with the broad‐scale temperature gradient. Main conclusions The tropical conservatism hypothesis provides a possible explanation for the complex structure of the species richness gradient. The Canada/Alaska fauna comprises temperate, boreal and tundra species that are nevertheless constrained by cold climates and limited vegetation, coupled with possible post‐Pleistocene recolonization lags. In the USA tropical species are constrained by temperature in winter as well as recolonization distances in summer, whereas temperate‐zone groups are richer in cooler climates in mountains and forests, where winter conditions are more suitable for diapause. The evolution of cold tolerance is key to both the evolutionary and ecological patterns.  相似文献   

10.
    
Aim The global richness gradient of angiosperm families is correlated with current climate, and it has been claimed that historical processes are not necessary to understand patterns of plant family richness. This claim has drawn criticism, and there have been doubts about the quality of the data used to quantify the pattern. We revisit this issue using the Angiosperm Phylogeny Group (APG) III classification and revised range maps, and we incorporate an evolutionary variable, family age, to explore covariation between evolution and ecology and their links to climate via the tropical conservatism hypothesis (TCH). Location Global. Methods The richness pattern for 408 families was derived from range maps, and family ages were derived from a dated angiosperm phylogeny. Patterns were generated for all families, 143 families composed of trees, and 149 families composed of herbs. We also examined family range size patterns to test the extent to which extratropical floras are nested subsets of tropical floras. Ordinary least squares (OLS) multiple and partial regressions were used to generate climate models for richness, mean range size and mean age for each plant dataset and to evaluate the covariation between contemporary climate and clade age as correlates of family richness. Results We confirmed the strong association between contemporary climate and family richness. Age patterns predicted by TCH were also found for families comprising trees. The richness of herbaceous families, in contrast, was correlated with climate but the age pattern was not as predicted by TCH. Floras in cold and dry areas are strongly nested within richer tropical floras. Main conclusions Phylogenetic niche conservatism at the family level offers a likely explanation for the global diversity gradient of trees, but not for non‐desert herbs, probably because of the faster evolutionary rates for herbs and less constrained evolutionary responses to climate change. Thus, it appears that multiple processes account for the overall angiosperm family gradient. Our analysis also demonstrates that even very strong associations of taxon richness and climate do not preclude evolutionary processes, as has been widely argued, and that climatic and evolutionary hypotheses for richness gradients are not mutually exclusive.  相似文献   

11.
    
The tropical niche conservatism hypothesis suggests that most groups should be most phylogenetically clustered in cold, dry environments. This idea has been well-tested in plants and some animal groups, but not for fishes. We assess the geographic patterns of freshwater fish phylogenetic structure and investigate the relationships between these patterns and environmental variables across North America and within two biogeographic realms. Phylogenetic relatedness and diversity of 360 freshwater fish assemblages across North America were quantified with three metrics based on a well-dated phylogeny, and were related to 15 environmental variables using correlation and regression analyses. Geographically, the data were analyzed for North America as well as for separate biogeographic realms. We found that cold temperatures are the strongest determinant of phylogenetic clustering overall. However, in the arid west, clustering is most pronounced in the driest regions. In eastern North America, phylogenetic clustering increases at higher latitudes, while the reverse is true in western North America. The strongest phylogenetic clustering for freshwater fish assemblages on the continent is found in the most arid, rather than the coldest, climate in North America. Our results highlight that patterns of phylogenetic structure of freshwater fishes in North America are driven by both ecological and evolutionary processes that differ regionally.  相似文献   

12.
13.
14.
Aims (i) To describe at the level of local communities latitudinal gradients in the species richness of different families of New World bats and to explore the generality of such gradients. (ii) To characterize the relative effects of changes in the richness of each family to the richness of entire communities. (iii) To determine differences in the rate and direction of latitudinal gradients in species richness within families. (iv) To evaluate how differences among families regarding latitudinal gradients in species richness influence the latitudinal gradient in species richness of entire communities. Location Continental New World ranging from the northern continental United States (Iowa, 42° N) to eastern Paraguay (Canindeyú, 24° S). Methods Data on the species composition of communities came from 32 intensively sampled sites. Analyses focused on species richness of five of nine New World bat families. Multivariate analysis of variance and discriminant function analysis determined and described differences among temperate, subtropical, and tropical climatic zones regarding the species richness of bat families. Simple linear regression described latitudinal gradients in species richness of families. Path analysis was used to describe: (i) the direct effect of latitude on species richness of communities, (ii) the indirect effects of latitude on the species richness of communities through its effect on the species richness of each family, (iii) the relative effects of latitude on the species richness of bat families, and (iv) the relative contribution of each family to variation in the species richness of communities. Results Highly significant differences among climatic zones existed primarily because of a difference between the temperate zone and the tropical and subtropical zones combined. This difference was associated with the high number of vespertilionids in the temperate zone and the high number of phyllostomids in the tropical and subtropical zones. Latitudinal gradients in species richness were contingent on phylogeny. Although only three of the five families exhibited significant gradients, all families except for the Vespertilionidae exhibited indistinguishable increases in species richness with decreases in latitude. The Emballonuridae, Phyllostomidae and Vespertilionidae exhibited significant latitudinal gradients whereby the former two families exhibited the classical increase in species richness with decreasing latitude and the latter family exhibited the opposite pattern. Variation in species richness of all families contributed significantly to variation in the species richness of entire communities. Nonetheless, the Phyllostomidae made a significantly stronger contribution to changes in species richness of communities than did all other families. Much of the latitudinal gradient in species richness of communities could be accounted for by the effects of latitude on the species richness of constituent families. Main conclusions Ecological and evolutionary differences among higher taxonomic units, particularly those differences involving life‐history traits, predispose taxa to exhibit different patterns of diversity along environmental gradients. This may be particularly true along extensive gradients such as latitude. Nonetheless, species rich taxa, by virtue of their greater absolute rates of change, can dominate and therefore define the pattern of diversity at a higher taxonomic level and eclipse differences among less represented taxa in their response to environmental gradients. This is true not only with respect to how bats drive the latitudinal gradient in species richness for all mammals, but also for how the Phyllostomidae drives the latitudinal gradient for all bats in the New World. Better understanding of the mechanistic basis of latitudinal gradients of diversity may come from comparing and contrasting patterns across lower taxonomic levels of a higher taxon and by identifying key ecological and evolutionary traits that are associated with such differences.  相似文献   

15.
Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate–richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness–temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness–temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog–bear clade). We show that the slope of the global climate–richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness.  相似文献   

16.
17.
    
Aim The global species richness patterns of birds and mammals are strongly congruent. This could reflect similar evolutionary responses to the Earth’s history, shared responses to current climatic conditions, or both. We compare the geographical and phylogenetic structures of both richness gradients to evaluate these possibilities. Location Global. Methods Gridded bird and mammal distribution databases were used to compare their species richness gradients with the current environment. Phylogenetic trees (resolved to family for birds and to species for mammals) were used to examine underlying phylogenetic structures. Our first prediction is that both groups have responded to the same climatic gradients. Our phylogenetic predictions include: (1) that both groups have similar geographical patterns of mean root distance, a measure of the level of the evolutionary development of faunas, and, more directly, (2) that richness patterns of basal and derived clades will differ, with richness peaking in the tropics for basal clades and in the extra‐tropics for derived clades, and that this difference will hold for both birds and mammals. We also explore whether alternative taxonomic treatments for mammals can generate patterns matching those of birds. Results Both richness gradients are associated with the same current environmental gradients. In contrast, neither of our evolutionary predictions is met: the gradients have different phylogenetic structures, and the richness of birds in the lowland tropics is dominated by many basal species from many basal groups, whereas mammal richness is attributable to many species from both few basal groups and many derived groups. Phylogenetic incongruence is robust to taxonomic delineations for mammals. Main conclusions Contemporary climate can force multiple groups into similar diversity patterns even when evolutionary trajectories differ. Thus, as widely appreciated, our understanding of biodiversity must consider responses to both past and present climates, and our results are consistent with predictions that future climate change will cause major, correlated changes in patterns of diversity across multiple groups irrespective of their evolutionary histories.  相似文献   

18.
Energetic constraints are fundamental to ecology and evolution, and empirical relationships between species richness and estimates of available energy (i.e. resources) have led some to suggest that richness is energetically constrained. However, the mechanism linking energy with richness is rarely specified and predictions of secondary patterns consistent with energy‐constrained richness are lacking. Here, we lay out the necessary and sufficient assumptions of a causal relationship linking energy gradients to richness gradients. We then describe an eco‐evolutionary simulation model that combines spatially explicit diversification with trait evolution, resource availability and assemblage‐level carrying capacities. Our model identified patterns in richness and phylogenetic structure expected when a spatial gradient in energy availability determines the number of individuals supported in a given area. A comparison to patterns under alternative scenarios, in which fundamental assumptions behind energetic explanations were violated, revealed patterns that are useful for evaluating the importance of energetic constraints in empirical systems. We use a data set on rockfish (genus Sebastes) from the northeastern Pacific to show how empirical data can be coupled with model predictions to evaluate the role of energetic constraints in generating observed richness gradients.  相似文献   

19.
  总被引:1,自引:0,他引:1  
Summary Using 94 data sets from across the globe, we explored patterns of mean community species richness, landscape species richness, mean similarity among communities and mosaic diversity. Climate affected community species richness primarily through productivity while other climatic factors were secondary. Climatic equability affected species richness only in temperate regions where richness was greatest at high levels of temperature variability and low levels of precipitation variability. Landscape species richness correlated positively with community species richness. A global gradient in mean similarity existed but was uncorrelated with community species richness. Mean similarity was least and mosaic diversity was greatest between 25 and 30° latitude. The most diverse landscapes (low mean similarity) correlated with warm temperatures, high elevations, large areas and large seasonal temperature fluctuations. The most complex landscapes (high mosaic diversity) correlated with large areas, high productivity and warm winters. We compared diversity measures among continents and found only one significant difference: Australian landscapes have greater mosaic diversity than African landscapes. Based on our analyses we propose two hypotheses: (1) for plants, biotic interactions are more important in structuring landscapes in warmer climates and (2) longer isolated landscapes have more clearly differentiated ecological subunits.  相似文献   

20.
    
亚热带森林植物群落沿海拔梯度的分类与系统发育研究生物多样性沿海拔梯度的分布格局已受到广泛关注。然而,生物多样性格局沿海拔梯度的变异及其潜在机制尚不清楚。整合生物多样性的多维度信息为理解群落构建机制提供了新思路。本研究在我国东部亚热带森林沿海拔270–1470 m的梯度上设置了17个木本植物固定样地,分析了沿海拔梯度植物群落 构建的生态和进化驱动力。基于样地内物种出现(0–1数据)和多度信息,计算群落内被子植物的物种和系统发育alpha和beta多样性、系统发育结构等,并量化多样性指标与微气候和地形之间的关系。研究发现,不论多度加权与否,物种alpha多样性均沿海拔升高而增加,物种和系统发育的相似性随海拔距离的增加而呈衰减趋势。然而,多度加权与否会形成不同的系统发育alpha多样性格局。对于系统发育结构而言,沿海拔增加并无明显趋势。地形和微气候是多样性格局和系统发育结构的主要驱动力。与未考虑物种多度的多样性指标相比,多度加权的指标与坡度和胸高断面积相关性更高。这些结果表明,由局域物种多度介导的确定性过程对沿海拔梯度的植物群落构建具有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号