首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Ye Y  Pang B P  Chen G C  Chen Y 《农业工程》2011,31(3):169-173
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

2.
Organic carbon dynamics in mangrove ecosystems: A review   总被引:22,自引:11,他引:11  
Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter and benthic microalgae are usually the most important autochthonous carbon sources. Depending on local conditions, phytoplankton and seagrass detritus imported with tides may represent a significant supplementary carbon input. Litter handling by the fauna not only affects microbial carbon transformations, but also the amount of organic carbon available for export. Most mangrove detritus that enters the sediment is degraded by microorganisms. Aerobic respiration and anaerobic sulfate reduction are usually considered the most important microbial respiration processes, but recent evidence suggests that iron respiration may be important in mangrove sediments as well. Organic carbon that escapes microbial degradation is stored in sediments and in some mangrove ecosystems, organic-rich sediments may extend to several meters depth. Many mangrove forests also lose a significant fraction of their net primary production to coastal waters. Large differences occur between mangrove forests with respect to litter production and export. Mangrove-derived DOC is also released into the water column and can add to the total organic carbon export. Numerous compounds have been characterized from mangrove tissues, including carbohydrates, amino acids, lignin-derived phenols, tannins, fatty acids, triterpenoids and n-alkanes. Many of these may, together with stable isotopes, exhibit a strong source signature and are potentially useful tracers of mangrove-derived organic matter. Our knowledge on mangrove carbon dynamics has improved considerably in recent years, but there are still significant gaps and shortcomings. These are emphasized and relevant research directions are suggested.  相似文献   

3.
Mangroves are recognized as one of the richest carbon storage systems. However, the factors regulating carbon sinks in mangrove ecosystems are still unclear, particularly in the subtropical mangroves. The biomass, production, litterfall, detrital export and decomposition of the dominant mangrove vegetation in subtropical (Kandelia obovata) and tropical (Avicennia marina) Taiwan were quantified from October 2011 to July 2014 to construct the carbon budgets. Despite the different tree species, a principal component analysis revealed the site or environmental conditions had a greater influence than the tree species on the carbon processes. For both species, the net production (NP) rates ranged from 10.86 to 27.64 Mg C ha?1 year?1 and were higher than the global average rate due to the high tree density. While most of the litterfall remained on the ground, a high percentage (72%–91%) of the ground litter decomposed within 1 year and fluxed out of the mangroves. However, human activities might cause a carbon flux into the mangroves and a lower NP rate. The rates of the organic carbon export and soil heterotrophic respiration were greater than the global mean values and those at other locations. Only a small percentage (3%–12%) of the NP was stored in the sediment. The carbon burial rates were much lower than the global average rate due to their faster decomposition, indicating that decomposition played a critical role in determining the burial rate in the sediment. The summation of the organic and inorganic carbon fluxes and soil heterotrophic respiration well exceeded the amount of litter decomposition, indicating an additional source of organic carbon that was unaccounted for by decomposition in the sediment. Sediment‐stable isotope analyses further suggest that the trapping of organic matter from upstream rivers or adjacent waters contributed more to the mangrove carbon sinks than the actual production of the mangrove trees.  相似文献   

4.
The biogeochemistry of mangrove sediments was investigated in several mangrove forest communities in Gazi Bay, a coastal lagoon in Kenya, Africa. Carbon dioxide fluxes, sediment median grain sizes, sedimentary organic carbon, nitrogen and phosphorus contents and pore-water characteristics (ammonium, nitrate, sulfate and chloride) could be related to forest type. Mangrove sediments have pH values that range from 3.5 to 8.3 due to the limited buffer capacity of these sediments and intense acidifying processes such as aerobic degradation of organic matter, oxidation of reduced components, ammonium uptake by roots and root respiration. The mangrove sediments are nitrogen-rich compared to mangrove litter, as a result of microbial nitrogen retention, uptake and fixation, and import of nitrogen-rich material. It appears that mangrove sediments in Gazi Bay act as a nutrient and carbon sink rather than as a source for adjacent seagrass and reef ecosystems.  相似文献   

5.
黄振远  王瑁  王文卿 《生态学报》2007,27(3):1206-1216
传统上认为红树林输出的有机质产生巨大的能流,支持了巨大的河口和近岸水域生态系统的次级生产。但能量标签技术的研究结果却显示红树林输出的有机质的作用并没有如此巨大。用红树碎屑难消化特性来解释此现象,此外数学模型模拟分析发现潮汐的稀释作用也可以解释这种现象。但这两者都不能解释,在其他初级生产者稀少时,红树材输出的有机质可以被大量利用的现象。在有红树林的河口和近海岸水域生态系统中,藻类等非红树初级生产者具有比红树植物更高的初级生产力,而且更容易被动物获得和消化。可以认为是藻类等巨大初级生产力的竞争作用导致红树初级生产在消费者组织中很难被发现,如此上面提到的难题就能得到很好的解决。此外能量标签技术检测出的是红树的初级生产在消费者组织中的相对比率,不是绝对数量值,从此角度看,能量标签技术的结果与传统观点不是矛盾而是互相补充的关系。由此推测红树的初级生产应该还是被消费者所利用,只是它们在消费者初级营养来源组成中占的比例并不大,但其绝对数量并不少。这与传统观点认为的红树的初级生产被大量利用,支撑了具有巨大的次级生产稍有不同。此外,能量标签技术在红树林生态系统中的适用性尚未检验;计算食物组成的数学工具不是很完善;实验设计上考虑的不够全面;对定量研究有一定的影响。  相似文献   

6.
高宇  林光辉 《生物多样性》2018,26(11):1223-137
藻类是红树林生态系统重要的生物类群, 根据生态习性可分为浮游植物、底栖微藻和大型藻类三个生态类群, 它们在红树林生态系统生物多样性、初级生产、元素循环等方面起着重要作用。但在红树林生态系统中, 关注重点多集中在红树植物和动物, 对其中的藻类重视不够, 且多数研究集中在近20年以及亚洲的红树林区。事实上, 红树林生态系统藻类非常丰富, 其多样性研究有助于深入揭示红树林生态系统的结构与功能。本文介绍了红树林生态系统藻类的组成类群及其重要性, 重点对红树林区浮游植物、底栖硅藻和大型海藻的种类组成、地理分布及其与初级生产力、水质污染、元素循环、碳库形成等生态过程中的作用的研究动态和进展等进行了总结。根据已有研究, 红树林区浮游植物和底栖硅藻的种类数一般为几十到上百种, 其中硅藻在种类和数量上都占绝对优势, 它们是重要的初级生产者、饵料生物和水质污染指示生物; 红树林区底栖大型藻类主要由红藻、绿藻、褐藻、蓝藻组成, 绿藻的种类较多, 红藻在数量上占优势; 藻类是红树林湿地碳库的重要贡献者, 在红树林湿地生态系统碳汇和碳循环中起重要作用。红树林生态系统是个高度动态和异质的系统, 今后应加强红树林藻类多样性的长周期、大尺度变化及不同生境藻类的综合研究, 关注大陆径流和潮汐对藻类多样性和蓝碳的影响, 借助沉积物藻类记录, 探明红树林区藻类的长周期变化, 反演气候变化和人类活动对红树林生态系统的影响过程和机制。  相似文献   

7.
The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.  相似文献   

8.
Julius Francis 《Hydrobiologia》1992,247(1-3):173-179
The physical processes such as coastal currents, estuarine circulation and monsoon winds prevailing in the Rufiji delta are discussed. The relationship between these processes and the occurrence of long-term trapping of the river discharge and the outflow of waters from the mangrove swamps into the nearshore zone has been observed. The trapped waters in the nearshore zone significantly reduce the mixing between the estuarine and offshore waters, leading to the two waters having distinctive properties. The existence of the trapped waters in the nearshore zone is supported by evidence from a satellite image and aerial photograph and measurements of salinity and suspended sediment concentration. The trapping phenomenon is discussed in the light of its possible implications on the ecology of mangrove ecosystems. Trapping may explain the enhanced growth of the mangrove in the delta compared to other areas. This trapping effect may be providing more time for nutrient retention in the mangrove zone, incorporation of the decomposed leaf litter and fine sediments in the substrate, and settling of fruits and seedlings in the swamps, thereby enhancing the regeneration of the mangrove.  相似文献   

9.
Mangrove forests exchange materials with the coastal ocean through tidal inundation. In this study, we aim to provide an overview of the published data of carbon (C) and nutrient exchange of mangrove forests with the coastal ocean at different spatial scales to assess whether the exchange is correlated with environmental parameters. We collected data on C (dissolved and particulate organic C; DOC and POC) and nutrient exchange (dissolved and particulate nitrogen, N and phosphorus, P) and examined the role of latitude, temperature, precipitation, geomorphological setting, hydrology, dominant mangrove species and forest area in explaining the variability of the exchange. We identified that there are a range of methodologies used to determine material exchange of mangroves with the coastal zone, each methodology providing data on the exchange at different spatial scales. This variability of approaches has limited our understanding of the role of mangroves in the coastal zone. Regardless, we found that mangrove forests export C and nutrients to the coastal zone in the form of litter and POC. We found that precipitation is a major factor influencing the export of C in the form of litter; sites with low annual precipitation and high mean annual temperatures export more C as litter than sites with high precipitation and low temperature. Furthermore, export of POC is higher in zones with low mean annual minimum temperature. Identification of broad-scale trends in DOC and dissolved nutrients was more difficult, as the analysis was limited by scarcity of suitable studies and high variability in experimental approaches. However, tidal amplitude and the concentration of nutrients in the floodwater appears to be important in determining nutrient exchange. The strongest conclusion from our analysis is that mangrove forests are in general sources of C and nutrients in the form of litter and POC and that they are most likely to be exporting C subsidies in dry regions.  相似文献   

10.
红树林植被对大型底栖动物群落的影响   总被引:4,自引:0,他引:4  
陈光程  余丹  叶勇  陈彬 《生态学报》2013,33(2):327-336
大型底栖动物是红树林生态系统的重要组成部分,从红树林大型底栖动物种类、红树林与其周边生境大型底栖动物群落的比较,以及生境变化对动物群落的影响等方面阐述了红树林植被与大型底栖动物群落的关系.从物种数量上看,软体动物和甲壳类动物构成了红树林大型底栖动物的主要部分.影响大型底栖动物分布的环境因素包括海水盐度、潮位和土壤特性等,但在小范围区域,林内动物的分布更多地与红树林植被特性和潮位有关.因此,由于红树林植被破坏或者恢复引起的生境变化,将导致大型底栖动物群落和常见物种种群的变化,尤其对底上动物影响明显;随着人工恢复红树林的发育,林内底栖动物的多样性相应增加,优势种也发生变化.相比位于相同潮位的无植被滩涂,红树林可促进潮间带生物多样性.  相似文献   

11.
Transport of sediment in mangrove swamps   总被引:1,自引:1,他引:0  
Eric Wolanski 《Hydrobiologia》1995,295(1-3):31-42
The transport of suspended sediment in mangrove swamps is controlled by three dominant processes. First, the transport processes in the estuaries and coastal waters draining the swamp, including flocculation, tidal pumping, baroclinic circulation, trapping of the smallest particles in the turbidity maximum zone, and the effect of the mangrove tidal prism. Second, the mechanical and chemical reactions in mangrove waters destroying flocs of cohesive sediment in suspension. Third, biological processes have a dominant influence on the ultimate fate of clay particles in mangroves.  相似文献   

12.
牛安逸  高一飞  徐颂军 《生态学报》2020,40(23):8549-8558
湿地沉积物是红树林生态系统中重要的组成部分,其总有机碳储量的变化对红树林生态系统的固碳能力有着重要影响。现有对红树林湿地重金属的研究多集中于污染评价,鲜有涉及重金属含量对沉积物总有机碳(TOC)含量影响的研究。于2018-2019年期间4次前往珠江口典型红树林湿地,采集了0-30 cm表层土壤沉积物的样品,并测定其重金属含量和TOC含量,以探讨重金属含量变化对TOC的影响。结果表明,与广东地区的背景值相比,研究区沉积物重金属含量超标较为严重,重金属来源应是人类活动;沉积物的重金属含量能够显著影响TOC含量(P<0.01,R2=0.39),间接对红树林湿地的固碳能力、甚至全球变暖产生一定影响;Cd、As、Zn含量高的沉积物环境有利于TOC的积累,Cu、Cr、Ni、Hg含量低的沉积物环境则不利于TOC的积累。沉积物的重金属对TOC的影响的机制是非常复杂的,它们可以通过影响土壤结构、土壤化学组分、土壤内微生物、上部植被群落的生长以及凋落物归还等一系列过程,导致沉积物TOC和固碳能力的变化。  相似文献   

13.
Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage, and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e., differentiating newer inputs from younger trees from older residual C pools), and mitigation assessments rarely consider potential offsets to CO2 storage by methane (CH4) production in mangrove sediments. The establishment of non‐native Rhizophora mangle along Hawaiian coastlines over the last century offers an opportunity to examine the role mangroves play in climate mitigation and adaptation both globally and locally as novel ecosystems. We quantified total ecosystem C storage, sedimentation, accretion, sediment organic C burial and CH4 emissions from ~70 year old R. mangle stands and adjacent uninvaded mudflats. Ecosystem C stocks of mangrove stands exceeded mudflats by 434 ± 33 Mg C/ha, and mangrove establishment increased average coastal accretion by 460%. Sediment organic C burial increased 10‐fold (to 4.5 Mg C ha?1 year?1), double the global mean for old growth mangrove forests, suggesting that C accumulation from younger trees may occur faster than previously thought, with implications for mangrove restoration. Simulations indicate that increased CH4 emissions from sediments offset ecosystem CO2 storage by only 2%–4%, equivalent to 30–60 Mg CO2‐eq/ha over mangrove lifetime (100 year sustained global warming potential). Results highlight the importance of mangroves as novel systems that can rapidly accumulate C, have a net positive atmospheric greenhouse gas removal effect, and support shoreline accretion rates that outpace current sea level rise. Sequestration potential of novel mangrove forests should be taken into account when considering their removal or management, especially in the context of climate mitigation goals.  相似文献   

14.
仝川  罗敏  陈鹭真  黄佳芳 《生态学报》2023,43(17):6937-6950
滨海盐沼、红树林和海草床蓝碳湿地生态系统具有高效的固碳-储碳能力,准确测定滨海蓝碳湿地生态系统碳汇速率,对于评估滨海湿地碳中和能力、生态恢复新增碳汇规模及碳贸易至关重要。深入思考滨海蓝碳湿地生态系统碳汇定义的内涵,提出狭义碳汇和广义碳汇的概念,介绍沉积物碳累积+植被净初级生产力法以及生态系统碳通量收支法2个目前国际上应用最多的滨海蓝碳湿地碳汇速率测定方法,特别是深入分析作为开放系统的滨海盐沼生态系统和海草床生态系统碳汇速率测定面临的诸多问题与挑战,梳理中国红树林、滨海盐沼和海草床生态系统碳汇速率的测定结果及国家尺度滨海蓝碳湿地生态系统碳汇规模,最后提出中国在滨海蓝碳湿地碳汇速率测定实践中急需加强的基础研究领域,以期为科学地计量中国滨海蓝碳湿地生态系统碳汇速率与碳汇规模提供方法参考和技术支撑。  相似文献   

15.
Mangrove ecosystems rely on seawater, rain-derived flow, and groundwater for hydrologic sustenance, flushing, and inflow of nutrients and sediments. The relative contribution of these source waters and their variability through time and space can provide key information concerning the hydrologic function of ecosystems. We used hydrologic tracers to partition source waters and trace their movements in the Enipoas stream, a river-dominated mangrove ecosystem on the island of Pohnpei, Federated States of Micronesia (FSM) and in the Yela watershed, an interior mangrove ecosystem on the island of Kosrae, FSM. The Enipoas site was characterized as a salt wedge estuary whose source water contributions alternated between predominantly seawater and rain-derived flow, depending on the tide. The source waters in the interior Yela site were also predominantly seawater and rain-derived flow, however the relative contribution of each was much more stable. The mean groundwatercontribution was 5% (SD 5 5.5) for the Enipoas site and 20% (SD 5 11.0) for the Yela site. Although a small contributor to flow, groundwater was a steady source of freshwater for both systems. Hydrologic linkages between mangroves and adjacent ecosystems were demonstrated by the temporal and spatial distribution of source waters.The 0.8 km Enipoas estuary, with its highly dynamic bi-directional flows, transported source waters along a hydrologic continuum comprised of coral reef, mangroves, and palm forest. In the interior mangroves of the Yela watershed, the presence of rain-derived flow and groundwater demonstrated a hydraulic connection between the mangroves and an upstream freshwater swamp. Interior mangroves with such linkages avoid stresses such as desiccation and heightened salinity, and thus are more productive than those with little or no freshwater flows.  相似文献   

16.
We report here the first comprehensive seasonal study of benthic microbial activity in an Antarctic coastal environment. Measurements were made from December 1990 to February 1992 of oxygen uptake and sulfate reduction by inshore coastal sediments at Signy Island, South Orkney Islands, Antarctica. From these measurements the rate of benthic mineralization of organic matter was calculated. In addition, both the deposition rate of organic matter to the bottom sediment and the organic carbon content of the bottom sediment were measured during the same period. Organic matter input to the sediment was small under winter ice cover, and the benthic respiratory activity and the organic content of the surface sediment declined during this period as available organic matter was depleted. On an annual basis, about 32% of benthic organic matter mineralization was anoxic, but the proportion of anoxic compared with oxic mineralization increased during the winter as organic matter was increasingly buried by the amphipod infauna. Fresh organic input occurred as the sea ice melted and ice algae biomass sedimented onto the bottom, and input was sustained during the spring after ice breakup by continued primary production in the water column. The benthic respiratory rate and benthic organic matter content correspondingly increased towards the end of winter with the input of this fresh organic matter. The rates of oxygen uptake during the southern summer (80 to 90 mmol of O2 m-2 day-1) were as high as those reported for other sediments at much higher environmental temperatures, and the annual mineralization of organic matter was equally high (12 mol of C m-2 year-1). Seasonal variations of benthic activity in this antarctic coastal sediment were regulated by the input and availability of organic matter and not by seasonal water temperature, which was relatively constant at between -1.8 and 0.5°C. We conclude that despite the low environmental temperature, organic matter degradation broadly balanced organic matter production, although there may be significant interrannual variations in the sources of the organic matter inputs.  相似文献   

17.
We illustrate the spatial and vertical distribution of sediment phytopigments and organic matter biochemical composition at Terra Nova Bay (Ross Sea) during summer 1995. Coastal sediments displayed high phytopigments concentrations associated with huge amounts of labile organic matter largely dominated by proteins. This result was opposite to previous observations in the same area. Such comparison suggested that whilst organic matter quantity in the sediments depended upon the vertical input from the water column, temporal changes in its biochemical composition were related to benthic processes. As considerably high concentrations of biopolymeric organic carbon were found even at 6-cm depth and according to the “loss type” functioning of the coastal waters of the Ross Sea, we stress the summer time occurrence in coastal sediments of an important organic matter burial. Accepted: 24 October 1999  相似文献   

18.
姜玉峰  李晶  信瑞瑞  李艺 《植物生态学报》2022,46(10):1268-1279
随着沿海人类活动的日益加剧, 其对红树林生态系统健康和可持续发展的影响也逐渐凸显, 实现红树林周边典型人类活动时空动态变化监测对红树林生态系统的保护与修复意义重大。该研究基于Landsat多时相遥感数据和Google Earth Engine平台, 通过面向对象的机器学习方法, 融入水体季节波动信息作为分类特征, 获取了1990、2000、2010和2020年4个不同时期中国沿海红树林分布省区(包括广东、福建、浙江、台湾、广西及海南) 30 m分辨率的养殖池塘空间格局及其变化特征, 并进一步解析养殖池塘对红树林生态系统的影响。研究结果表明: (1)研究区域内4个时间节点的沿海养殖池塘面积总量分别为2 963、5 200、5 377及4 805 km2, 呈先增加后减少的趋势, 于2010-2020年间达到峰值。沿海养殖池塘面积变化趋势和达峰时间存在明显区域差异性, 其主要原因是红树林保护政策、养殖池塘规范管理和阶段性经济目标的区域差异化。(2)我国沿海养殖池塘集中分布在21°-24° N区域(广东和广西), 与红树林沿纬度的分布格局呈错峰分布。其中, 红树林与沿海养殖池塘集中分布区(21°-22° N)存在大量养殖池塘堤边生长红树林的特色格局, 此区域内两者交互作用最为紧密, 是探究人类活动对红树林生态系统影响的典型热点地区。(3)养殖池塘侵占红树林是造成红树林损失的最直接原因, 并导致红树林空间分布格局呈现局部破碎化或聚集化的极端发展趋势。该研究通过解析沿海养殖池塘的空间格局, 为精准评估红树林周边典型人类活动变化提供数据支撑, 为进一步监测红树林空间格局动态变化趋势和红树林优先修复区识别提供参考依据。  相似文献   

19.
Interest in the systems supplying dissolved forms of iron to the sea from upland forests and wetlands has increased because iron is abundant on land but has low bioavailability in seawater. This can be a limiting factor for the growth of marine phytoplankton. Organic complex iron, a typical form of iron dissolved in seawater, is supplied to the ocean through rivers from forest and wetland soils. As a related study, we focus on mangrove ecosystems located at the boundary between the land and sea and on polyphenols present in leaves as ligands for the formation of iron complexes. When mangrove leaf litterfalls on the wet forest floor, phenolic compounds leach out from the leaves and might solubilize insoluble iron in the sediments (i.e., iron complexation). However, the reaction mechanism is not simple in the field, and it might be made more complex by tidal currents and intervention by crabs and snails, which consume mangrove leaf litter. In the present study, we focused on a detritivorous snail, Terebralia palustris, as a facilitator of iron solubilization associated with phenolic compounds, and examined how the snail contribute to iron solubilization processes. Our results indicated that the amounts of phenolic compounds in mangrove sediments are strongly related to iron solubilization. Furthermore, the average dissolved iron and phenolic contents in sediments from areas inhabited by the snail were significantly higher than those of sediments where the snail was not present. We additionally report that the solubilization of iron was promoted when snail feces were added to mangrove sediments. In conclusion, we propose that iron solubilization in mangrove sediments is promoted by the interaction between i) iron in the sediment, ii) phenolic compounds derived from mangroves, and iii) the consumption of leaves and the deposition of feces by the snail.  相似文献   

20.
Ecosystems in the tropical coastal zone exchange particulate organic matter (POM) with adjacent systems, but differences in this function among ecosystems remain poorly quantified. Seagrass beds are often a relatively small section of this coastal zone, but have a potentially much larger ecological influence than suggested by their surface area. Using stable isotopes as tracers of oceanic, terrestrial, mangrove and seagrass sources, we investigated the origin of particulate organic matter in nine mangrove bays around the island of Phuket (Thailand). We used a linear mixing model based on bulk organic carbon, total nitrogen and δ13C and δ15N and found that oceanic sources dominated suspended particulate organic matter samples along the mangrove-seagrass-ocean gradient. Sediment trap samples showed contributions from four sources oceanic, mangrove forest/terrestrial and seagrass beds where oceanic had the strongest contribution and seagrass beds the smallest. Based on ecosystem area, however, the contribution of suspended particulate organic matter derived from seagrass beds was disproportionally high, relative to the entire area occupied by mangrove forests, the catchment area (terrestrial) and seagrass beds. The contribution from mangrove forests was approximately equal to their surface area, whereas terrestrial contributions to suspended organic matter under contributed compared to their relative catchment area. Interestingly, mangrove forest contribution at 0 m on the transects showed a positive relationship with the exposed frontal width of the mangrove, indicating that mangrove forest exposure to hydrodynamic energy may be a controlling factor in mangrove outwelling. However we found no relationship between seagrass bed contribution and any physical factors, which we measured. Our results indicate that although seagrass beds occupy a relatively small area of the coastal zone, their role in the export of organic matter is disproportional and should be considered in coastal management especially with respect to their importance as a nutrient source for other ecosystems and organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号