首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Plants encode at least two ancient and divergent classes of actin, reproductive and vegetative, and each class produces several subclasses of actin isovariants. To gain insight into the functional significance of the actin isovariants, we generated transgenic Arabidopsis lines that expressed a reproductive actin, ACT1, under the control of the regulatory sequences of a vegetative actin gene, ACT2. In the wild-type plants, ACT1 is predominantly expressed in the mature pollen, growing pollen tubes, and ovules, whereas ACT2 is constitutively and strongly expressed in all vegetative tissues and organs, but not in pollen. Misexpression of ACT1 in vegetative tissues causes dwarfing of plants and altered morphology of most organs, and the effects are in direct proportion to protein expression levels. Similar overexpression of ACT2 has little effect. Immunolocalization of actin in leaf cells from transgenic plants with highest levels of ACT1 protein revealed massive polymerization, bundling, and reorganization of actin filaments. This phenomenon suggests that misexpression of ACT1 isovariant in vegetative tissues affects the dynamics of actin and actin-associated proteins, in turn disrupting the organization of actin cytoskeleton and normal development of plants.  相似文献   

3.
The relative significance of gene regulation and protein isovariant differences remains unexplored for most gene families, particularly those participating in multicellular development. Arabidopsis thaliana encodes three vegetative actins, ACT2, ACT7, and ACT8, in two ancient and highly divergent subclasses. Mutations in any of these differentially expressed actins revealed only mild phenotypes. However, double mutants were extremely dwarfed, with altered cell and organ morphology and an aberrant F-actin cytoskeleton (e.g., act2-1 act7-4 and act8-2 act7-4) or totally root-hairless (e.g., act2-1 act8-2). Our studies suggest that the three vegetative actin genes and protein isovariants play distinct subclass-specific roles during plant morphogenesis. For example, during root development, ACT7 was involved in root growth, epidermal cell specification, cell division, and root architecture, and ACT2 and ACT8 were essential for root hair tip growth. Also, genetic complementation revealed that the ACT2 and ACT8 isovariants, but not ACT7, fully rescued the root hair growth defects of single and double mutants. Moreover, we synthesized fully normal plants overexpressing the ACT8 isovariant from multiple actin regulatory sequences as the only vegetative actin in the act2-1 act7-4 background. In summary, it is evident that differences in vegetative actin gene regulation and the diversity in actin isovariant sequences are essential for normal plant development.  相似文献   

4.
The Actin Depolymerizing Factor (ADF) gene family of Arabidopsis thaliana encodes 11 functional protein isovariants in four ancient subclasses. We report the characterization of the tissue-specific and developmental expression of all Arabidopsis ADF genes and the subcellular localization of several protein isovariants. The four subclasses exhibited distinct expression patterns as examined by qRT-PCR and histochemical assays of a GUS reporter gene under the control of individual ADF regulatory sequences. Subclass I ADFs were expressed strongly and constitutively in all vegetative and reproductive tissues except pollen. Subclass II ADFs were expressed specifically in mature pollen and pollen tubes or root epidermal trichoblast cells and root hairs, and these patterns evolved from an ancient dual expression pattern comprised of both polar tip growth cell types, still observed in the monocot Oryza sativa. Subclass III ADFs were expressed weakly in vegetative tissues, but were strongest in fast growing and/or differentiating cells including callus, emerging leaves, and meristem regions. The single subclass IV ADF was constitutively expressed at moderate levels in all tissues, including pollen. Immunocytochemical analysis with subclass-specific monoclonal antibodies demonstrated that subclass I isovariants localize to both the cytoplasm and the nucleus of leaf cells, while subclass II isovariants predominantly localize to the cytoplasm at the tip region of elongating root hairs and pollen tubes. The distinct expression patterns of the ADF subclasses support a model of ADF s co-evolving with the ancient and divergent actin isovariants.  相似文献   

5.
The ACT2 gene, encoding one of eight actin isovariants in Arabidopsis, is the most strongly expressed actin gene in vegetative tissues. A search was conducted for physical defects in act2-1 mutant plants to account for their reduced fitness compared with wild type in population studies. The act2-1 insertion fully disrupted expression of ACT2 RNA and significantly lowered the level of total actin protein in vegetative organs. The root hairs of the act2-1 mutants were 10% to 70% the length of wild-type root hairs, and they bulged severely at the base. The length of the mutant root hairs and degree of bulging at the base were affected by adjusting the osmolarity and gelling agent of the growth medium. The act2-1 mutant phenotypes were fully rescued by an ACT2 genomic transgene. When the act2-1 mutation was combined with another vegetative actin mutation, act7-1, the resulting double mutant exhibited extensive synergistic phenotypes ranging from developmental lethality to severe dwarfism. Transgenic overexpression of the ACT7 vegetative isovariant and ectopic expression of the ACT1 reproductive actin isovariant also rescued the root hair elongation defects of the act2-1 mutant. These results suggest normal ACT2 gene regulation is essential to proper root hair elongation and that even minor differences may cause root defects. However, differences in the actin protein isovariant are not significant to root hair elongation, in sharp contrast to recent reports on the functional nonequivalency of plant actin isovariants. Impairment of root hair functions such as nutrient mining, water uptake, and physical anchoring are the likely cause of the reduced fitness seen for act2-1 mutants in multigenerational studies.  相似文献   

6.
Plants contain highly divergent actin isovariants   总被引:5,自引:0,他引:5  
Actin protein isovariants have been identified in animals with distinct cytoplasmic or muscle specific patterns of expression. Analysis of vascular plant actin gene sequences suggests that an even greater diversity should exist within the plant actin protein families, but previous studies on plant proteins have not demonstrated the presence of multiple actin isovariants. Antibodies recognizing a conserved amino-terminal plant actin peptide, a family of plant actin peptides from a variable region, and two monoclonal antibodies to conserved epitopes within animal actins were used to identify isovariants of soybean actin resolved by two-dimensional isoelectric focusing (IEF) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Approximately six to eight actin isovariants with pI values ranging from 5.1 to 5.8 have been identified from soybean hypocotyls, stems, leaves, and roots with varying amounts of most isovariants present in all four organs. Acidic isovariants were present in much higher levels in leaves and stems. Antisera with lambda-class actin specificity detected a subset of three isovariants in all organs examined. One monoclonal and one antipeptide antisera are shown to react well with a wide variety of plant actin isovariants. Similar patterns of actin isovariants were detected in the distant angiosperms, Arabidopsis, petunia, and maize. It is likely that many of these diverse classes of isovariants have been preserved throughout vascular plant evolution and reflect the ancient diversity within plant actin gene families. The extreme difference among isovariants implies the presence of a complex actin-based cytoskeletal system in plants.  相似文献   

7.
Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin's competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals.  相似文献   

8.
The late pollen-specific actins in angiosperms   总被引:6,自引:0,他引:6  
The actin gene family of Arabidopsis has eight functional genes that are grouped into two ancient classes, vegetative and reproductive, and into five subclasses based on their phylogeny and mRNA expression patterns. Progress in deciphering the functional significance of this diversity is hindered by the lack of tools that can distinguish the highly conserved subclasses of actin proteins at the biochemical and cellular level. In order to address the functional diversity of actin isovariants, we have used Arabidopsis recombinant actins as immunogens and produced several new anti-actin monoclonal antibodies. One of them, MAb45a, specifically recognizes two closely related reproductive subclasses of actins. On immunoblots, MAb45a reacts strongly with actins expressed in mature pollen but not with actins in other Arabidopsis tissues. Moreover, immunocytochemical studies show that this antibody can distinguish actin filaments in pollen tubes from those in most vegetative tissues. Peptide competition analyses demonstrate that asparagine at position 79 (Asn79) within an otherwise conserved sequence is essential for MAb45a specificity. Actins with the Asn79 epitope are also expressed in the mature pollen from diverse angiosperms and Ephedra but not from lower gymnosperms, suggesting that this epitope arose in an ancestor common to angiosperms and advanced gymnosperms more than 220 million years ago. During late pollen development in angio- sperms there is a switch in expression of actins from vegetative to predominantly reproductive subclasses, perhaps to fulfil the unique functions of pollen in fertilization.  相似文献   

9.
Structure and Evolution of the Actin Gene Family in Arabidopsis Thaliana   总被引:1,自引:0,他引:1  
Higher plants contain families of actin-encoding genes that are divergent and differentially expressed. Progress in understanding the functions and evolution of plant actins has been hindered by the large size of the actin gene families. In this study, we characterized the structure and evolution of the actin gene family in Arabidopsis thaliana. DNA blot analyses with gene-specific probes suggested that all 10 of the Arabidopsis actin gene family members have been isolated and established that Arabidopsis has a much simpler actin gene family than other plants that have been examined. Phylogenetic analyses suggested that the Arabidopsis gene family contains at least two ancient classes of genes that diverged early in land plant evolution and may have separated vegetative from reproductive actins. Subsequent divergence produced a total of six distinct subclasses of actin, and five showed a distinct pattern of tissue specific expression. The concordance of expression patterns with the phylogenetic structure is discussed. These subclasses appear to be evolving independently, as no evidence of gene conversion was found. The Arabidopsis actin proteins have an unusually large number of nonconservative amino acid substitutions, which mapped to the surface of the actin molecule, and should effect protein-protein interactions.  相似文献   

10.
Cellular functions of actin, and associated actin binding proteins (ABPs), have been well characterized with respect to their dynamic cytosolic role as components of the complex cytoskeletal network. In this regard, the collective research in this field has vastly expanded our knowledge of the role of actin to more recently identify a key role within the nucleus as an integral part gene organization and expression. Herein, we describe the requirement of the ABP actin depolymerizing factor-4 (ADF4) as a regulator of resistance to Pseudomonas syringae DC3000 expressing the effector AvrPphB via ADF4’s cytosolic and nuclear functions. In total, our work has identified significant alterations in the expression of the resistance protein RPS5 in an ADF4 phosphorylation dependent manner. In this mini-review, we provide compelling evidence in support of both a nuclear function for ADF4, as well as potential targeting of the actin cytoskeleton bythe bacterial effector AvrPphB.  相似文献   

11.
How large numbers of genes were recruited simultaneously to build new organ structures is one of the greatest puzzles in evolutionary biology. Here, we present data suggesting that the vegetative and reproductive classes of actins and other cytoskeletal proteins arose concurrently with the macroevolutionary divergence of leaves and reproductive structures in the earliest land plants. That the cytoskeleton is essential for physically programming the development of organs and tissues is well established. Thus, we propose that this regulatory dichotomy represents an ancient landmark event in the global regulation of hundreds of higher-plant genes, an event that is linked to the macroevolution of plant vegetative and reproductive organs. The recent availability of sequence and expression data for large numbers of plant genes should make it possible to dissect this and other major macroevolutionary events.  相似文献   

12.
During plant growth and development, the phytohormone auxin induces a wide array of changes that include cell division, cell expansion, cell differentiation, and organ initiation. It has been suggested that the actin cytoskeleton plays an active role in the elaboration of these responses by directing specific changes in cell morphology and cytoarchitecture. Here we demonstrate that the promoter and the protein product of one of the Arabidopsis vegetative actin genes, ACT7, are rapidly and strongly induced in response to exogenous auxin in the cultured tissues of Arabidopsis. Homozygous act7-1 mutant plants were slow to produce callus tissue in response to hormones, and the mutant callus contained at least two to three times lower levels of ACT7 protein than did the wild-type callus. On the other hand, a null mutation in ACT2, another vegetative actin gene, did not significantly affect callus formation from leaf or root tissue. Complementation of the act7-1 mutants with the ACT7 genomic sequence restored their ability to produce callus at rates similar to those of wild-type plants, confirming that the ACT7 gene is required for callus formation. Immunolabeling of callus tissue with actin subclass-specific antibodies revealed that the predominant ACT7 is coexpressed with the other actin proteins. We suggest that the coexpression, and probably the copolymerization, of the abundant ACT7 with the other actin isovariants in cultured cells may facilitate isovariant dynamics well suited for cellular responses to external stimuli such as hormones.  相似文献   

13.
Actin-Binding Proteins in Plant Cells   总被引:1,自引:0,他引:1  
Abstract: Actinoccurs in all plant cells, as monomers, filaments and filament assemblies. In interphase, actin filaments form a cortical network, co-align with cortical microtubules, and extend throughout the cytoplasm functioning in cytoplasmic streaming. During mitosis, they co-align with microtubules in the preprophase band and phragmoplast and are indispensa ble for cell division. Actin filaments continually polymerise and depolymerise from a pool of monomers, and signal transduction pathways affecting cell morphogenesis modify the actin cytoskeleton. The interactions of actin monomers and filaments with actin-binding proteins (ABP5) control actin dynamics. By binding to actin monomers, ABPs, such as profilin, regulate the pool of monomers available for polymerisation. By breaking filaments or capping filament ends, ABPs, such as actin depoly-merising factor (ADF), prevent actin filament elongation or loss of monomers from filament ends. By bivalent cross-linking to actin filaments, ABPs, such as fimbrin and other members of the spectrin family, produce a variety of higher order assemblies, from bundles to networks. The motor protein ABPs,. which are not covered in this review, move organelles along ac tin filaments. The large variety of ABPs share a number of functional modules. A plant representative of ABPs with particular modules, and therefore particular functions, is treated in this review.  相似文献   

14.
15.
The assembly of protein actin into double-helical filaments promotes many eukaryotic cellular processes that are regulated by actin-binding proteins (ABPs). Actin filaments can adopt multiple conformations, known as structural polymorphism, which possibly influences the interaction between filaments and ABPs. Gelsolin is a Ca2+-regulated ABP that severs and caps actin filaments. Gelsolin binding modulates filament structure; however, it is not known how polymorphic actin filament structures influence an interaction of gelsolin S1 with the barbed-end of filament. Herein, we investigated how polymorphic structures of actin filaments affect the interactions near interfaces between the gelsolin segment 1 (S1) domain and the filament barbed-end. Using all-atom molecular dynamics simulations, we demonstrate that different tilted states of subunits modulate gelsolin S1 interactions with the barbed-end of polymorphic filaments. Hydrogen bonding and interaction energy at the filament-gelsolin S1 interface indicate distinct conformations of filament barbed ends, resulting in different interactions of gelsolin S1. This study demonstrates that filament's structural multiplicity plays important roles in the interactions of actin with ABPs.  相似文献   

16.
Actin and actin-binding proteins in higher plants   总被引:18,自引:0,他引:18  
Summary The actin cytoskeleton is a complex and dynamic structure that participates in diverse cellular events which contribute to plant morphogenesis and development. Plant actins and associated actin-binding proteins are encoded by large, differentially expressed gene families. The complexity of these gene families is thought to have been conserved to maintain a pool of protein isovariants with unique properties, thus providing a mechanistic basis for the observed diversity of plant actin functions. Plants contain actin-binding proteins which regulate the supramolecular organization and function of the actin cytoskeleton, including monomer-binding proteins (profilin), severing and dynamizing proteins (ADF/cofilin), and side-binding proteins (fimbrin, 135-ABP/villin, 115-ABP). Although significant progress in documenting the biochemical activities of many of these classes of proteins has been made, the precise roles of actin-binding proteins in vivo awaits clarification by detailed mutational analyses.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

17.
The high diversity of cytoskeletal actin structures is accomplished by myriads of actin binding proteins (ABPs). Depending on its concentration, even a single type of ABP can induce different actin microstructures. Thus, for an overall understanding of the cytoskeleton, a detailed characterization of the cross-linker's effect on structural and mechanical properties of actin networks is required for each ABP. Using confocal microscopy and macrorheology, we investigate both cross-linked and bundled actin/filamin networks and compare their microstructures as well as their viscoelastic properties in the linear and the nonlinear regime.  相似文献   

18.
19.
Profilin is a low-molecular weight, actin monomer-binding protein that regulates the organization of actin cytoskeleton in eukaryotes, including higher plants. Unlike the simple human or yeast systems, the model plant Arabidopsis has an ancient and highly divergent multi-gene family encoding five distinct profilin isovariants. Here we compare and characterize the regulation of these profilins in different organs and during microspore development using isovariant-specific monoclonal antibodies. We show that PRF1, PRF2, and PRF3 are constitutive, being strongly expressed in all vegetative tissues at various stages of development. These profilin isovariants are also predominant in ovules and microspores at the early stages of microsporogenesis. In contrast, PRF4 and PRF5 are late pollen-specific and are not detectable in other cell types of the plant body including microspores and root hairs. Immunocytochemical studies at the subcellular level reveal that both the constitutive and pollen-specific profilins are abundant in the cytoplasm. In vegetative cell types, such as root apical cells, profilins showed localization to nuclei in addition to the cytoplasmic staining. The functional diversity of profilin isovariants is discussed in light of their spatio-temporal regulation during vegetative development, pollen maturation, and pollen tube growth.  相似文献   

20.
The actin cytoskeleton plays a crucial role in many aspects of plant cell development. During male gametophyte development, the actin arrays are conspicuously remodeled both during pollen maturation in the anther and after pollen hydration on the receptive stigma and pollen tube elongation. Remodeling of actin arrays results from the highly orchestrated activities of numerous actin binding proteins (ABPs). A key player in actin remodeling is the actin depolymerizing factor (ADF), which increases actin filament treadmilling rates. We prepared fluorescent protein fusions of two Arabidopsis pollen-specific ADFs, ADF7 and ADF10. We monitored the expression and subcellular localization of these proteins during male gametophyte development, pollen germination and pollen tube growth. ADF7 and ADF10 were differentially expressed with the ADF7 signal appearing in the microspore stage and that of ADF10 only during the polarized microspore stage. ADF7 was associated with the microspore nucleus and the vegetative nucleus of the mature grain during less metabolically active stages, but in germinating pollen grains and elongating pollen tubes, it was associated with the subapical actin fringe. On the other hand, ADF10 was associated with filamentous actin in the developing gametophyte, in particular with the arrays surrounding the apertures of the mature pollen grain. In the shank of elongating pollen tubes, ADF10 was associated with thick actin cables. We propose possible specific functions of these two ADFs based on their differences in expression and localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号