首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormal beta-hexosaminidase beta chain cDNA clones were isolated from a library constructed from cultured fibroblasts of a patient with a juvenile form of Sandhoff disease (genetic beta-hexosaminidase A and B deficiency). Sequence analysis of a cDNA clone isolated from these fibroblasts contained an extra 24-base segment between exons 12 and 13. This segment was identified as the 3' terminus of intron 12. The remainder of the coding sequence was completely normal. The same 24-base insertion was found in four additional clones by sequencing. Restriction mapping analysis of seven other clones was consistent with the presence of the same 24-base intron 12 segment. This insertion is inframe and adds 8 amino acids between amino acids 491 and 492 of the primary sequence of the normal enzyme protein. It is located only 5 amino acids away from a possible glycosylation site. The finding is consistent with the slightly larger than normal size of the beta subunit precursor protein observed by immunoprecipitation. No normally spliced mRNA was detected. Gene amplification by the polymerase chain reaction and subsequent sequencing of genomic DNA indicated that the patient was a compound heterozygote. In one allele, there was a single nucleotide transition from normal G to A at 26 bases from the 3' terminus of intron 12. This mutation generates a consensus sequence for the 3' splice site for an intron, CAG/G, and thus explains the abnormal mRNAs that retain 24 bases of the 3' terminus of intron 12. The intron 12 and flanking exons 12 and 13 sequences were normal in the other allele, which is a priori also genetically abnormal. The other mutant allele therefore is likely to be of an mRNA-negative type.  相似文献   

2.
To further characterize the gene structure of the proto-oncogene c-src and the mechanism for the genesis of the v-src sequence in Rous sarcoma virus, we have analyzed genomic and cDNA copies of the chicken c-src gene. From a cDNA library of chicken embryo fibroblasts, we isolated and sequenced several overlapping cDNA clones covering the full length of the 4-kb c-src mRNA. The cDNA sequence contains a 1.84-kb sequence downstream from the 1.6-kb pp60c-src coding region. An open reading frame of 217 amino acids, called sdr (src downstream region), was found 105 nucleotides from the termination codon for pp60c-src. Within the 3' noncoding region, a 39-bp sequence corresponding to the 3' end of the RSV v-src was detected 660 bases downstream of the pp60c-src termination codon. The presence of this sequence in the c-src mRNA exon supports a model involving an RNA intermediate during transduction of the c-src sequence. The 5' region of the c-src cDNA was determined by analyzing several cDNA clones generated by conventional cloning methods and by polymerase chain reaction. Sequences of these chicken embryo fibroblast clones plus two c-src cDNA clones isolated from a brain cDNA library show that there is considerable heterogeneity in sequences upstream from the c-src coding sequence. Within this region, which contains at least 300 nucleotides upstream of the translational initiation site in exon 2, there exist at least two exons in each cDNA which fall into five cDNA classes. Four unique 5' exon sequences, designated exons UE1, UE2, UEX, and UEY, were observed. All of them are spliced to the previously characterized c-src exons 1 and 2 with the exception of type 2 cDNA. In type 2, the exon 1 is spliced to a novel downstream exon, designated exon 1a, which maps in the region of the c-src DNA defined previously as intron 1. Exon UE1 is rich in G+C content and is mapped at 7.8 kb upstream from exon 1. This exon is also present in the two cDNA clones from the brain cDNA library. Exon UE2 is located at 8.5 kb upstream from exon 1. The precise locations of exons UEX and UEY have not been determined, but both are more than 12 kb upstream from exon 1. The existence and exon arrangements of these 5' cDNAs were further confirmed by RNase protection assays and polymerase chain reactions using specific primers. Our findings indicate that the heterogeneity in the 5' sequences of the c-src mRNAs results from differential splicing and perhaps use of distinct initiation sites. All of these RNAs have the potential of coding for pp60c-src, since their 5' exons are all eventually joined to exon 2.  相似文献   

3.
Connexin 45 is a gap junction protein that is prominent in early embryos and is widely expressed in many mature cell types. To elucidate its gene structure, expression, and regulation, we isolated mouse Cx45 genomic clones. Alignment of the genomic DNA and cDNA sequences revealed the presence of three exons and two introns. The first two exons contained only 5' untranslated sequences, while exon 3 contained the remaining 5' UTR, the entire coding region, and the 3' UTR. An RT-PCR with exon-specific primers was utilized to examine exon usage in F9 mouse embryonal carcinoma cells and adult mouse tissues. In all samples, PCR products amplified using exon 2/exon 3 or exon 3/exon 3 primer pairs were much more abundant than products produced using exon 1/exon 2 or exon 1/exon 3 primer pairs, suggesting that Cx45 mRNAs containing exon 1 were relatively rare compared with mRNAs containing the other exons. Rapid amplification of cDNA ends (5'-RACE) was performed using antisense primers from within exon 3 and template RNA prepared from F9 cells or from adult mouse kidney. We obtained multiple RACE products from both templates, including products that contained all three exons and were spliced identically to the cDNA. However, clones were also isolated (from kidney) that began within the region previously identified as intron 1 and continued upstream with a sequence identical to the cDNA, including splicing to exon 3. These results show that mouse Cx45 has a gene structure that differs from that of previously studied connexins and allows the production of heterogeneous Cx45 mRNAs with differing 5' UTRs. These differences might contribute to regulation of Cx45 protein levels by modulating mRNA stability or translational efficiency.  相似文献   

4.
Abnormal beta-hexosaminidase alpha chain mRNAs from an Ashkenazi Jewish patient with the classical infantile Tay-Sachs disease contained intact or truncated intron 12 sequences. Sequence analysis showed a single nucleotide transversion at the 5' donor site of intron 12 from the normal G to C. This provides the first evidence that this junctional mutation, also found independently in two other laboratories by analysis of genomic clones, results in functional abnormality. Analysis with normal and mutant oligonucleotides as probes indicated that our patient was a compound heterozygote with only one allele having the transversion. The patient studied in the other two laboratories was also a compound heterozygote. Another Ashkenazi Jewish patient was normal in this region in both alleles. Thus, the splicing defect is the underlying genetic cause in some but not all Ashkenazi Jewish patients with Tay-Sachs disease.  相似文献   

5.
6.
In an attempt to characterize the 5' UTR of the aFGF mRNAs we used the new anchored PCR methodology, single strand ligation to ss-cDNAs (SLIC). In bovine brain and retina, two kinds of aFGF cDNA clones were isolated. They contained two alternative exons located 34 bp upstream to the translation initiation codon ATG. Taking into account the number of clones specific for each exon, the two mRNAs are expressed with the same ratio in both tissues. One of these bovine 5' UTR exons (136 bp) showed 81% identity to a human 5' UTR exon, the second one (323 bp) was 70% identical to the second human 5' UTR exon with a central region of 90 nucleotides showing 41% identity. The conservation of the splicing positions for these 5' UTR alternate exons in both bovine and human species, suggests that the overall structure of the aFGF gene is conserved in mammals. Furthermore, the conservation of the nucleotide sequences and of the localization of these 5' UTR exons suggests that these non-coding regions may be involved in the control of aFGF gene expression.  相似文献   

7.
S Akli  J Chelly  J M Lacorte  L Poenaru  A Kahn 《Genomics》1991,11(1):124-134
Total RNA was isolated from cultured fibroblasts from 12 unrelated patients with Tay-Sachs disease, an autosomal recessive disorder due to beta-hexosaminidase A deficiency. beta-Hexosaminidase mRNA was amplified by cDNA-PCR in four overlapping segments spanning the entire coding sequence. In two patients, abnormal size cDNA-PCR fragments in which exons were removed resulted from splicing mutations that were characterized at the genomic DNA level: both were G to A transitions, at the first position of intron 2 and at the fifth position of intron 4. Five other mutations have been identified by cDNA-PCR chemical mismatch analysis and direct sequencing of an amplified fragment containing the mismatch site. One missense mutation alters the codon for Ser210 to Phe in exon 6 and the other one alters the codon for Arg504 to Cys in exon 13. A 3-bp deletion results in the deletion of a phenylalanine residue in exon 8. Two nonsense mutations in exon 3 (Arg137 to stop) and in exon 11 (Arg393 to stop) are associated with a marked decrease of mRNA abundance, probably because they result in mRNA instability. Three of the six single base mutations involve the conversion of a CpG dinucleotide in the sense strand to TpG. These results demonstrate the extreme molecular heterogeneity of mutations causing Tay-Sachs disease. The procedure described in this paper allows the rapid detection of any type of mutation, except those impairing the promoter function. Applicable even to patients with splicing or nonsense mutations and very low mRNA abundance, it has therefore a potentially broad application in human genetics, for both diagnostic and fundamental purposes.  相似文献   

8.
Multiple isoforms of tropoelastin, the soluble precursor of elastin, are the products of translation of splice-variant mRNAs derived from the single-copy tropoelastin gene. Previous data had demonstrated DNA sequence heterogeneity in three domains of rat tropoelastin mRNA, indicating alternative splicing of several exons of the rat tropoelastin gene. Rat tropoelastin genomic clones encompassing the sites of alternative splicing were isolated and sequenced. Two sites of alternative splicing identified in rat tropoelastin mRNA sequences corresponded to exons 13-15 and exon 33 of the rat tropoelastin gene. Furthermore, the variable inclusion of an alanine codon in exon 16 resulted from two functional acceptor sites separated by three nucleotides. DNA sequences flanking exons subject to alternative splicing were analyzed. These exons contained splicing signals that differed from consensus sequences and from splicing signals of constitutively spliced exons. Introns immediately 5' of exons 14 and 33, for example, lacked typical polypyrimidine tracts and had weak, overlapping branch point sequences. Further, a region of secondary structure encompassing the acceptor site of exon 13 may influence alternative splicing of this exon. These results demonstrate that multiple cis-acting sequence elements may contribute to alternative splicing of rat tropoelastin pre-mRNA.  相似文献   

9.
The organization of 14 exons covering 97% of the cDNA sequence of human cerebroside sulfate activator protein precursor has been determined from two overlapping EMBL-4 human genomic clones extending over 17kb. All exons and exon/intron splice junctions and five introns were sequenced. Exon 8 consists of only 9 bp and is involved in alternative splicing which generates three different mRNAs of cerebroside sulfate activator precursor.  相似文献   

10.
11.
12.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

13.
Structure of the murine complement factor H gene   总被引:3,自引:0,他引:3  
Factor H is a regulatory protein of the alternative pathway of complement activation comprised of 20 tandem repeating units of 60 amino acids each. A factor H cDNA clone was used to identify 17 genomic clones from a cosmid library. Four clones were selected for analysis of intron/exon junctions and 5' and 3' regions of the gene and for mapping of the exons. The factor H gene was found to be comprised of 22 exons. Each repeating unit is encoded by one exon, except the second repeat, which is coded by two exons; the leader sequence is encoded by a separate exon. The exons range in size from 77 to 210 base pairs (bp) and average 178 bp. They span a region of approximately 100 kilobases (kb) on chromosome 1. The leader sequence exon is 26 kb upstream of the first repeat exon, representing the largest intron. The other introns range in size from 86 bp to 12.9 kb, and the average intron size is 4.7 kb. Analysis of the genomic organization of the factor H gene has provided insight into the protein structure and will enable the construction of deletion mutants for functional studies.  相似文献   

14.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号